Fig. 7. Sensitivity of peak spring flow (Qmax ) to pre-flood rainfall (red symbols) and snowmelt (blue symbols) volume and intensity as a function of (a) latitude, (b) annual snowfall ratio, (c) forest cover. The sensitivity is equal to the standardized regression coefficients in Table 6.
References
Assani, A., Charron, S., Matteau, M., Mesfioui, M., and Quessy, J.-F.: Temporal variability modes of floods for catchments in the St. Lawrence watershed (Quebec, Canada), Journal of Hydrology, 385, 292–299, 2010a.
Assani, A., Landais, D., Mesfioui, M., and Matteau, M.: Relationship between the Atlantic Multidecadal Oscillation index and variability of mean annual flows for catchments in the St. Lawrence watershed (Quebec, Canada) during the past century, Hydrology Research, 41, 2010b.
Aygün, O., Kinnard, C., and Campeau, S.: Responses of soil erosion to warming and wetting in a cold Canadian agricultural catchment, CATENA, 201, 105184, 2021.
Aygün, O., Kinnard, C., Campeau, S., and Krogh, S. A.: Shifting Hydrological Processes in a Canadian Agroforested Catchment due to a Warmer and Wetter Climate, Water, 12, 739, 2020.
Aygün, O., Kinnard, C., Campeau, S., and Pomeroy, J. W.: Landscape and climate conditions influence the hydrological sensitivity to climate change in eastern Canada, Journal of Hydrology, 615, 128595, 2022.
Başağaoğlu, H., Chakraborty, D., Lago, C. D., Gutierrez, L., Şahinli, M. A., Giacomoni, M., Furl, C., Mirchi, A., Moriasi, D., and Şengör, S. S.: A Review on Interpretable and Explainable Artificial Intelligence in Hydroclimatic Applications, Water, 14, 1230, 2022.
Benoit, C., Demers, I., Roberge, F., Gachon, P., and Laprise, R.: Inondations des printemps 2017 et 2019 dans le bassin versant de la rivière des Outaouais (Québec, Canada), Les inondations au Québec: Risques, aménagement du territoire, impacts socioéconomiques et transformation des vulnérabilités, 2022. 2022.
Bergeron, J., Royer, A., Turcotte, R., and Roy, A.: Snow cover estimation using blended MODIS and AMSR-E data for improved watershed-scale spring streamfow simulation in Quebec, Canada, Hydrological processes, 28, 2014.
Bergeron , O.: Grilles climatiques quotidiennes du Programme de surveillance du climat du Québec, version 1.2 – Guide d’utilisation. Ministère du Développement durable, d. l. E. e. d. l. L. c. l. c. c., Direction du suivi de l’état de l’environnement (Ed.), Québec, 2015.
Brown, R. D.: Analysis of snow cover variability and change in Québec 1948–2005, Hydrological processes, 24, 1929–1954, 2010.
Buttle, J. M., Allen, D. M., Caissie, D., Davison, B., Hayashi, M., Peters, D. L., Pomeroy, J. W., Simonovic, S., StHilaire, A., and Whitfield, P. H.: Flood processes in Canada: Regional and special aspects, Canadian Water Resources Journal, 2016. 1918-1817 2016.
Coles, A. E., Appels, W. M., McConkey, B. G., and McDonnell1, J. J.: The hierarchy of controls on snowmelt-runoff generation over seasonally-frozen hillslopes, hydrology and earth system, 2016. 2016.
Curry, C. L. and Zwiers, F. W.: Examining controls on peak annual streamflow and floods in the Fraser River Basin of British Columbia, Hydrology and Earth System Sciences, 22, 2285-2309, 2018.
Dibike, Y. B., Shrestha, R. R., Johnson, C., Bonsal, B., and Coulibaly, P.: Assessing Climatic Drivers of Spring Mean and Annual Maximum Flows in Western Canadian River Basins, Water, 13, 1617, 2021.
Draper, N. R. and Smith, H.: Applied regression analysis, John Wiley & Sons, 1998.
Dyer, J.: Snow depth and streamflow relationships in large North American watersheds, Journal of geophysical research, 113, 2008.
Ellis, C., Pomeroy, J., Essery, R., and Link, T.: Effects of needleleaf forest cover on radiation and snowmelt dynamics in the Canadian Rocky Mountains, Canadian Journal of Forest Research, 41, 608-620, 2011.
Fang, X. and Pomeroy, J. W.: Impact of antecedent conditions on simulations of a flood in amountain headwater basin, hydrological process, 30, 2754–2772 2016.
Fortin, J.-P., Turcotte, R., Massicotte, S., Moussa, R., Fitzback, J., and Villeneuve, J.-P.: Distributed watershed model compatible with remote Sensing and gis data. I: description of model, Journal of hydrologic engineering, 6, 2001.
Foster, K., Uvo, C. B., and Olsson, J.: The development and evaluation of a hydrological seasonal forecast system prototype for predicting spring flood volumes in Swedish rivers, hydrology and Earth System Sciences, 22, 2953–2970, 2018.
Garvelmann, J., Pohl, S., and Weiler1, M.: Spatio-temporal controls of snowmelt and runoff generation during rain-on-snow events in a mid-latitude mountain catchment, hydrological process, 29, 3649–3664, 2015.
Gelfan, A., Pomeroy, J., and Kuchment, L.: Modeling forest cover influences on snow accumulation, sublimation, and melt, Journal of Hydrometeorology, 5, 785-803, 2004.
Koster, R. D., Mahanama, S. P. P., Livneh, B., Lettenmaier, D. P., and Reichle1, R. H.: Skill in streamflow forecasts derived from large-scale estimates of soil moisture and snow, Nature geoscience, 22, 2010.
Larue, F., Royer, A., De Sève, D., Langlois, A., Roy, A., and Brucker, L.: Validation of GlobSnow-2 snow water equivalent over Eastern Canada, Remote Sensing of Environment, 194, 264-277, 2017.
Li, H., Luo, L., Wood, E. F., and Schaake, J.: The role of initial conditions and forcing uncertainties in seasonal hydrologic forecasting, journal of geophysical research, 114, 2009.
Lin, H., Mo, R., Vitart, F., and Stan, C.: Eastern Canada Flooding 2017 and its Subseasonal Predictions, Atmosphere-Ocean, 57, 195-207, 2019.
Mahanama, S., Livneh, B., Koster, R., Lettenmaier, D., and Reichle, R.: Soil Moisture, Snow, and Seasonal Streamflow Forecasts in the United States, journal of hydrometeorology, 13, 2012.
Maurer, E. P. and Lettenmaier, D. P.: Predictability of seasonal runoff in the Mississippi River basin, Journal of Geophysical Research: Atmospheres, 108, 2003.
Mazouz, R., Assani, A. A., Quessy, J.-F., and Légaré, G.: Comparison of the interannual variability of spring heavy floods characteristics of tributaries of the St. Lawrence River in Quebec (Canada), Advances in Water Resources, 35, 110-120, 2012.
Mccabe, G. J., Clark, M. P., and Hay, a. E.: rain-on-snow events in the western united states, american meteorological soceity 2007. 2007.
Merz, R. and Blöschl, G.: A process typology of regional floods, Water resources research, 39, 2003.
Mosavi, A., Ozturk, P., and Chau, K.-w.: Flood prediction using machine learning models: Literature review, Water, 10, 1536, 2018.
Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K., and Rasmussen, R.: Slower snowmelt in a warmer world, Nature Climate Change, 7, 214–219, 2017.
Nied, M., Hundecha, Y., and Merz, B.: Flood-initiating catchment conditions: a spatio-temporal analysis of large-scale soil moisture patterns in the Elbe River basin, hydrology and earth system, 17, 1401–1414, 2013.
Nied, M., Pardowitz, T., Nissen, K., Ulbrich, U., Hundecha, Y., and Merz, B.: On the relationship between hydro-meteorological patterns and flood types, journal of hydrology, 519, 3249–3262, 2014.
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, Journal of Hydrology, 279, 275-289, 2003.
Pomeroy, J. W., Fang, X., and Marks, D. G.: The cold rain-on-snow event of June 2013 in the Canadian Rockies — characteristics and diagnosis, hydrological process, 30, 2899–2914, 2016.
Saad, C., Adlouni, S. E., St-Hilaire, A., and Gachon, P.: A nested multivariate copula approach to hydrometeorological simulations of spring floods: the case of the Richelieu River (Quebec, Canada) record flood, Stoch Environ Res Risk Assess 2015, 275–294, 2015.
Saint-Laurent, D., Mesfioui, M., and Evin, G.: Hydroclimatic Variability and Relation with Flood Events (Southern Québec, Canada), Water Resources 36, 43–56, 2009.
Sena, N., Chokmani, K., Gloaguen, E., and Bernier, M.: Analyse multi chelles de la variabilit spatiale de l quivalent en eau de la neige EEN sur le territoire de l Est du Canada Hydrological Sciences Journal, 2016. 1-16, 2016.
Sui, J. and Koehler, G.: rain on snow induced flood events in Southern Germany journal of hydrology, 252, 205-220, 2001.
Tarasova, L., Merz, R., Kiss, A., Basso, S., Blöschl, G., Merz, B., Viglione, A., Plötner, S., Guse, B., and Schumann, A.: Causative classification of river flood events, Wiley Interdisciplinary Reviews: Water, 6, e1353, 2019.
Teufel, B., Sushama, L., Huziy, O., Diro, G. T., Jeong, D. I., Winger, K., Garnaud, C., de Elia, R., Zwiers, F. W., Matthews, H. D., and Nguyen, V. T. V.: Investigation of the mechanisms leading to the 2017 Montreal flood, Climate Dynamics, 52, 4193-4206, 2019.
Teufel, B., Sushama, L., Huziy, O., Diro, G. T., Jeong, D. I., Winger, K., Garnaud, C., Elia, R. d., Zwiers, F. W., Matthews, H. D., and Nguyen, V. T. V.: Investigation of the mechanisms leading to the 2017 Montreal flood, climat dynamics, 2018. 2018.
Turcotte, R., Filion, T.-C. F., Lacombe, P., Fortin, V., Roy, A., and Royer, A.: Simulation hydrologique des derniers jours de la crue de printemps: le problème de la neige manquante, Hydrological Sciences Journal, 55, 872-882, 2010.
Valéry, A.: Modélisation précipitations – débit sous influence nivale: Elaboration d’un module neige et évaluation sur 380 bassins versants, these de doctorat, Institut des Sciences et Industries du Vivant et de l’Environnement, AgroParisTech, Paris, 417 pp., 2010.
Valéry, A., Andréassian, V., and Perrin, C.: ‘As simple as possible but not simpler’: What is useful in a temperature-based snow-accounting routine? Part 2 – Sensitivity analysis of the Cemaneige snow accounting routine on 380 catchments, Journal of Hydrology, 517, 2014b.
Wayand, N. E., Lundquist, J. D., and Clark, M. P.: Modeling the influence of hypsometry, vegetation, and storm energy on snowmelt contributions to basins during rain-on-snow floods, water ressources research, 51, 8551–8569, 2015.
Webb, R. W., Fassnacht, S. R., and Gooseff, M. N.: Hydrologic flow path development varies by aspect during spring snowmelt in complex subalpine terrain, The Cryosphere, 12, 287–300, 2018.
Wever, N., Comola, F., Bavay, M., and Lehning, M.: Influence of snow surface processes on soil moisture dynamics and streamflow generation in alpine catchments, hydrology and earth system sciences, 2017. 2017.
White, C. J., Carlsen, H., Robertson, A. W., Klein, R. J. T., Lazo, J. K., Kumar, A., Vitart, F., Coughlan de Perez, E., Ray, A. J., Murray, V., Bharwani, S., MacLeod, D., James, R., Fleming, L., Morse, A. P., Eggen, B., Graham, R., Kjellström, E., Becker, E., Pegion, K. V., Holbrook, N. J., McEvoy, D., Depledge, M., Perkins-Kirkpatrick, S., Brown, T. J., Street, R., Jones, L., Remenyi, T. A., Hodgson-Johnston, I., Buontempo, C., Lamb, R., Meinke, H., Arheimer, B., and Zebiak, S. E.: Potential applications of subseasonal-to-seasonal (S2S) predictions, Meteorological Applications, 24, 315-325, 2017.
Zhang, F.-Y., Li, L.-H., Ahmad, S., and Li, X.-M.: Using path analysis to identify the influence of climatic factors on spring peak flow dominated by snowmelt in an alpine watershed, Journal of Mountain Science, 11, 990-1000, 2014.