References
1. Okrajni J, Cie M, Swad L. High-temperature low-cycle fatigue and
creep behaviour of nickel-based superalloys with heat-resistant
coatings. Fatigue Fract Eng Mater Struct . 2020; 21(8):947-954.
2. Li C, Chen G, Chen X, Zhang W. Ratcheting strain and simulation of
16MnR steel under uniaxial cyclic loading. Comput Mater Sci .
2012;57:43-47.
3. Kubena I, Polak J, Plocinski TP, Hebert C, Skorik V, Kruml T.
Microstructural stability of ODS steels in cyclic loading. Fatigue
Fract Eng Mater Struct . 2015; 38(8): 936-947.
4. Raman SGS, Argence D, Pineau A. High temperature short fatigue crack
behaviour in a stainless steel. Fatigue Fract Eng Mater Struct .
2010; 20(7):1015-1031.
5. Kordisch T, Nowack H. Life prediction for the titanium alloy imi 834
under high temperature creep–fatigue loadings. Fatigue Fract Eng
Mater Struct . 1998; 21(1): 47-63.
6. Barua B, Mohanty S, Listwan JT, Majumdar S, Natesan K. Methodology
for Stress-Controlled Fatigue Test Under In-Air and Pressurized Water
Reactor Coolant Water Condition and to Evaluate the Effect of
Pressurized Water Reactor Water and Loading Rate on Ratcheting. J
Press Vess Technol. 2018;140(3):031403-1-7.
7. Oldroyd PWJ, Radon JC. Reversal of cyclic creep in mild steel and
copper. Fatigue Fract Eng Mater Struct . 2010;1(3):297-306
8. Raman SGS, Argence D, Pineau A. High temperature short fatigue crack
behaviour in a stainless steel. Fatigue Fract Eng Mater Struct .
2010;20(7):1015-1031.
9. Luo H, Kang G, Kan Q, Ma C. Experimental study on the whole-life
heterogeneous ratchetting and ratchetting-fatigue interaction of
SUS301Lstainless steel butt-welded joint. Fatigue Fract Eng Mater
Struct . 2020;4:36-50
10. Zhao P, Xuan F. Ratchetting behaviorbehaviourbehaviour of advanced
9-12% chromium ferrite steel under creep-fatigue loadings: Fracture
modes and dislocation patterns. Mater Sci Eng: A2012;539:301-307.
11. Zhao P, Xuan F. Ratchetting behavior of advanced 9-12% chromium
ferrite steel under creep-fatigue loadings. Mech. Mater.2011;43(6):299-312.
12. Hu D, Ma Q, Shang L, Gao Y, Wang R. Creep-fatigue behaviour of
turbine disc of superalloy GH720Li at 650°C and probabilistic
creep-fatigue modeling. Mater Sci Eng: A. 2016;670:17-25.
13. Matejczyk DE, Zhuang Y, Tien JK. Anelastic relaxation controlled
cyclic creep and cyclic stress rupture behaviour of an oxide dispersion
strengthened alloy. Metall Trans A. 1983;14(1):241-247.
14. Hu X, Zhang Q, Jiang Y, Rao G, Miao G, He W, et al. The effect of
cyclic loading on the creep fatigue life and creep strength of a DS
superalloy: Damage mechanism and life modeling. Int J Fatigue .
2020;134:105452.1-105452.14.
15. Hong KT, Lee JK, Nam SW. Threshold stress for cyclic creep
acceleration in copper. J Mater Sci. 1988;23(5):1569-1572.
16. Yasnii PV, Halushchak MP, Fedak SI, Pidkol’zinet VY. Cyclic creep of
AMG6 alloy. Mater Sci. 2000;36(1):48-53.
17. Wang Z, Rahka K, Laird C. Cyclic creep acceleration and retardation
in cr-mo-v rotor steel at ambient and elevated temperature respectively.Fatigue Fract Eng Mater Struct . 2010;9(3):219-230.
18. Bonisch M, Calin M, Humbeeck JV, Skrotzki W, Eckert J. Factors
influencing the elastic moduli, reversible strains and hysteresis loops
in martensitic Ti-Nb alloys. Mater Sci Eng: C. 2015;48:511-520.
19. Zhang S, Xuan F, Guo S, Zhao P. The role of anelastic recovery in
the creep-fatigue interaction of 9-12% Cr steel at high temperature.Int J Mech Sci. 2017;122:95-103.
20. Gaudin C, Feaugas X. Cyclic creep process in AISI 316L stainless
steel in terms of dislocation patterns and internal stresses. Acta
Mater. 2004;52(10):3097-3110.
21. Rao A, Bouchard PJ, Northover SM, Fitzpatrick ME. Anelasticity in
austenitic stainless steel. Acta Mater. 2012;60(19):6851-6861.
22. Nardone VC, Kimmerle WL, Tien JK. Cyclic creep and anelastic
relaxation analysis of an ODS superalloy. Metall Mater Trans A.1986;17(9):1577-1583.
23. Reynolds GL, Beeré WB, Burton B. The configuration and climb rate of
dislocation links and the contribution to ane-lastic creep. Met
Sci. 1977;11(6):213-218.
24. Gibeling JC, Nix WD. Observations of anelastic backflow following
stress reductions during creep of pure metals. Acta Metall.1981;29(10):1769-1784.
25. Sawada K, Kimura K, Abe F. Mechanical response of 9% Cr
heat-resistant martensitic steels to abrupt stress loading at high
temperature. Mater Sci Eng: A. 2003;358(1–2):52-58.
26. Gibeling JG, Nix WD. A numerical study of long range internal
stresses associated with subgrain boundaries. Acta Metall.1980;28(12):1743-1752.
27. Hosseini E, Kalyanasundaram V, Li X, Holdsworth SR. Effect of prior
deformation on the subsequent creep and anelastic recovery behaviour of
an advanced martensitic steel. Mater Sci Eng: A. 2018;717:68-77.
28. Klueh RL. Heat treatment effects on creep and rupture behaviour of
annealed 2.25 Cr-1 Mo steel. Metall Mater Trans.1978;9A:1591-1598.
29. Jaske CE. Fatigue curve needs for higher strength 2-1/4Cr-1Mo steel
for petroleum process vessels. J Press Vess Technol.1990;112:323-332,.
30. Challenger KD, Miller AK, Brinkman CR. An Explanation for the
Effects of Hold Periods on the Elevated Temperature Fatigue Behaviour of
2 1/4 Cr-1 Mo Steel. J Eng Mater Technol. 1981;103(1):7-14.
31. Challenger KD, Miller AK, Langdon RL. Elevated temperature fatigue
with hold time in a low alloy steel: A predictive correlation. J
Mater Eng. 1981;3(1):51-61.
32. Kschinka BA, Stubbins JF. Creep-fatigue-environment interaction in a
bainitic 2.25wt.%Cr-1wt.%Mo steel forging. Mater Sci Eng: A.1989;110:89-102.
33. Zhang J, Yu D, Zhao Z, Zhang Z, Chen G, Chen X. Low cycle fatigue of
2.25Cr1Mo steel with tensile and compressed hold loading at elevated
temperature. Mater Sci Eng: A. 2016;667:251-260.
34. Zhao Z, Yu D, Chen G, Chen X. Ratcheting-fatigue behaviour of
bainite 2.25Cr1MoV steel with tensile and compressed hold loading at
455℃. Fatigue Fract Eng Mater Struct . 2019;42(9):1937-1949.
35. Kim WG, Park JY, Ekaputra IMW, Kim SJ, Jang J. Cyclic creep
behaviour under tension-tension loading cycles with hold time of
modified 9Cr-1Mo steel. Mater High Temp. 2014;31(3):249-257.
36. Bee JV, Howell PR, Honeycombe RWK. Isothermal transformations in
iron-chromium- carbon alloys. Metall Mater Trans A.1979;10(9):1207-1212.
37. Kuo KH, Jia CL. Crystallography of
M23C6 and M6C
precipitated in a low alloy steel. Acta Metall.1985;33(6):991-996.
38. Fischer T, Kuhn B. Influence of steam atmosphere on the crack
propagation behaviour of a 9-12% Cr ferritic/martensitic steel at
temperatures from 300 °C to 600 °C depending on frequency and hold
time. Int J Fatigue. 2019;119:62-77.
39. Fischer T, Kuhn B. Impact of frequency, hold time and atmosphere on
creep-fatigue of a 9-12% Cr steel from 300 °C-600 °C. Int J
Fatigue. 2019;124:288-302.
40. Zheng X, Wu K, Wang W, Yu J, Xu J, Ma L. Low cycle fatigue and
ratcheting behaviour of 35CrMo structural steel at elevated temperature.Nucl Eng Des. 2017;314:285-292.
41. Zheng X, Wang J, Gao J, Ma L, Yu J, Xue J. Rate-dependent low cycle
fatigue and ratcheting of 25Cr2MoVA steel under cyclic pulsating
tension. Mater High Tem. 2017;35(5):1-8.
42. Chen M, Lin Y, Li K, Chen J. The nonlinear unloading behaviour of a
typical Ni-based superalloy during hot deformation: a new
elasto-viscoplastic constitutive model. Appl Phys A.2016;122(9):869.1-869.12.
43. Chen M, Lin Y, Li K, Chen J. The nonlinear unloading behaviour of a
typical Ni-based superalloy during hot deformation: a unified
elasto-viscoplastic constitutive model. Appl Phys A .
2016;122(9):854.1-854.14.
44. Kim H, Kim C, Barlat F, Pavlina E, Lee MG. Nonlinear elastic
behaviours of low and high strength steels in unloading and reloading.Mater Sci Eng: A. 2013; 562: 161-171.
45. Zheng X, Xuan F, Zhao P. Ratcheting-creep interaction of advanced
9-12% chromium ferrite steel with anelastic effect. Int J
Fatigue. 2011;33(9):1286-1291.
46. Yang M, Akiyama Y, Sasaki T. Evaluation of change in material
properties due to plastic deformation. J Mater Process Technol.2004;151(1-3):232-236.
47. Stefani JA, Nardone VC, Tien JK. On the refinement of the anelastic
relaxation controlled cyclic creep model. Scripta Metall. 1986;
20(5):685-688.
48. Mareau C, Favier V, Weber B, Galtier A, Berveiller M.
Micromechanical modeling of the interactions between the microstructure
and the dissipative deformation mechanisms in steels under cyclic
loading. Int J Plast. 2012; 32-33: 106-120.
49. Liu X, Shiwa M, Sawada K, Yamawaki H, Watanabe M, Yin F. Effect of
cold working deformation on the internal friction of 2.25Cr-lMo steel.Mater Sci Eng: A. 2010; 527(24-25):6741-6744.
50. Morris DG. Anelasticity and creep transients in an austenitic steel.J Mater Sci. 1978;13(9):1849-1854.
51. Fan Z, Chen X, Chen L, Jiang J. Fatigue-creep behaviour of
1.25Cr0.5Mo steel at high temperature and its life prediction. Int
J Fatigue. 2007;29(6):1174-1183.
52. Zhu Y, Kang G, Yu C. A finite cyclic elasto-plastic constitutive
model to improve the description of cyclic stress-strain hysteresis
loops. Int J Plast. 2017;95:191-215.
53. R5 assessment procedure for the high temperature response of
structures. British Energy Genation. UK, 2010.