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1 Introduction

N -soliton solutions are typical exact solutions to integrable equations [1, 2, 3], and breather,

lump and rogue wave solutions are their special situations. The Hirota bilinear method is a

powerful approach to N -soliton solutions [4]. The concept of bilinear derivatives is the key

tool in the theory, and Hirota bilinear forms are crucial in furnishing N -soliton solutions.

Hirota bilinear derivatives are defined by [5]:

Dxf · g = fxg − fgx, D2
xf · g = fxxg − 2fxgx + fgxx, · · · ,

Dm
x f · g =

m∑
i=1

(−1)m−i
(
m

i

)
(∂ixf)(∂m−ix g), m ≥ 1,

and more generally, bilinear partial derivatives with multiple variables are similarly defined:

(Dm
x D

n
t f ·g)(x, t) = (∂x−∂x′)m(∂t−∂t′)nf(x, t)g(x′, t′)|x′=x,t′=t, m, n ≥ 0, m+n ≥ 1. (1.1)

When f = g, we get Hirota bilinear expressions:

Dxf · f = 0, D2
xf · f = 2(fxxf − f 2

x), · · · ,

D2m−1
x f · f = 0, D2m

x f · f =
2m∑
i=1

(−1)2m−i
(

2m

i

)
(∂ixf)(∂2m−ix f), m ≥ 1,

and similarly, bilinear partial derivative expressions:

Dm
x D

n
t f · f =

m∑
i=1

n∑
j=1

(−1)m+n−i−j
(
m

i

)(
n

j

)
(∂ix∂

j
t f)(∂m−ix ∂n−jt f), m, n ≥ 0, m+ n ≥ 1.

(1.2)

In terms of Hirota bilinear expressions, we can define Hirota bilinear equations. Take an

even polynomial P (x1, x2, · · · , xM) in M variables, with no constant term, i.e., P (0) =

P (0, 0, · · · , 0) = 0. The associated Hirota bilinear equation is defined by

P (Dx1 , Dx2 , · · · , DxM )f · f = 0, (1.3)

each term of which is a Hirota bilinear expression.

For example, the bilinear KdV equation associated with P (x, t) = x4 + xt reads

B(f) := (D4
x +DxDt)f · f = 2(f4xf − 4f3xfx + 3f 2

xx + fxtf − fxft) = 0, (1.4)

which gives the standard KdV equation

N(u) := ut + 6uux + uxxx = 0, (1.5)
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upon taking u = 2(ln f)xx. The link is N(u) = (B(f)/f 2)x. The bilinear Boussinesq equa-

tions associated with P (x, t) = t2 ± x4 are

B(f) := (D2
t ±D4

x)f · f = 2[fttf − f 2
t ± (f4xf − 4f3xfx + 3f 2

xx)] = 0, (1.6)

which are transformed into the standard Boussinesq equations

N(u) := utt + (u2)xx ± u4x = 0, (1.7)

through the transformation u = ±6(ln f)xx, and the links are N(u) = ±3(B(f)/f 2)xx [6].

We would like to discuss N -soliton solutions and derive the corresponding Hirota condi-

tions. An algorithm will be proposed for verifying the Hirota N -soliton conditions by figuring

out common factors for the terms in the conditions and comparing degrees of the involved

polynomials containing common factors. Applications will be made to a class of generalized

KdV equations associated with

P (x, t) = ax4 + bx3t+ cx2 + dxt, (1.8)

where a, b, c, d are arbitrary constants satisfying b2 + d2 6= 0, and a class of generalized

higher-order KdV equations associated with

P (x, t) = ax6 + bx4 + cx2 + xt, (1.9)

where a, b, c are arbitrary constants. Our analysis implies that each equation in the two

classes possesses N -soliton solutions.

2 N-soliton conditions

An N -soliton solution to a Hirota bilinear equation (1.3) is given by [7]:

f =
∑
µ=0,1

exp(
N∑
i=1

µiηi +
∑
i<j

aijµiµj), (2.1)

where µ = (µ1, µ2, · · · , µN), µ = 0, 1 means that each µi takes 0 or 1, and

ηi = k1,ix1 + k2,ix2 + · · ·+ kM,ixM + ηi,0, 1 ≤ i ≤ N, (2.2)

eaij = Aij := −P (ki − kj)

P (ki + kj)
, 1 ≤ i < j ≤ N, (2.3)

ηi,0’s being arbitrary phase shifts, under the dispersion relations

P (ki) = 0, ki = (k1,i, k2,i, · · · , kM,i), 1 ≤ i ≤ N. (2.4)
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We will show that a Hirota bilinear equation (1.3) has an N -soliton solution (2.1) iff

H(k1, · · · ,kn) :=
∑
σ=±1

P (
n∑
i=1

σiki)
∏

1≤i<j≤n

P (σiki − σjkj)σiσj = 0, 1 ≤ n ≤ N, (2.5)

where σ = (σ1, σ2, · · · , σn), and σ = ±1 means that each σi takes 1 or −1. This is called the

Hirota condition for an N -soliton solution, or simply, the N -soliton condition [8], and there

are very few studies on this Hirota N -soliton condition [9, 10, 11, 12], due to its complexity

[8].

The one-soliton condition is just the dispersion relation: P (k1) = 0, which means that

f = 1 + eη1 is a solution. Besides the dispersion relations, the two-soliton condition is

2(P (k1 + k2)P (k1 − k2)− P (k1 − k2)P (k1 + k2)) = 0, (2.6)

which is an identity. Therefore, there always exists a two-soliton solution:

f = 1 + eη1 + eη2 + A12e
η1+η2 . (2.7)

Taking N = 3, we obtain the three-soliton condition [13, 14]:∑
σ1,σ2,σ3=±1

P (σ1k1 + σ2k2 + σ3k3)P (σ1k1 − σ2k2)

×P (σ2k2 − σ3k3)P (σ1k1 − σ3k3) = 0,

which is equivalent to ∑
(σ1,σ2,σ3)∈S

P (σ1k1 + σ2k2 + σ3k3)P (σ1k1 − σ2k2)

×P (σ2k2 − σ3k3)P (σ1k1 − σ3k3) = 0, (2.8)

where S = {(1, 1, 1), (1, 1,−1), (1,−1, 1), (−1, 1, 1)}. The three-soliton solution is given by

f = 1 + eη1 + eη2 + eη3 + A12e
η1+η2 + A13e

η1+η3

+A23e
η2+η3 + A123e

η1+η2+η3 , A123 = A12A13A23. (2.9)

It is a direct computation that the three-soliton condition is satisfied for both the KdV

equation and the Boussinesq equations. There is a conjecture that the three-soliton condition

implies the N -soliton condition. No counterexample has been found, indeed.

If we require a sufficient Hirota N -soliton condition [15]:

P (ki − kj) = 0, 1 ≤ i < j ≤ N, (2.10)
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we obtain a resonant N -soliton solution

f = 1 + c1e
η1 + c2e

η2 + · · ·+ cNeηN , (2.11)

where ci’s are arbitrary constants. All wave vectors ki’s associated with resonant solutions

form an affine space in RM [16].

Note that we have

P (Dx1 , · · · , DxM )eηi · eηj = P (ki − kj)e
ηi+ηj , (2.12)

and

P (Dx1 , · · · , DxM )eηnf · eηng = e2ηnP (Dx1 , · · · , DxM )f · g, (2.13)

where ηi, ηj and ηn are arbitrary linear functions.

Theorem 2.1 Let f be defined by (2.1). Then we have

P (Dx1 , · · · , DxM )f · f

= (−1)
1
2
N(N−1) H(k1,k2, · · · ,kN)∏

1≤i<j≤NP (ki + kj)
eη1+η2+···+ηN

+
N−1∑
n=1

(−1)
1
2
(N−n)(N−n−1)

∑
1≤i1<···<in≤N

H(k1, · · · , k̂i1 , · · · , k̂in , · · · ,kN)∏
1≤i<j≤N

i,j 6∈{i1,··· ,in}
P (ki + kj)

eη1+···+η̂i1+···+η̂in+···+ηN ,

(2.14)

where k̂i1 , · · · , k̂in (or η̂i1 , · · · , η̂in) mean that ki1 , · · · ,kin (or ηi1 , · · · , ηin) are not included.

Proof: Note that we have the properties (2.12) and (2.13), and so, we can expand all terms

in P (Dx1 , · · · , DxM )f ·f . Let us compute the terms which involve eη1+η2+···+ηN . For example,

we have the following term of such a type:

P (Dx1 , · · · , DxM )(A12···(N−1)e
η1+η2+···+ηN−1 · eηN )

= A12···(N−1)P (Dx1 , · · · , DxM )(eη1+η2+···+ηN−1 · eηN )

= A12···(N−1)P (k1 + · · ·+ kN−1 − kN)eη1+η2+···+ηN

= (−1)
1
2
(N−1)(N−2)

∏
1≤i<j≤N−1

P (ki − kj)

P (ki + kj)
P (k1 + · · ·+ kN−1 − kN)eη1+η2+···+ηN

= (−1)
1
2
N(N−1)P (σ1k1 + · · ·+ σNkN)

∏
1≤i<j≤N P (σiki − σjkj)σiσj∏

1≤i<j≤N P (ki + kj)
eη1+η2+···+ηN ,

where σ = (σ1, · · · , σN−1, σN) = (1, · · · , 1,−1) and A12···(N−1) =
∏

1≤i<j≤N−1Aij. Taking all

possibilities of σi = ±1, 1 ≤ i ≤ N , we obtain the first sum determined by H(k1, · · · ,kN)
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in (2.14). The other sums determined by H(k1, · · · , k̂i1 , · · · , k̂in , · · · ,kN), 1 ≤ i1 < i2 <

· · · < in ≤ N , can be similarly obtained. The proof is finished. �

Based on this theorem, we see that the Hirota condition is a necessary and sufficient

condition for a Hirota bilinear equation to have an N -soliton solution, which is summarized

in the following corollary.

Corollary 2.1 Let f be given by (2.1). Then f presents an N-soliton solution to a Hirota

bilinear equation (1.3) iff the Hirota condition in (2.5) is satisfied.

In order to figure out as more common factors out of the Hirota function H(k1, · · · ,kN) as

possible, we will use the following result, which is an automatic consequence of the definition

of the Hirota function.

Theorem 2.2 The Hirota function H(k1, · · · ,kN) defined by (2.5) is a symmetric and even

function in ki, 1 ≤ i ≤ N .

Taking kN−1 = ±kN , we have

P (σiki − kN−1)P (σiki ± kN) = P (ki − kN)P (ki + kN) (2.15)

in any case of σi = ±1, due to the even property of the polynomial P . Therefore, we can

obtain the following consequence.

Theorem 2.3 If kN−1 = ±kN , then we have

H(k1, · · · ,kN) = 2H(k1, · · · ,kN−2)P (2kN)
N−2∏
i=1

P (ki − kN)P (ki + kN). (2.16)

Proof: When kN−1 = ±kN , we can compute that

H(k1, · · · ,kN) =
∑
σ=±1

P (σ1k1 + · · ·+ σNkN)
∏

1≤i<j≤N

P (σiki − σjkj)σiσj

=
∑
σ=±1

P (σ1k1 + · · ·+ σNkN)
∏

1≤i<j≤N−2

P (σiki − σjkj)σiσj

×
N−2∏
i=1

P (σiki − σN−1kN−1)σiσN−1
N−1∏
i=1

P (σiki − σNkN)σiσN
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= 2
∑
σ=±1

P (σ1k1 + · · ·+ σNkN−2)
∏

1≤i<j≤N−2

P (σiki − σjkj)σiσj

×
N−2∏
i=1

P (σiki − kN−1)
N−2∏
i=1

P (σiki ± kN)P (2kN)

= 2H(k1, · · · ,kN−2)P (2kN)
N−2∏
i=1

P (ki − kN)P (ki + kN),

where the last step is due to (2.15), but the last but one step follows from the fact that the

two cases (1,∓1) and (−1,±1) of (σN−1, σN) are left and the other two cases lead to a zero

factor owing to P (0) = 0. Therefore, the proof of the theorem is finished. �

This theorem will be used to factor out common factors out of the Hirota function H

while proving the Hirota condition.

3 Applications to (1+1)-dimensional equations

3.1 A general algorithm

In the (1+1)-dimensional case, the wave vectors can be expressed as

ki = (ki,−ωi), 1 ≤ i ≤ N. (3.1)

We assume that the dispersion relations (2.4) determine all frequencies ωi = ω(ki), 1 ≤ i ≤
N . Therefore, P (σiki − σjkj) are functions of ki and kj,

On one hand, we further assume that P (σiki − σjkj) and P (σ1k1 + · · ·+ σNkN) can be

simplified into rational functions as follows:

P (σiki − σjkj) =
σiσjkikjQ1(ki, kj, σi, σj)

Q2(ki, kj)
, (3.2)

where Q1 and Q2 are polynomial functions, and

P (σ1k1 + · · ·+ σNkN) =
Q3(k1, · · · , kN , σ1, · · · , σN)

Q4(k1, · · · , kN)
, (3.3)

where Q3 and Q4 are polynomial functions. Let us set the polynomial

H̃ = H(k1, · · · ,kN)Q4(k1, · · · , kN)
∏

1≤i<j≤N

Q2(ki, kj), (3.4)

for convenience of discussion.
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On the other hand, Theorem 2.3 tells that under the induction assumption, the Hirota

function H(k1, · · · ,kN) will be zero, if two of the wave vectors satisfy ki = ±kj, 1 ≤ i <

j ≤ N . Based on the even property of H and P , we know that H(k1, · · · ,kN) is still even

with respect to the wave numbers ki 1 ≤ i ≤ N . Therefore, from the symmetric property in

Theorem 2.2, we can factor out a factor (k2i − k2j )2 out of the polynomial H̃:

H̃ = (k2i − k2j )2gij, for any pair 1 ≤ i < j ≤ N, (3.5)

where gij is a polynomial of kn, 1 ≤ n ≤ N .

Finally, it follows from the characteristic property of P in (3.2) that the Hirota function

H(k1, · · · ,kN) can be written as

H(k1, · · · ,kN) =

∏
1≤i<j≤N k

2
i k

2
j

∏
1≤i<j≤N(k2i − k2j )2g

Q4(k1, · · · , kN)
∏

1≤i<j≤N Q2(ki, kj)
(3.6)

where g is another polynomial of kn, 1 ≤ n ≤ N . Then, we can see that the degree of the

polynomial

H̃ =
∏

1≤i<j≤N

k2i k
2
j

∏
1≤i<j≤N

(k2i − k2j )2g

is at least 2N(N − 1) + 2N(N − 1) = 4N(N − 1).

Now if H(k1, · · · ,kN) 6= 0, the degree of the polynomial H̃ defined by (3.4), which also

equals

H̃ =
∑
σ=±1

Q3(k1, · · · , kN , σ1, · · · , σN)
∏

1≤i<j≤N

kikjQ1(ki, kj, σi, σj), (3.7)

should not be less than 4N(N − 1). Otherwise, we will have H(k1, · · · ,kN) = 0, which

is what we need to prove for the existence of N -soliton solutions. Thus, the problem for

verifying the Hirota condition becomes quite simple, and one basically just needs to compute

the degree of the polynomial in (3.7).

3.2 Applications

3.2.1 Generalized KdV equations

Let us consider a class of generalized KdV equations, which are associated with

P (x, t) = ax4 + bx3t+ cx2 + dxt (3.8)
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where a, b, c, d are arbitrary constants satisfying b2 + d2 6= 0, which guarantees we will have

a partial differential equation. The corresponding bilinear generalized KdV equations read

B(f) := (aD4
x + bD3

xDt + cD2
x + dDxDt)f · f

= 2[a(f4xf − 4f3xfx + 3f 2
xx) + b(f3x,tf − 3fxxtfx + 3fxtfxx − ftf3x)

+c(fxxf − f 2
x) + d(fytf − fyft)] = 0. (3.9)

They are equivalent to the following generalized KdV equations:

N(u) := a(6uxuxx + u4x) + b[3(uxut)x + u3x,t] + cuxx + duxt = 0, (3.10)

under the transformation u = 2(ln f)x. The link is N(u) = (B(f)/f 2)x. If b = 0, then we

get the KdV equation, and if a = 0, we get the Hirota-Satsuma equation [17].

Let us now set

∆ = ad− bc. (3.11)

It is direct to compute that

ωi = ωi(ki) =
ak3i + cki
bk2i + d

, 1 ≤ i ≤ N, (3.12)

and

P (σiki − σjkj) = −
σiσjkikj∆(σiki − σjkj)2[b(k2i − σiσjkikj + k2j ) + 3d]

(bk2i + d)(bk2j + d)
. (3.13)

Case 1. ∆ = 0:

In this case, we have P (ki ± kj) = 0, 1 ≤ i < j ≤ N , and thus, the Hirota N -soliton

condition is automatically satisfied. This implies that we have a set of resonant solutions:

f = 1 + c1e
η1 + · · ·+ cNeηN , ηi = kix− ωi(ki)t, 1 ≤ i ≤ N, (3.14)

where ci’s and ki’s are arbitrary constants.

Case 2. ∆ 6= 0:

Sub-case 2.1. d = 0:

In this subcase, we have c 6= 0 and directly obtain
P (σiki − σjkj) =

R1

R2

, R1 = cσiσj(σiki − σjkj)2(k2i − σiσjkikj + k2j ), R2 = kikj,

P (σ1k1 + · · ·+ σNkN) =
R3

R4

, degR3 = N + 2, R4 =
N∏
i=1

ki.

(3.15)
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Now if H(k1, · · · ,kN) 6= 0, let us check the degree of the polynomial

H(k1, · · · ,kN)R4(k1, · · · , kN)
∏

1≤i<j≤N

R2(ki, kj)

= R3(k1, · · · , kN , σ1, · · · , σN)
∏

1≤i<j≤N

R1(ki, kj, σi, σj)σiσj.

We apply the same idea as in the general algorithm. On one hand, based on the expression

on the right hand side, the degree is (N + 2) + 2N(N − 1) = 2N2−N + 2. But on the other

hand, since HR4

∑
i<j R2 can have a factor

∑
i<j(k

2
i −k2j )2 as explained before, based on the

expression on the left hand side, the degree is at least 2N(N−1)+N+N(N−1) = 3N2−2N .

Those two numbers could not be equal, when N ≥ 3. Therefore, H(k1, · · · ,kN) = 0, N ≥ 1.

Sub-case 2.2. d 6= 0:

Sub-subcase 2.2.1. b = 0:

This is the KdV case. It is easy to work out

Q1 = −3a(σiki − σjkj)2, degQ3 = 4, Q2 = 1, Q4 = 1. (3.16)

Now if H(k1, · · · ,kN) 6= 0, then the degree of the polynomial H(k1, · · · ,kN) is 2N(N−1)+

4 = 2N2 − 2N + 4, which could not be greater than 4N(N − 1) when N ≥ 3. Therefore,

H(k1, · · · ,kN) = 0, N ≥ 1, and the KdV equation has N -soliton solutions, as shown in [7].

Sub-case 2.2.2. b 6= 0:

It is direct to get

Q1 = ∆[b(k2i − σiσjkikj + k2j ) + 3d](σiki − σjkj)2,

degQ3 = 2(N + 1), Q2 = (bk2i + d)(bk2j + d), Q4 =
N∏
i=1

(bk2i + d).
(3.17)

Now if H(k1, · · · ,kN) 6= 0, then the degree of the polynomial

H̃ = H(k1, · · · ,kN)Q4(k1, · · · , kN)
∏

1≤i<j≤N

Q2(ki, , kj)

= Q3(k1, · · · , kN , σ1, · · · , σN)
∏

1≤i<j≤N

kikjQ1(ki, kj, σi, σj).

is 2(N + 1) + 3N(N − 1) = 3N2 − N + 2 (from the second expression of H̃), which could

not be greater than 4N(N − 1) + 2N + 2N(N − 1) = 6N2 − 4N (from the first expression

of H̃) when N ≥ 2. Therefore, H(k1, · · · ,kN) = 0, N ≥ 1.
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We remark that the three-soliton condition is also satisfied for all bilinear equations

associated with

P = ax4 + bx3t+ cx2 + dxt+ et2, e 6= 0, (3.18)

where a, b, c, d, e are arbitrary constants. This leads to a class of generalized Boussinesq

equations, and the case of b = c = d = 0 corresponds to the Boussinesq equations. But we

need a more general argument to verify the Hirota N -soliton condition, since the frequency

functions involve square roots.

3.2.2 Generalized higher-order KdV equations

Let us consider a class of higher-order generalized higher-order KdV equations associated

with

P (x, t) = ax6 + bx4 + cx2 + xt, (3.19)

where a, b, c are arbitrary constants. This class of polynomials generates the following bilinear

generalized higher-order KdV equations:

B(f) := (aD6
x + bD4

x + cD2
x +DxDt)f · f

= 2[a(f6xf − 6f5xfx + 15f4xfxx − 10f 3
3x)

+b(f4xf − 4f3xfx + 3f 2
x) + c(fxxf − f 2

x) + fxtf − fxft] = 0. (3.20)

The corresponding generalized higher-order KdV equations read as follows:

N(u) := a(15u3x + 15uxu3x + u5x)x + b(6uxuxx + u4x) + cuxx + duxt = 0. (3.21)

The transformation is u = 2(ln f)x and the link is N(u) = (B(f)/f 2)x. The case of b = c = 0

leads to the Sawada-Kotera equation [9] or the Caudrey-Dodd-Gibbon equation [10].

Using the dispersion relations, we can directly obtain

ωi = ωi(ki) = ak5i + bk3i + cki, 1 ≤ i ≤ N, (3.22)

and

P (σiki − σjkj) = −σiσjkikj(σiki − σjkj)2[5a(k2i − σiσjkikj + k2j ) + 3b]. (3.23)

Therefore, it is easy to find that

Q1 = −(σiki − σjkj)2[5a(k2i − σiσjkikj + k2j ) + 3b], degQ3 = 6, Q2 = 1, Q4 = 1. (3.24)

Now ifH(k1, · · · ,kN) 6= 0, then the degree of the polynomial H̃ (= H) is at most 3N(N−1)+

6 = 3N2− 3N + 6, which could not be greater than 4N(N − 1) when N ≥ 4. Another direct
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computation can show that the three-soliton condition holds for all generalized higher-order

KdV equations in (3.20). Therefore, H(k1, · · · ,kN) = 0, N ≥ 1, and each of the generalized

higher-order KdV equations in (3.20) possesses N -soliton solutions.

This class is different from the fifth-order KdV equations studied in the literature [18].

It has also been proved [12] that the higher-order KdV equations associated with

P (x, t) = x2n + xt, n ≥ 4, (3.25)

does not pass the three-soliton test. A direct computation can show that all generalized

higher-order KdV equations associate with

P (x, t) = x6 + ax4 + bx2 + cxt+ dt2, d 6= 0, (3.26)

do not possess three-soliton solutions, either.

4 Concluding remarks

We have analyzed the Hirota N -soliton conditions for bilinear differential equations and

shown the existence of N -soliton solutions to two classes of generalized KdV and higher-order

KdV equations. Definitely, there should be more bilinear equations which could possess

N -soliton solutions. In the case of even higher-oder differential equations, the involved

computations would be much more complicated. New ideas are needed to prove the existence

of N -soliton solutions.

There are generalized bilinear derivatives, and particularly, we have the Dp,x-operators

[19]:

Dm
p,xD

n
p,tf · g =

m∑
i=0

n∑
j=0

(
m

i

)(
n

j

)
αi+jp (∂m−ix ∂n−jt f)(∂ix∂

j
t g), m, n ≥ 0, m+ n ≥ 1, (4.1)

where the powers of αp are determined by

αip = (−1)r(i), i = r(i) mod p, i ≥ 0, (4.2)

with 0 ≤ r(i) < p. The patters of those powers for i = 1, 2, 3, · · · read

p = 3 : −,+,+,−,+,+, · · · ;

p = 5 : −,+,−,+,+,−,+,−,+,+, · · · ;

p = 7 : −,+,−,+,−,+,+,−,+,−,+,−,+,+, · · · .
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Particularly, we have D3,x and D5,x associated with the two odd prime numbers: p = 3, 5.

There exist new characteristic properties of the corresponding generalized bilinear deriva-

tives. For example, we have

D3
3,xf · f = 2fxxxf, D

4
3,xf · f = 6f 2

xx, (4.3)

which is different from the Hirota case (i.e., p = 2). Of course, we can have other generalized

bilinear derivatives: D6,x, D9,x, . . . .

The corresponding generalized bilinear equations [20, 21] or trilinear equations [22] can

possess resonant N -solitons. A generalized bilinear equation in (1 + 1)-dimensions:

P (Dp,x, Dp,t)f · f = 0 (4.4)

possesses a resonant N -soliton [20, 21]:

f = 1 + c1e
η1 + c2e

η2 + · · ·+ cNeηN (4.5)

where ci’s are arbitrary constants and and ηi = kix− ωit, 1 ≤ i ≤ N , iff

P (ki + αpkj) + P (kj + αpki) = 0, 1 ≤ i ≤ j ≤ N, (4.6)

where ki = (ki,−ωi), 1 ≤ i ≤ N .

However, we do not have any example of generalized bilinear equations which have N -

soliton solutions. There are many interesting questions that we need to answer first. For

example, what is the generalized N -soliton condition, i.e., the N -soliton condition for gen-

eralized bilinear equations? How to formulate generalized bilinear equations, for example,

P (D3,x, D3,t) = 0,

even in (1+1)-dimensions, which possess N -soliton solutions?
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