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The aim of the present study is concerned with the effect of rotation of thermoelastic material with voids under the effect of  three-phase-lag memory
 dependent heat transport law. The entire porous medium is rotating with a uniform angular velocity, where the bounding plane is subjected to a thermal shock and is free of tractions.  Employing the normal mode analysis, the exact expressions for the displacement components, stresses, temperature distribution and change in volume fraction field have been depicted graphically in the presence and the absence of rotation and memory
 dependent derivative. The effect of void is also discussed in the literature survey. 
Keywords:  Memory
 dependent derivative; three-phase-lag model; voids; normal  mode 

analysis; rotating medium.
1   INTRODUCTION

The heat conduction equations for the classical linear uncoupled and coupled thermo-elasticity theories are of the diffusion type predicting infinite speed of propagation for heat wave contrary to physical observations. To eliminate this paradox inherent in the classical theories, generalized theories of thermoelasticity were developed. The generalized theories of thermoelasticity admit so-called second-sound effects, that is, they predict finite velocity of propagation for thermal waves. The first attempt towards the introduction of generalized thermoelasticity was started by Lord and Shulman
[image: image7.wmf]1

, who formulated the theory by incorporating a flux-rate term into conventional Fourier’s law of heat conduction. The L-S (Lord-Shulman) theory introduces a new physical concept which called a relaxation time. Since the heat conduction equation of this theory is of the wave-type, it automatically ensures finite speed of propagation for heat wave. The second generalization was developed by Green and Lindsay.
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 This theory contains two constants
that act as relaxation times and modifies all the equations of coupled theory,  not  the heat 
conduction equation only.


Because of the experimental evidences in the support of finiteness of the heat propagation speed. Very recently, employing the generalized thermoelasticity theories, several remarkable studies have been reported in previous studies.
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 One of these modern theories, the three-phase-lag model, proposed by Roy Choudhuri,
[image: image10.wmf]8

 is very useful particularly in the problems of heat transfer which is involved for a very short time interval and also for the problems of very high heat fluxes. This current model is very useful in the problems of nuclear boiling, exothermic catalytic reactions, phonon–electron interactions, phonon-scattering etc., where the delay time 
[image: image11.wmf]q

t

 captures the thermal wave behavior (a small-scale response in time), the phase-lag 
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t

 captures the effect of phonon–electron interactions (a microscopic response in space), the other delay time 
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t

 is effective since, in the three-phase-lag model, the thermal displacement gradient is considered as a constitutive variable whereas in the conventional thermoelasticity theory temperature gradient is considered as a constitutive variable. According to this model
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where 
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,

  is the temperature gradient at a point 
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of the material at time 
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, 
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 is the component of heat flux at the point 
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 in time 
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, 
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 is the thermal conductivity of the material and 
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 is additional material constant. The delay time 
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t

 is interpreted as that caused by the microstructural interactions and is called the phase-lag of the  ttemperature gradient. The other delay time 
[image: image24.wmf]q

t

 is interpreted as the relaxation time due to the fast transient effects of thermal inertia and is called the phase-lag of the heat flux and 
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t

 is the phase-lag for thermal displacement gradient.






Theory of elastic materials with voids is one of the most important generalizations of the classical theory of elasticity. This theory is concerned with elastic materials consisting of a distribution of small porous (voids) in which the void volume is included among the kinematic variables. Practically this theory is useful for investigating various types of geological and biological materials for which elastic theory is inadequate.  Iesan
[image: image26.wmf]9

presented a linear theory for thermoelastic material with voids. He derived the basic equations and proved the uniqueness of solution, reciprocity relation and variation characterization of the solution in the dynamical theory. Nunziato and Cowin
[image: image27.wmf]10

studied a nonlinear theory of elastic materials with voids. They showed that the changes in the volume fraction cause an internal dissipation in the material and this internal dissipation leads to a relaxation property in the material.   Also,  Cowin and Nunziato
[image: image28.wmf]11

developed  a linear theory for elastic materials with voids for the mathematical study of the mechanical behaviour of porous solids. This linearized theory of elastic materials with voids is a generalization of classical theory of elasticity and reduces to it when the dependence on change in volume fraction and its gradient are suppressed. Puri and Cowin
[image: image29.wmf]12

 studied the behaviour of plane waves in a linear elastic material with voids. Domain of influence theorem in the linear theory of elastic materials with voids was discussed by
[image: image30.wmf]13

.  Dhaliwal and Wang
[image: image31.wmf]14

also, developed a heat-flux dependent theory of thermoelasticity with voids. Marin
[image: image32.wmf]15

studied uniqueness and domain of influence results in thermoelastic bodies with voids. Othman and Abd-Elaziz
[image: image33.wmf]16,17

used the normal mode method to study the effect of thermal loading due to laser pulse and the magnetic field in generalized thermoelastic medium with voids in dual-phase-lag model. Cicco and Diaco
[image: image34.wmf]18

presented a theory of thermoelastic material with voids without energy dissipation. Also, Sur and Kanoria
[image: image35.wmf]19

reported the thermoelastic problem with voids in presence of distributed periodically varying heat source. The problem of the magneto-thermoelastic medium with voids was also reported by Garra.
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Some researchers in the past have investigated different problems of the rotating media.  Schoenberg and Censor
[image: image37.wmf]21

 studied the effect of rotation on elastic waves. Chand et al.
[image: image38.wmf]22

  presented an investigation on the distribution of deformation, stresses and magnetic field in a uniformly rotating homogeneous isotropic, thermally and electrically conducting elastic half space. The effect of rotation on plane waves in generalized thermoelasticity with two relaxation times was reported in previous studies.
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Also, the effect of rotation  on various thermoelastic medium was reported by Sur and Kanoria.
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The well-known Caputo
[image: image41.wmf]28

; Caputo and Mainardi
[image: image42.wmf]29

derivative is defined as
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where 
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and 
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 indicates the usual mth-order derivative of the function. Differential equations of fractional order have been the focus of many studies due to their frequent appearance in various application in fluid mechanics, viscoelasticity, biology, physics, and engineering. The most important advantage of using fractional differential equations in these and other applications is their non-local property. It is well known that the integer order differential operator is a local operator but the fractional order differential operator is non-local see, eg, previous studies.
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From (2) and (3), it can be visualized that for any real number 
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 , the kernel 
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is a fixed function. But from the viewpoint of applications, different processes need different kernels to reflect their memory effects, so the kernel should be chosen freely. In

fact, the memory effect of a real process basically occurs on a segment of time, i.e. on

the delayed interval 
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 indicates the time-delay). Enlightened by these, the novel concept of derivative was initiated as the “memory-dependent derivative” (MDD) toreflect the memory effect in a distinct manner. One may state that the definition of MDD is more intutionistic in realizing the physical significance and accordingly, the corresponding memory-dependent differential equations are more effective in real-world problems. Quite recently, introducing the concept of MDD, a few pioneering works can be reviewed from the previous literatures.
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Wang and Li
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introduced a memory-dependent derivative, the first order of function 
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 which is simply defined in an integral form of a common derivative with a kernel function on a slipping interval as follows:
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where 
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is the delay time and 
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is the kernel function which can be chosen 
freely such as 
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. The kernel function can be understood as the degree of the past effect on the present. In addition, if 
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So, the common derivative 
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can be seen as the limit of 
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 as 
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 see, eg.
[image: image64.wmf]39,40



The present paper is organized as follows: The part 2 presents the basic equations and symbols used in this paper. The formulation of the governing equations of generalized thermoelasticity of homogeneous rotating isotropic, with voids under the effect of memory
-dependent derivative. The part 3 presents the solution of the governing equations in the 
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plane. The normal mode analysis is used to obtain the exact expressions for physical quantities. In the part 4, the boundary conditions were considerd in order to determine the parameters 
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 Part 5, gives  the numerical computations, and the magnesium material was chosen for purposes of the numerical evaluations. The comparisons are shown graphically to explore the effects of the memory dependent derivative, choices of different kernel functions, delay time parameter and the effect of volume fraction field is also reported. In the last part, the theoretical and numerical results are concluded.
2  FORMULATION OF THE PROBLEM

We consider a homogeneous, isotropic, thermoelastic material with voids in the un-deformed state with the reference temperature 
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, where the half space 
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 is subjected to the rectangular cartesian co-ordinate system 
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 having origin on the surface 
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.  For two dimensional problem we assume the dynamic displacement vector as 
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 Since the elastic material is rotating uniformly with an angular velocity 
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,  where 
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is a unit vector representing the direction of axis of rotation. All quantities considered will be function of the time variable 
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 and of the coordinates 
[image: image75.wmf]x

 and 
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  The displacement equation of motion in a rotating frame has two additional terms according to Schoenberg and Censor
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centripetal acceleration, 
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due to time varying motion only and 
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. These terms do not appear in non-rotating media.
In the context of a rotating thermoelastic body with voids without body forces, the field equations and constitutive relations based on three-phase-lag memory dependent heat transfer can be written as
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Where 
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 are the Lame' constants, 
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are the material constants due to presence of voids, 
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is the temperature distribution, 
[image: image90.wmf]u

 is the displacement vector, 
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is the coefficient of linear thermal expansion of the material, 
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is the density, 
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is the specific heat at constant strain, 
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is the thermal conductivity, 
[image: image96.wmf]*

k

is the material constant characteristic of the theory, 
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 is the reference temperature chosen so that 
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 is the change in volume fraction field, 
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is the dilatation, 
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 components of strain tensor,
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are the components of stress tensor, 
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is the Kronecker delta, 
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 is the time variable and the Laplacian operator is defined by  
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Using the summation convention, the basic governing equations of linear rotating thermo-elastic materials with voids becomes:   
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To facilitate the solution of the problem, we introduce the following dimensionless variables:  
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(17)       
and after omitting primes, the above equations can be rewritten in nondimensional form as :
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where  
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Where 
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                      so that   
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Substituting from Eq. (25) in Eqs. (21)-(24), we arrive at  
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where  
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To justify the dependence of memory-effect, the kernel function  
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 in  the heat transport law is considered as
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where 
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 is the delay time and 
[image: image169.wmf]b

a

,

are constants. 
3  NORMAL MODE ANALYSIS 
   The solution of considered physical variables can be decomposed in terms of normal mode as following form 
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By using Eq. (32), Eqs. (18)- (20) and (27)-(30) take the form
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In a similar manner we arrive at 
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Equation (42) can be factorized as  
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The solutions of Eq. (36), which bound at 
[image: image213.wmf]y

®¥

 is given by 



[image: image214.wmf]4

()

(,,)

1

,

kytiax

n

xytRe

n

1

n

w

y

-++

=

å

=

 
(44)


[image: image215.wmf]4

()

(,,)

1

1

,

kytiax

n

xytRLe

n

2n

n

w

y

-++

=

å

=


(45)


[image: image216.wmf]4

()

(,,)

2

1

,

kytiax

n

xytRLe

n

n

n

w

f

-++

=

å

=


(46)


[image: image217.wmf]4

()

(,,)

3

1

,

kytiax

n

TxytRLe

n

n

n

w

-++

=

å

=


(47)
where 

[image: image218.wmf]4

1

2

12

()

,

n

n

b

L

kb

=-

-

    
[image: image219.wmf]1,2,3,4

n

=

.



[image: image220.wmf]22

981199181198

2

2

115910

()()

()

,

nn

n

n

aabkabLabaab

L

bkbab

--+-

=-

-+

     
[image: image221.wmf]1,2,3,4

n

=

.



[image: image222.wmf]22

15101391511013815

3

2

10141115

()()

()

,

nn

n

n

bbbkbbLbbabb

L

bkbbb

--+-

=-

-+

    
[image: image223.wmf]1,2,3,4

n

=

.
Here
[image: image224.wmf]2

(1,2,3,4)

n

kn

=

are the roots of the characteristic equation of Eq. (42) and 
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To obtain the components of displacement vector we substitute from Eqs. (44) and (45) in Eq. (25) to arrive at  
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The components of stress tensor can be evaluated on  substituting (48) and (49) in Eqs. (38)-(40) as 
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where 
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4  BOUNDARY CONDITIONS
In  this  section we need to  consider the boundary  conditions  in order  to  determine the 
parameters
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4.1 The mechanical boundary conditions
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4.2  The thermal boundary condition that the surface of the half-space subjected to thermal shock
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Where 
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[image: image246.wmf](,)

fxt

is a known function.

Substituting the expressions of the considered variables into the above boundary conditions, we can obtain the following equations satisfied by the parameters.
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Invoking boundary conditions laid down in Eqs. (54) and (55) at surface 
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 of the thermoelastic medium, we obtain a system of  equations (56)-(59). After applying the inverse of matrix method, we have the values of four constants 
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Hence we obtain the expressions for the displacements, the temperature distribution, and other physical quantities of the plate muscles.
5  NUMERICAL RESULTS AND DISCUSSION
For numerical computations, following Dhaliwal and Singh
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 the magnesium material was chosen for purposes of numerical evaluations. The constants of the problem were taken as 
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The voids parameters are
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The comparisons were carried out for 

[image: image270.wmf]1

1,

p

=

   
[image: image271.wmf]2

10,

p

=

   
[image: image272.wmf]2

0.5,

e

=

  
[image: image273.wmf]0.3,

t

=

  
[image: image274.wmf]0.3,

a

=

  
[image: image275.wmf]11

,2.5,0.2,

i

whhhh

=+==

 
[image: image276.wmf]9.8,

g

=

  
[image: image277.wmf]0.3,

W

=



[image: image278.wmf]5,

x

=

  and 
[image: image279.wmf]04.

y

££




The above numerical technique was used for the distribuations of  the real parts for  the displacement components 
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 and the change in volume fraction field 
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 for three-phase lag model of generalized thermoelasticity in presence of memory dependent derivative.  
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FIGURE 1  Distribution of the displacement component 
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 for different kernel function.

In order to study the effect of different kernel function on the horizonal displacement component 
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 versus the disptance 
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 is now depicted. The numerical computations are performed for depth 
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 respectively and also in absence of memory effect, where the delay time takes the value 
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 and in the presence of void. From the Fig. 1, it is seen that for all different cases, the displacement in increasing in magnitude in 
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 start decaying at far from the boundary. Moreover it is seen that the magnitude of the profile of 
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. Also, it is seen from the figure, the presence of memory-effect has the prominent tendency to diminish the magnitude of the profile of the displacement component compared to the absence of memory-effect within the medium. 
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FIGURE 2  Distribution of the displacement component 
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for different kernel function.

Fig. 2 explaines the effect of various kernel functions on the vertical displacement component 
[image: image304.wmf]v

 in presence of  void, when the thermoelastic medium is rotating with an uniform angular velocity. As seen from the figure, the magnitude of the vertical displacement has the tendency to increase the magnitude of the profiles with the increase of the depth 
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. Moreover, it is seen that the magnitude of the profile of 
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 is larger for 
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. Fig. 3 is now plotted to show the effect of different kernel functions on the temperature distribution 
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 As noticed from the figure, the temperature profile attains the maximum magnitude on the bounding plane 
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, satisfying the mechanical boundary condition, as laid down in Eq. (55). Moreover, it is noticed that the presence of memory effect has the tendency to diminish the magnitude of the temperature profile within thhe medium. The choice of different kernel functions shows a similar qualitative behavior as noticed in Figs. 1 and 2. 
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FIGURE  3  Temperature distribution 
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 for different kernel function.
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FIGURE 4  Distribution of the stress component 
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Fig. 4 shows the effect of different kernel function on the horizontal stress 
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. It is seen from the figure, the magnitude of the horizontal stress is compressive in nature near the plane of application of the thermal loading. 

Also, that the magnitude of the profile of 
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 is larger for 
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FIGURE 5  Distribution of the stress component 
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 for different kernel function.

Fig. 5 displays the variation of the vertical stress 
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 for the rotating thermoelastic medium in presence of voids for different choices of kernel function and in absence of memory effect also. From the figure, it is seen that the vertical stress is compresive  in nature near the plane of application of the mechanical loading and satisfies the mechanical boundary condition of the problem as laid down in Eq. (54), which validates another partial correctness of the problem. A similar qualitative behavior of the kernel function is also noticed here. 
Fig. 6 displays the distribution of the shrearing stress 
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 for the same choices of the kernel functions as mentioned earlier. The fact clearly revealed from the graphical representation that the shearing stress also satisfies the mechanical boundary condition of the problem due to the presence and absence of memory effect. Moreover, the presence of memory effect within the heat conduction equation has a prominent tendency to diminish the magnitude of the profile of the shearing stress within the rotating media. 
With an aim to illustrate the effect of different kernel fucntions on the distribution of volume fraction field 
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 due to the presence of memory effect and also to compare the result in absence of memory, Fig. 7 is now plotted for  therrotating thermoelastic media with voids. It is seen that the magnitude of the profile of 
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FIGURE 6  Distribution of the stress component 
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 for different kernel function.
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Figure 7  Change in volume fraction field distribution 
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 for different kernel function.

In order to show the effect of the delay time on the distribution of the thermophysical quantities against the distance 
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, Figs. 8-14 have now been plotted. The numerical computations have been performed for 
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, where the medium is rotating with an uniform angular velocity. For the purpose of illustration, we have set the magnitude of the delay time as 
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Also, the numerical computations have been performed for kernel functions 
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From these figures, the fact is clearly revealed that with the increase of the magnitude of the delay time, the magnitude of the profiles of the thermophysical quantities also increase, which is quite plausible.
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FIGURE 8  Distribution of the displacement component 
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 for different delay time.
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FIGURE  9  Distribution of the displacement component 
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 for different delay time.
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FIGURE 10  Temperature distribution 
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 for different delay time.
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FIGURE 11  Distribution of the stress component 
[image: image348.wmf]xx

s

 for different delay time.
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FIGURE 12  Distribution of the stress component 
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 for different delay time.
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FIGURE 13  Distribution of the stress component 
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 for different delay time.
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FIGURE 14  Change in volume fraction field distribution 
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 for different delay time.

6  CONCLUSIONS 

Analysis of the components of displacement, stresses, the temperature distribution, and change in volume fraction field due to rotation for thermoelastic solid with voids is an interesting problem of mechanics. Normal mode analysis technique has been used which is applicable to a wide range of problems in thermoelasticity with memory dependent derivative in the context of three-phase lag model. This method gives exact solutions without any assumed restrictions on the actual physical quantities that appear in the governing equations of the physical problem considered. The value of all physical quantities converges to zero with increase in distance 
[image: image355.wmf]y

and all functions are continuous. It noticed that the thermoelastic materials with voids have an important role in the distribution of the field quantities, also the rotation has a great role in all considered physical quantities, since the amplitudes of these quantities is varying (increasing or decreasing) with the increase of the rotation. Also, significant effect of  choices of linear and non-linear kernel functions are also revealed. A prominent effect of time-delay parameter shows that with the increase of the magnitude of the delay-time, the magnitude of the profiles of the thermophysical quantities also increases within the medium. Finally it deduced that the deformation of a body depends on the nature of the applied forces as well as the type of boundary conditions. 
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