Fig. 7. Sensitivity of peak spring flow
(Qmax ) to pre-flood rainfall (red symbols) and
snowmelt (blue symbols) volume and intensity as a function of (a)
latitude, (b) annual snowfall ratio, (c) forest cover. The sensitivity
is equal to the standardized regression coefficients in Table 6.
References
Assani, A., Charron, S., Matteau, M., Mesfioui, M., and Quessy, J.-F.:
Temporal variability modes of floods for catchments in the St. Lawrence
watershed (Quebec, Canada), Journal of Hydrology, 385, 292–299, 2010a.
Assani, A., Landais, D., Mesfioui, M., and Matteau, M.: Relationship
between the Atlantic Multidecadal Oscillation index and variability of
mean annual flows for catchments in the St. Lawrence watershed (Quebec,
Canada) during the past century, Hydrology Research, 41, 2010b.
Aygün, O., Kinnard, C., and Campeau, S.: Responses of soil erosion to
warming and wetting in a cold Canadian agricultural catchment, CATENA,
201, 105184, 2021.
Aygün, O., Kinnard, C., Campeau, S., and Krogh, S. A.: Shifting
Hydrological Processes in a Canadian Agroforested Catchment due to a
Warmer and Wetter Climate, Water, 12, 739, 2020.
Aygün, O., Kinnard, C., Campeau, S., and Pomeroy, J. W.: Landscape and
climate conditions influence the hydrological sensitivity to climate
change in eastern Canada, Journal of Hydrology, 615, 128595, 2022.
Başağaoğlu, H., Chakraborty, D., Lago, C. D., Gutierrez, L., Şahinli, M.
A., Giacomoni, M., Furl, C., Mirchi, A., Moriasi, D., and Şengör, S. S.:
A Review on Interpretable and Explainable Artificial Intelligence in
Hydroclimatic Applications, Water, 14, 1230, 2022.
Benoit, C., Demers, I., Roberge, F., Gachon, P., and Laprise, R.:
Inondations des printemps 2017 et 2019 dans le bassin versant de la
rivière des Outaouais (Québec, Canada), Les inondations au Québec:
Risques, aménagement du territoire, impacts socioéconomiques et
transformation des vulnérabilités, 2022. 2022.
Bergeron, J., Royer, A., Turcotte, R., and Roy, A.: Snow cover
estimation using blended MODIS and AMSR-E data for improved
watershed-scale spring streamfow simulation in Quebec, Canada,
Hydrological processes, 28, 2014.
Bergeron , O.: Grilles climatiques quotidiennes du Programme de
surveillance du climat du Québec, version 1.2 – Guide d’utilisation.
Ministère du Développement durable, d. l. E. e. d. l. L. c. l. c. c.,
Direction du suivi de l’état de l’environnement (Ed.), Québec, 2015.
Brown, R. D.: Analysis of snow cover variability and change in Québec
1948–2005, Hydrological processes, 24, 1929–1954, 2010.
Buttle, J. M., Allen, D. M., Caissie, D., Davison, B., Hayashi, M.,
Peters, D. L., Pomeroy, J. W., Simonovic, S., StHilaire, A., and
Whitfield, P. H.: Flood processes in Canada: Regional and special
aspects, Canadian Water Resources Journal, 2016. 1918-1817 2016.
Coles, A. E., Appels, W. M., McConkey, B. G., and McDonnell1, J. J.: The
hierarchy of controls on snowmelt-runoff generation over
seasonally-frozen hillslopes, hydrology and earth system, 2016. 2016.
Curry, C. L. and Zwiers, F. W.: Examining controls on peak annual
streamflow and floods in the Fraser River Basin of British Columbia,
Hydrology and Earth System Sciences, 22, 2285-2309, 2018.
Dibike, Y. B., Shrestha, R. R., Johnson, C., Bonsal, B., and Coulibaly,
P.: Assessing Climatic Drivers of Spring Mean and Annual Maximum Flows
in Western Canadian River Basins, Water, 13, 1617, 2021.
Draper, N. R. and Smith, H.: Applied regression analysis, John Wiley &
Sons, 1998.
Dyer, J.: Snow depth and streamflow relationships in large North
American watersheds, Journal of geophysical research, 113, 2008.
Ellis, C., Pomeroy, J., Essery, R., and Link, T.: Effects of needleleaf
forest cover on radiation and snowmelt dynamics in the Canadian Rocky
Mountains, Canadian Journal of Forest Research, 41, 608-620, 2011.
Fang, X. and Pomeroy, J. W.: Impact of antecedent conditions on
simulations of a flood in amountain headwater basin, hydrological
process, 30, 2754–2772 2016.
Fortin, J.-P., Turcotte, R., Massicotte, S., Moussa, R., Fitzback, J.,
and Villeneuve, J.-P.: Distributed watershed model compatible with
remote Sensing and gis data. I: description of model, Journal of
hydrologic engineering, 6, 2001.
Foster, K., Uvo, C. B., and Olsson, J.: The development and evaluation
of a hydrological seasonal forecast system prototype for predicting
spring flood volumes in Swedish rivers, hydrology and Earth System
Sciences, 22, 2953–2970, 2018.
Garvelmann, J., Pohl, S., and Weiler1, M.: Spatio-temporal controls of
snowmelt and runoff generation during rain-on-snow events in a
mid-latitude mountain catchment, hydrological process, 29, 3649–3664,
2015.
Gelfan, A., Pomeroy, J., and Kuchment, L.: Modeling forest cover
influences on snow accumulation, sublimation, and melt, Journal of
Hydrometeorology, 5, 785-803, 2004.
Koster, R. D., Mahanama, S. P. P., Livneh, B., Lettenmaier, D. P., and
Reichle1, R. H.: Skill in streamflow forecasts derived from large-scale
estimates of soil moisture and snow, Nature geoscience, 22, 2010.
Larue, F., Royer, A., De Sève, D., Langlois, A., Roy, A., and Brucker,
L.: Validation of GlobSnow-2 snow water equivalent over Eastern Canada,
Remote Sensing of Environment, 194, 264-277, 2017.
Li, H., Luo, L., Wood, E. F., and Schaake, J.: The role of initial
conditions and forcing uncertainties in seasonal hydrologic forecasting,
journal of geophysical research, 114, 2009.
Lin, H., Mo, R., Vitart, F., and Stan, C.: Eastern Canada Flooding 2017
and its Subseasonal Predictions, Atmosphere-Ocean, 57, 195-207, 2019.
Mahanama, S., Livneh, B., Koster, R., Lettenmaier, D., and Reichle, R.:
Soil Moisture, Snow, and Seasonal Streamflow Forecasts in the United
States, journal of hydrometeorology, 13, 2012.
Maurer, E. P. and Lettenmaier, D. P.: Predictability of seasonal runoff
in the Mississippi River basin, Journal of Geophysical Research:
Atmospheres, 108, 2003.
Mazouz, R., Assani, A. A., Quessy, J.-F., and Légaré, G.: Comparison of
the interannual variability of spring heavy floods characteristics of
tributaries of the St. Lawrence River in Quebec (Canada), Advances in
Water Resources, 35, 110-120, 2012.
Mccabe, G. J., Clark, M. P., and Hay, a. E.: rain-on-snow events in the
western united states, american meteorological soceity 2007. 2007.
Merz, R. and Blöschl, G.: A process typology of regional floods, Water
resources research, 39, 2003.
Mosavi, A., Ozturk, P., and Chau, K.-w.: Flood prediction using machine
learning models: Literature review, Water, 10, 1536, 2018.
Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K., and Rasmussen, R.:
Slower snowmelt in a warmer world, Nature Climate Change, 7, 214–219,
2017.
Nied, M., Hundecha, Y., and Merz, B.: Flood-initiating catchment
conditions: a spatio-temporal analysis of large-scale soil moisture
patterns in the Elbe River basin, hydrology and earth system, 17,
1401–1414, 2013.
Nied, M., Pardowitz, T., Nissen, K., Ulbrich, U., Hundecha, Y., and
Merz, B.: On the relationship between hydro-meteorological patterns and
flood types, journal of hydrology, 519, 3249–3262, 2014.
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a
parsimonious model for streamflow simulation, Journal of Hydrology, 279,
275-289, 2003.
Pomeroy, J. W., Fang, X., and Marks, D. G.: The cold rain-on-snow event
of June 2013 in the Canadian Rockies — characteristics and diagnosis,
hydrological process, 30, 2899–2914, 2016.
Saad, C., Adlouni, S. E., St-Hilaire, A., and Gachon, P.: A nested
multivariate copula approach to hydrometeorological simulations of
spring floods: the case of the Richelieu River (Quebec, Canada) record
flood, Stoch Environ Res Risk Assess 2015, 275–294, 2015.
Saint-Laurent, D., Mesfioui, M., and Evin, G.: Hydroclimatic Variability
and Relation with Flood Events (Southern Québec, Canada), Water
Resources 36, 43–56, 2009.
Sena, N., Chokmani, K., Gloaguen, E., and Bernier, M.: Analyse multi
chelles de la variabilit spatiale de l quivalent en eau de la neige EEN
sur le territoire de l Est du Canada Hydrological Sciences Journal,
2016. 1-16, 2016.
Sui, J. and Koehler, G.: rain on snow induced flood events in Southern
Germany journal of hydrology, 252, 205-220, 2001.
Tarasova, L., Merz, R., Kiss, A., Basso, S., Blöschl, G., Merz, B.,
Viglione, A., Plötner, S., Guse, B., and Schumann, A.: Causative
classification of river flood events, Wiley Interdisciplinary Reviews:
Water, 6, e1353, 2019.
Teufel, B., Sushama, L., Huziy, O., Diro, G. T., Jeong, D. I., Winger,
K., Garnaud, C., de Elia, R., Zwiers, F. W., Matthews, H. D., and
Nguyen, V. T. V.: Investigation of the mechanisms leading to the 2017
Montreal flood, Climate Dynamics, 52, 4193-4206, 2019.
Teufel, B., Sushama, L., Huziy, O., Diro, G. T., Jeong, D. I., Winger,
K., Garnaud, C., Elia, R. d., Zwiers, F. W., Matthews, H. D., and
Nguyen, V. T. V.: Investigation of the mechanisms leading to the 2017
Montreal flood, climat dynamics, 2018. 2018.
Turcotte, R., Filion, T.-C. F., Lacombe, P., Fortin, V., Roy, A., and
Royer, A.: Simulation hydrologique des derniers jours de la crue de
printemps: le problème de la neige manquante, Hydrological Sciences
Journal, 55, 872-882, 2010.
Valéry, A.: Modélisation précipitations – débit sous influence nivale:
Elaboration d’un module neige et évaluation sur 380 bassins versants,
these de doctorat, Institut des Sciences et Industries du Vivant et de
l’Environnement, AgroParisTech, Paris, 417 pp., 2010.
Valéry, A., Andréassian, V., and Perrin, C.: ‘As simple as possible but
not simpler’: What is useful in a temperature-based snow-accounting
routine? Part 2 – Sensitivity analysis of the Cemaneige snow accounting
routine on 380 catchments, Journal of Hydrology, 517, 2014b.
Wayand, N. E., Lundquist, J. D., and Clark, M. P.: Modeling the
influence of hypsometry, vegetation, and storm energy on snowmelt
contributions to basins during rain-on-snow floods, water ressources
research, 51, 8551–8569, 2015.
Webb, R. W., Fassnacht, S. R., and Gooseff, M. N.: Hydrologic flow path
development varies by aspect during spring snowmelt in complex subalpine
terrain, The Cryosphere, 12, 287–300, 2018.
Wever, N., Comola, F., Bavay, M., and Lehning, M.: Influence of snow
surface processes on soil moisture dynamics and streamflow generation in
alpine catchments, hydrology and earth system sciences, 2017. 2017.
White, C. J., Carlsen, H., Robertson, A. W., Klein, R. J. T., Lazo, J.
K., Kumar, A., Vitart, F., Coughlan de Perez, E., Ray, A. J., Murray,
V., Bharwani, S., MacLeod, D., James, R., Fleming, L., Morse, A. P.,
Eggen, B., Graham, R., Kjellström, E., Becker, E., Pegion, K. V.,
Holbrook, N. J., McEvoy, D., Depledge, M., Perkins-Kirkpatrick, S.,
Brown, T. J., Street, R., Jones, L., Remenyi, T. A., Hodgson-Johnston,
I., Buontempo, C., Lamb, R., Meinke, H., Arheimer, B., and Zebiak, S.
E.: Potential applications of subseasonal-to-seasonal (S2S) predictions,
Meteorological Applications, 24, 315-325, 2017.
Zhang, F.-Y., Li, L.-H., Ahmad, S., and Li, X.-M.: Using path analysis
to identify the influence of climatic factors on spring peak flow
dominated by snowmelt in an alpine watershed, Journal of Mountain
Science, 11, 990-1000, 2014.