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1. Introduction

In the past decades, fractional calculus has become an active field. Al-
though numerous papers of fractional difference systems are already pub-
lished [3–5, 9, 11, 12, 15, 17, 29]. The investigation of a qualitative theory
for fractional difference systems is still in its infancy due to the memory
features of fractional operators.

It is well known that fractional Gronwall inequalities are the lifeblood
of fractional differential/difference systems. In 2007, Ye et al. [30] derived
a fractional Gronwall inequality. Since then several different versions of
discrete Gronwall inequality are constantly emerging. In 2012, Atici et al.
[2] proposed a nabla discrete Gronwall inequality on T = Na. In 2016,
Abdeljawad et al. [25] gave a nabla discrete Gronwall inequality on T = Tq.
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In 2018, Wu et al. [28] presented a delta discrete Gronwall inequality on
T = Na. In 2018, Alzabut et al. [1] discussed a nabla discrete Gronwall
inequality on T = Na. In 2019, Liu et al. [14] developed a delta discrete

Gronwall inequality on T = (hN)a+Th
a+h . In 2019, Chen et al.[8] obtained a

nabla discrete Gronwall inequality on T = Na+1. In 2020, Makhlouf et al.
[19] developed some HenryCGronwall type q-fractional integral inequalities.
However, there are some flaws in the proof (see Section 3 for details) in
[1,18,25]. We give a rigorous proof in this paper.

(q, h)-calculus [6,7] was introduced as an extension of the fundamental
conceptions of discrete fractional calculus. It can be reduced to q-difference
calculus (h = 0) and ordinary difference calculus (h = q = 1). Some
outstanding research papers about fractional (q, h)-calculus can be seen in
[22–24].

In the latest years, there has been increasing attention in mathematical
tools to investigate stability of fractional (q, h)-difference systems, for exam-
ple, comparison theorem and inequality techniques [10], Liapunov functional
[16,27], Lyapunov-Krasovskii functional [13].

Based on the reason presented in [10], we know that (q, h)-Mittag-Leffler
function (when q > 1 and h > 0 ) can’t be used directly to study asymp-
totic behavior of fractional (q, h)-difference systems. However, we can use
(q, h)-Mittag-Leffler function to investigate the finite-time stability of frac-
tional (q, h)-difference systems. To the best of our knowledge, there is no
paper that has dealt with this problem. Motivated by [21], [26] and [28],
we develop a generalized fractional (q, h)-Gronwall inequality to study the
following nonlinear fractional delay (q, h)-difference systems:
(1.1){

C
a∇α(q,h)x(t) = Ax(t) +Bx(ρm(t)) + f(t, x(t), x(ρm(t))), t ∈ T̃σ(a)

(q,h),

x(t) = ϕ(t), t ∈ [ρm−1(a), a]T.

and give the following Theorem A.

Theorem A. For given positive numbers δ, ε,H, (ν(t))αb < 1, t ∈ T̃σ(a)
(q,h),

the system (4.1) is finite-time stability w.r.t (δ, ε,H) if

(1.2) Ea,bα,1(t) ≤ ε/δ, ∀t ∈ [σ(a), H]T.

2. Preliminaries

Definition 2.1. ([6,7]) The (q, h)-time scale is introduced as:

Tt0(q,h) = {[k]qh+ t0q
k, k ∈ Z} ∪

{
h

1− q

}
, q ≥ 1, t0 > 0, h ≥ 0, q + h > 1.

Let a ∈ Tt0(q,h), a > h/(1 − q) be fixed. Then we present restrictions of

the time scale Tt0(q,h) by relation [a, b]T = {t : a ≤ t ≤ b, a, b, t ∈ Tt0(q,h)}

and T̃σ
i(a)

(q,h) = {t ∈ Tt0(q,h) : t ≥ σi(a), i ∈ N0}, where for any c ∈ R, Nc =

{c, c+ 1, c+ 2, · · · , }.
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Definition 2.2 ([6]). q-Gamma function Γq̃(t) is given by

Γq̃(t) =
(1− q̃)1−t(q̃, q̃)∞

(q̃t, q̃)∞
, 0 < q̃ = 1/q < 1,(2.1)

where t ∈ R \ {0,−1,−2, · · · } and (b, q̃)∞ =
∏∞
j=0(1− bq̃j).

Definition 2.3. The q-binomial coefficient is defined as

(2.2)

[
ξ
j

]
q̃

=
Γq̃(ξ + 1)

Γq̃(j + 1)Γq̃(ξ − j + 1)
, ξ ∈ R, j ∈ Z.

Definition 2.4 ([6]). The backward and forward jump operator are
defined as

ρ(t) = (t− h)q−1

and

σ(t) = h+ qt

respectively.

Definition 2.5 ([6]). The backward and forward graininess are defined
as

ν(t) = (1− q−1)t+ hq−1

and

µ(t) = h+ (q − 1)t,

respectively.

Lemma 2.6 ([6]). For any t ∈ Tt0(q,h), β ∈ R and q ∈ (0, 1)∪ (1,+∞), let

[β]q = qβ−1
q−1 . Then we have that

σk(t) = [k]q + hqkt

and

ρk(t) = (t− [k]qh)q−k,

where k ∈ N0, σ0(a) = a, σi(a) = σ(σi−1(a)), ρ0(a) = a and ρi(a) =
ρ(ρi−1(a)) for i ∈ N1.

It is easy to proof the following lemma, so we omit the proof here.

Lemma 2.7. The relation

ν(σk(t)) = qk−1((q − 1)t+ h)

holds for t ∈ Tt0(q,h).

Definition 2.8 ([6]). Assume x : Tt0(q,h) → R, its 1-th order nabla (q, h)-

derivative is defined as

∇(q,h)x(t) =
x(t)− x(q̃(t− h))

(1− q̃)t+ q̃h
.
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Lemma 2.9 ([6]). The nabla fractional monomial of order α on Tt0(q,h)

can be written as

(2.3) ĥα(t, s) =

[
α+ k − 1
k − 1

]
q̃

(ν(t))α,

where α ∈ R, s, t ∈ Tt0(q,h), t = σk(s), k ∈ N.

Definition 2.10 ([6]). Let β, λ, α ∈ R. We define (q, h)-Mittag-Leffler

function Es,λα,β(t) as

Es,λα,β(t) =
∞∑
k=0

λkĥαk+β−1(t, s),

where t, s ∈ T̃σ(a)
(q,h) and s ≤ t.

Definition 2.11 ([6]). Assume x : T̃σ(a)
(q,h) → R and t = σn(a), n ≥ 1.

Then the nabla fractional (q, h)-integral of order α > 0 is defined as

(2.4) a∇−α(q,h)x(t) =

∫ t

a
ĥα−1(t, ρ(τ))x(τ)∇τ,

where by convention a∇0
(q,h)x(t) = x(t) and a∇−α(q,h)x(a) = 0.

Definition 2.12 ([6]). The nabla Caputo-like fractional (q, h)-difference
of order 0 < α < 1 is defined as

C
a∇α(q,h)x(t) = a∇−(1−α)

(q,h) ∇(q,h)x(t).

Definition 2.13 ([6]). The nabla Riemann-Liouville-like (q, h)-fractional
difference of order 0 < α < 1 is defined as

a∇α(q,h)x(t) = ∇(q,h) a∇
−(1−α)
(q,h) x(t).

Similar the proof of [12, Theorem 3.109], we obtain the following lemma.

Lemma 2.14. Assume x : T̃a(q,h) → R and α, β > 0. Then

(2.5) a∇α(q,h)a∇
−β
(q,h)x(t) = a∇α−β(q,h)x(t).

3. A generalized fractional (q, h)-Gronwall inequality

Lemma 3.1. Assume x ∈ R, b > a and b− a ∈ N1. Then

lim
x→∞

Γq̃(x+ b)

Γq̃(x+ a)
= (1− q̃)a−b.(3.1)
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Proof.

lim
x→∞

Γq̃(x+ b)

Γq̃(x+ a)
= lim

x→∞

(1− q̃)1−(x+b)(q̃, q̃)∞
(q̃x+b, q̃)∞

· (q̃x+a, q̃)∞

(1− q̃)1−(x+a)(q̃, q̃)∞

= lim
x→∞

(1− q̃)a−b
∏b−a−1
j=0 (1− q̃x+a+j)

∏∞
j=b−a(1− q̃x+a+j)∏∞

j=0(1− q̃x+b+j)

= (1− q̃)a−b.
�

Remark 3.2. Note that

lim
x→∞

Γq̃(x+ b)

Γq̃(x+ a)
= (1− q̃)a−b

= lim
x→∞

(
1− q̃x

1− q̃

)b−a
= lim

x→∞
([x]q̃)

b−a.

It follows that
Γq̃(x+ b)

Γq̃(x+ a)
∼ ([x]q̃)

b−a (x→∞),

which can be regarded as the q-analogue of the formula

Γ(x+ b)

Γ(x+ a)
∼ xb−a (x→∞), see [20, (1.5.15)].

Lemma 3.3 ([24]). Assume all β, α ∈ R and t ∈ T̃σ(a)
(q,h). Then

(3.2)

∫ t

a
ĥβ−1(t, ρ(τ))ĥα−1(τ, a)∇τ = ĥβ+α−1(t, a).

Now we present a generalized fractional (q, h)-Gronwall inequality.

Theorem 3.4. Assume α > 0, x(t) is a nonnegative function on T̃σ(a)
(q,h),

f(t), g(t) are nonnegative, nondecreasing functions on T̃σ(a)
(q,h) and g(t) ≤M ,

where M > 0 and (ν(t))αM < 1 for any t ∈ T̃σ(a)
(q,h). If

(3.3) x(t) ≤ f(t) + g(t)

∫ t

a
ĥα−1(t, ρ(s))x(s)∇s,

then

(3.4) x(t) ≤ f(t)E
a,g(t)
α,1 (t), t ∈ T̃σ(a)

(q,h).

Proof. Define

Bφ(t) = g(t)

∫ t

a
ĥα−1(t, ρ(s))φ(s)∇s.

It follows that
x(t) ≤ f(t) +Bx(t),
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which implies that

(3.5) x(t) ≤
n−1∑
k=0

Bkf(t) +Bnx(t),

where B0x(t) = x(t).
Let us prove that

(3.6) Bnx(t) ≤ (g(t))n
∫ t

a
ĥnα−1(t, ρ(s))x(s)∇s

and

(3.7) lim
n→∞

Bnx(t) = 0.

It is easy to see that (3.6) is true for n = 1. Assume that (3.6) is true for
some n = k, namely,

Bkx(t) ≤ (g(t))k
∫ t

a
ĥkα−1(t, ρ(s))x(s)∇s.

If n = k + 1, then

Bk+1x(t) = B(Bkx(t))

≤ (g(t))k+1

∫ t

a
ĥα−1(t, ρ(s))

∫ s

a
ĥkα−1(s, ρ(r))x(r)∇r∇s

[10, Lem. 4.7]
========== (g(t))k+1

∫ t

a

∫ t

ρ(r)
ĥα−1(t, ρ(s))ĥkα−1(s, ρ(r))x(r)∇s∇r

= (g(t))k+1

∫ t

a
x(r)

∫ t

ρ(r)
ĥα−1(t, ρ(s))ĥkα−1(s, ρ(r))∇s∇r

(3.2)
= (g(t))k+1

∫ t

a
ĥ(k+1)α−1(t, ρ(r))x(r)∇r.

The relation (3.6) is proved.
Let t = σm(a), m ∈ N1, notice that

Bnx(t) ≤ (g(t))n
∫ t

a
ĥnα−1(t, ρ(s))x(s)∇s

≤ (M)nK

∫ t

a
ĥnα−1(t, ρ(s))∇s

[10, Lem. 3.4]
=========== (M)nKĥnα(t, s)|as=t
= (M)nKĥnα(t, a)

= (M)nK(ν(t))nα
[
nα+m− 1
m− 1

]
q̃

= (M(ν(t))α)nK
Γq̃(nα+m)

Γq̃(nα+ 1)Γq̃(m)
,
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where we use ĥnα(t, t) = 0 and K = maxs∈[σ(a),t]T x(s).
From Lemma 3.1, we have

lim
n→∞

(M(ν(t))α)nK
Γq̃(nα+m)

Γq̃(nα+ 1)Γq̃(m)

(3.1)
= lim

n→∞

(M(ν(t))α)nK(1− q̃)1−m

Γq̃(m)
= 0.

So we obtain (3.7).
Taking the limit on both side of (3.5) gives

x(t) = lim
n→∞

x(t)(3.8)

≤ lim
n→∞

( n−1∑
k=0

Bkf(t) +Bnx(t)

)
(3.7)

≤ lim
n→∞

(
f(t) +

n−1∑
k=1

Bkf(t)

)
(3.6)

≤ f(t) +
∞∑
n=1

(g(t))n
∫ t

a
ĥnα−1(t, ρ(s))f(s)∇s.

Since f(t) is a nondecreasing function on T̃σ(a)
(q,h), we can rewrite (3.8) as

x(t) ≤ f(t)

[
1 +

∞∑
n=1

(g(t))n
∫ t

a
ĥnα−1(t, ρ(s))∇s

]

= f(t)

[
1 +

∞∑
n=1

(g(t))nĥnα(t, a)

]

= f(t)

∞∑
n=0

(g(t))nĥnα(t, a)

= f(t)E
a,g(t)
α,1 (t).

The theorem is proved. �

Remark 3.5. Let t = σk(a), q > 1, k ≥ 1, from Lemma 2.7 we know

that (ν(t))αM < 1 if and only if k < 1 + logq
M−1/α

(q−1)a+h .

Remark 3.6. From the proof of Theorem 3.4, we can see that the con-
dition (ν(t))αM < 1 is necessary to the theorem, which was ignored in
[1,18,25].

Remark 3.7. The generalized Gronwall inequality obtained in [8] is a
special case of our result. That is to say, letting α = ν + 1 in Theorem 3.4,
we can get the Theorem 3.1 in [8].

4. Applications to nonlinear fractional delay (q, h)-difference
systems

Let Rn be the n-dimensional Euclidean space, ‖x‖L be any Euclidean
norm (L = 1, 2,∞) of vector x ∈ R, ‖A‖L be the matrix norm A ∈ Rn×n
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(L = 1, 2,∞) induced by the vector. If x ∈ Rn, then ‖x‖1 =
∑n

i=1 |xi|,
‖x‖2 =

√∑n
i=1 |xi|2. If A ∈ Rn×n, then the induced norm ‖ · ‖1 is defined

as ‖A‖1 = max1≤j≤n
∑n

i=1 |ai,j |. λ(A) denotes the set of all eigenvalues of
A ∈ Rn×n, λmax(A) = max{Re(λ) : λ ∈ λ(A)}. The induced norm ‖ · ‖2 of

the matrix A is defined as ‖A‖2 =
√
λmax(ATA).

Consider the following nonlinear fractional delay (q, h)-difference sys-
tems:
(4.1){

C
a∇α(q,h)x(t) = Ax(t) +Bx(ρm(t)) + f(t, x(t), x(ρm(t))), t ∈ T̃σ(a)

(q,h),

x(t) = ϕ(t), t ∈ [ρm−1(a), a]T,

where x : T̃ρ
m−1(a)

(q,h) → Rn, m ∈ N1 is a fixed constant, α ∈ (0, 1), the

constant matrices A,B ∈ Rn×n, Ca∇α(q,h) denotes the Caputo fractional (q, h)-

difference, the nonlinear term f : T̃σ(a)
(q,h) × Rn × Rn → Rn and the initial

function ϕ : [ρm−1(a), a]T → Rn.
Throughout this paper, we make the following assumptions:
(H1) For f(t, x(t), x(ρm(t))) ∈ C([σ(a), H]T, R

n), there exists a constant
L such that

‖f(t, x1(t), x1(ρm(t)))− f(t, x2(t), x2(ρm(t)))‖ ≤L(‖x1(t)− x2(t)‖
+ ‖x1(ρm(t))− x2(ρm(t))‖)

for any t ∈ [σ(a), H]T.
(H2) f(t, 0, 0) = [0, 0, · · · , 0︸ ︷︷ ︸

n

]T .

The following Theorem 4.1 provides an alternative representation for the
solutions of system (4.1).

Theorem 4.1. x(t) is a solution of system (4.1) if and only if
(4.2)

x(t) = ϕ(a) +
∫ t
a ĥα−1(t, ρ(s))[Ax(s) +Bx(ρm(s)) + f(t, x(s), x(ρm(s)))]∇s,

t ∈ T̃σ(a)
(q,h),

x(t) = ϕ(t), t ∈ [ρm−1(a), a]T,

Proof. For t ∈ [ρm−1(a), a]T, x(t) = ϕ(t) is clearly the solution to the

system (4.1). For t ∈ T̃σ(a)
(q,h), applying a∇α(q,h) on both sides of (4.2), we have

a∇α(q,h)x(t) = ϕ(a)ĥ−α(t, a) +Ax(s) +Bx(ρm(t)) + f(t, x(t), x(ρm(t))),

where we use a∇α(q,h)a∇
−α
(q,h)x(t) = x(t) (see (2.5)).

By use of the relationship

C
a∇α(q,h)x(t) = a∇α(q,h)x(t) + x(a)ĥ−α(t, a) (see [24, (15)]),

we obtain
C
a∇α(q,h)x(t) = Ax(t) +Bx(ρm(t)) + f(t, x(t), x(ρm(t))), t ∈ T̃σ(a)

(q,h).
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Conversely, from system (4.1), we get that x(t) = ϕ(t) for t ∈ [ρm−1(a), a]T.

For t ∈ T̃σ(a)
(q,h), Taking a∇−α(q,h) on both sides of (4.1), we get

a∇−α(q,h)
C
a∇α(q,h)x(t) =

∫ t

a
ĥα−1(t, ρ(s))[Ax(s) +Bx(ρm(s))

+ f(t, x(s), x(ρm(s)))]∇s.

Applying the relationship

a∇−α(q,h)
C
a∇α(q,h)x(t) = x(t)− x(a) (see [24, (14)]),

we have

x(t) = ϕ(a) +

∫ t

a
ĥα−1(t, ρ(s))[Ax(s) +Bx(ρm(s)) + f(t, x(s), x(ρm(s)))]∇s.

This completes the proof. �

In [25], let z̃(t) = supθ∈Iτ ‖z(θt)‖, where t = qd ∈ Tq, d ∈ N0, Iτ =

{τa, q−1τ, q−2τa, · · · , a}. In [1], let z̃(t) = supθ∈Iτ ‖z(t + θ)‖, where Iτ =
{−τ,−τ+1, · · · , 0}. The authors used the monotonicity of fractional integral
function of z̃(t) in the proof of [25, Theorem 5,6] and [1, Theorem 3,4]. The
following examples show that when order α ∈ (0, 1), the fractional integral

function of a nonnegative function is not always increasing on Na, Tq, T̃
σi(a)
(q,h) ,

respectively.
Let us denotes Nba = {a, a+1, a+2, · · · , b}, where b, a ∈ R and b−a ∈ N1.

Example 4.2. For a = 0, x(t) = 1
t+2 , h = q = 1, α = 0.6.

X(t) =

∫ t

a
ĥα−1(t, ρ(s))x(s)∇s =

t∑
s=1

(
−0.4 + t− s

t− s

)
1

s+ 2
.

According to Figure 1,we can see easily that the function X(t) is not always
an increasing function.

Example 4.3. For a = 1, x(t) = 1
t+2 , q = 1.2, h = 0, α = 0.7.

xk = X(σk(a))

=

∫ t

a
ĥα−1(t, ρ(s))x(s)∇s

=

k∑
j=1

(ν(σk(1)))−0.3

[
−0.3 + k − j

k − j

]
q̃

1

σj(1) + 2
ν(σj(1))

=

k∑
j=1

(1.2k−1 · 0.2)−0.3

[
−0.3 + k − j

k − j

]
q̃

1.2j−1 · 0.2
1.2j + 2

.

According to Figure 2,we can see easily that the function xk is not always
an increasing function.
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Figure 1. The values of X(t) for t ∈ N100
0 , a = 0, q = h = 1

and α = 0.6 in Example 4.2.
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Figure 2. The values of xk for k ∈ N100
0 , a = 1, q = 1.2,

h = 0 and α = 0.7 in Example 4.3.
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Example 4.4. For a = 1, x(t) = 1
t+2 , q = 1.5, h = 2, α = 0.8.

xk = X(σk(a))

=

∫ t

a
ĥα−1(t, ρ(s))x(s)∇s

=

k∑
j=1

(ν(σk(1)))−0.2

[
−0.2 + k − j

k − j

]
q̃

1

σj(1) + 2
ν(σj(1))

=

k∑
j=1

(5 · 1.5k − 4)−0.2

[
−0.2 + k − j

k − j

]
q̃

2.5 · 1.5j−1

5 · 1.5j − 2
.

According to Figure 3,we can see easily that the function xk is not always
an increasing function.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

k

x
k
     

Figure 3. The values of xk for k ∈ N100
0 , a = 1, q = 1.5,

h = 2 and α = 0.8 in Example 4.4.

Example 4.2 and Example 4.3 shows that the proofs in [25, Theorem
5,6] and [1, Theorem 3,4] are not complete. For completeness, inspired by
[21], we give rigourous proofs to them.

Remark 4.5. It is worth mentioning that Phat et al. [21] shows that for
a nondecreasing, nonnegative function x(t), its fractional integral function∫ t

0
(t−s)α−1

Γ(α) x(s)ds is increasing with respect to t, but using the idea (variable

substitution) in [21, Theorem 1], we can obtain the similar result if T = Na,
but we can’t obtain the one if T = Tq or T = T̃σ

i(a)
(q,h) . The method in the
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following lemma is successful to overcome this fault. That is to say, our
method is essentially new and has its own merit.

Lemma 4.6. Assume x : T̃σ(a)
(q,h) → R, x(t) ≥ 0 and ∇x(t) ≥ 0. Then

fractional integral function
∫ t
a ĥα−1(t, ρ(s))x(s)∇s is increasing with respect

to t.

Proof. Taking t = σk(a), s = σi(a), 1 ≤ i ≤ k.
Note that∫ t

a
ĥα−1(t, ρ(s))x(s)∇s = −

∫ t

a
∇sĥα(t, s)x(s)∇s

= −ĥα(t, s)x(s)|ts=a +

∫ t

a
ĥα(t, ρ(s))∇x(s)∇s

= ĥα(t, a)x(a) +

∫ t

a
ĥα(t, ρ(s))∇x(s)∇s,

we have

t∇(q,h)

∫ t

a
ĥα−1(t, ρ(s))x(s)∇s

[16, Lem. 2.4]
=========== ĥα−1(t, a)x(a) +

∫ t

a
ĥα−1(t, ρ(s))∇x(s)∇s

+ ĥα(ρ(t), ρ(t))∇x(t)

= ĥα−1(t, a)x(a) +

∫ t

a
ĥα−1(t, ρ(s))∇x(s)∇s

> 0,

where we use

ĥα(ρ(t), ρ(t)) = 0,

ĥα−1(t, a) = (ν(t))α−1

[
α− 1 + k − 1

k − 1

]
q̃

= (ν(t))α−1 Γq̃(α− 1 + k)

Γq̃(k)Γq̃(α)

> 0

and

ĥα−1(t, ρ(s)) = (ν(t))α−1

[
α− 1 + k − i

k − i

]
q̃

= (ν(t))α−1 Γq̃(α+ k − i)
Γq̃(k − i+ 1)Γq̃(α)

> 0.

So
∫ t
a ĥα−1(t, ρ(s))x(s)∇s is increasing with respect to t. �
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Let us denotes ‖A‖+ ‖B‖+ 2L = b.

Theorem 4.7. Assume that (ν(t))αb < 1, t ∈ T̃σ(a)
(q,h) holds. Then the

solution of system (4.1) is unique.

Proof. Let x(t) and x̃(t) be any two different solutions of system (4.1).
Let z(t) = x(t)− x̃(t), we can obtain z(t) = 0 for t ∈ [ρm−1(a), a]T.

If t ∈ [σ(a), H]T, from Theorem 4.1 we have

z(t) =

∫ t

a
ĥα−1(t, ρ(s))[Az(s) +Bz(ρm(s))(4.3)

+ f(t, x(s), x(ρm(s)))− f(t, x̃(s), x̃(ρm(s)))]∇s.

Taking the norm on both sides of (4.3), it follows that

‖z(t)‖ ≤
∫ t

a
ĥα−1(t, ρ(s))(‖A‖‖z(t)‖+ ‖B‖‖z(ρm(t))‖

(4.4)

+ ‖f(s, x(s), x(ρm(s)))− f(s, x̃(s), x̃(ρm(s)))‖∇s

≤
∫ t

a
ĥα−1(t, ρ(s))

[
(‖A‖+ L)‖z(s)‖+ (‖B‖+ L)‖z(ρm(s))‖

]
∇s.

Let z∗(t) = maxθ∈[ρm−1(a),t]T ‖z(θ)‖ for t ∈ [σ(a), H]T, it is obvious that z∗(t)
is a increasing function and we have

‖z(ρm(t))‖ ≤ z∗(t), ∀t ∈ [σ(a), H]T

and

‖z(t)‖ ≤ z∗(t), ∀t ∈ [σ(a), H]T.

It follows from (4.4) that

‖z(t)‖ ≤
∫ t

a
ĥα−1(t, ρ(s))

[
(‖A‖+ ‖B‖+ 2L)‖z∗(s)‖

]
∇s

Note that for all θ ∈ [σ(a), t]T, we have

‖z(θ)‖ ≤
∫ θ

a
ĥα−1(θ, ρ(s))

[
(‖A‖+ ‖B‖+ 2L)‖z∗(s)‖

]
∇s

From Lemma 4.6, we obtain

‖z(θ)‖ ≤ (‖A‖+ ‖B‖+ 2L)

∫ t

a
ĥα−1(t, ρ(s))‖z∗(s)‖∇s, θ ∈ [σ(a), t]T.
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Therefore, we have

z∗(t) = max
θ∈[ρm−1(a),t]T

‖z(θ)‖(4.5)

≤ max
{

max
θ∈[ρm−1(a),a]T

‖z(θ)‖, max
θ∈[σ(a),t]T

‖z(θ)‖
}

= max

{
0, (‖A‖+ ‖B‖+ 2L)

∫ t

a
ĥα−1(t, ρ(s))‖z∗(s)‖∇s

}
= (‖A‖+ ‖B‖+ 2L)

∫ t

a
ĥα−1(t, ρ(s))‖z∗(s)‖∇s.

Applying Theorem 3.4 on (4.5), it follows that

‖z(t)‖ ≤ z∗(t) ≤ 0 · Ea,bα,1(t).

Therefore, we obtain x(t) = x̃(t) for t ∈ [σ(a), H]T. �

Let us denotes ‖ϕ‖c = maxt∈[ρm−1(a),a]T ‖ϕ(t)‖.

Definition 4.8. The system (4.1) is finite-time stable w.r.t.{δ, ε,H}, δ <
ε if and only if ‖ϕ‖c < δ implies ‖x(t)‖ < ε,∀t ∈ [σ(a), H]T.

In the following theorem, we give a finite-time stability criterion of the
solution.

Theorem 4.9. For given positive numbers δ, ε,H, (ν(t))αb < 1, t ∈
T̃σ(a)

(q,h), the system (4.1) is finite-time stability w.r.t (δ, ε,H) if

(4.6) Ea,bα,1(t) ≤ ε/δ, ∀t ∈ [σ(a), H]T.

Proof. we have for all t ∈ [σ(a), H]T:

‖x(t)‖ ≤‖x(a)‖+

∫ t

a
ĥα−1(t, ρ(s))(‖A‖‖x(t)‖+ ‖B‖‖x(ρm(t))‖

+ ‖f(s, x(s), x(ρm(s)))‖)∇s

≤‖ϕ‖c +

∫ t

a
ĥα−1(t, ρ(s))

[
(‖A‖+ L)‖x(s)‖

+ (‖B‖+ L)‖x(ρm(s))‖
]
∇s.

Let x∗(t) = maxθ∈[ρm−1(a),t]T ‖x(θ)‖ for t ∈ [σ(a), H]T, similar to the proof
of Theorem 4.7, we have

‖x(t)‖ ≤ ‖ϕ‖c +

∫ t

a
ĥα−1(t, ρ(s))

[
(‖A‖+ ‖B‖+ 2L)‖x∗(s)‖

]
∇s.

Note that for all θ ∈ [σ(a), t]T, we have

‖x(θ)‖ ≤ ‖ϕ‖c +

∫ θ

a
ĥα−1(θ, ρ(s))

[
(‖A‖+ ‖B‖+ 2L)‖x∗(s)‖

]
∇s
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From Lemma 4.6, we obtain

‖x(θ)‖ ≤ ‖ϕ‖c + (‖A‖+ ‖B‖+ 2L)

∫ t

a
ĥα−1(t, ρ(s))‖x∗(s)‖∇s, θ ∈ [σ(a), t]T.

Therefore, we have

x∗(t) = max
θ∈[ρm−1(a),t]T

‖x(θ)‖(4.7)

≤ max
{

max
θ∈[ρm−1(a),a]T

‖x(θ)‖, max
θ∈[σ(a),t]T

‖x(θ)‖
}

= max

{
‖ϕ‖c, ‖ϕ‖c + b

∫ t

a
ĥα−1(t, ρ(s))‖x∗(s)‖∇s

}
= ‖ϕ‖c + b

∫ t

a
ĥα−1(t, ρ(s))‖x∗(s)‖∇s.

From Theorem 3.4, we have

‖x(t)‖ ≤ x∗(t) ≤ ‖ϕ‖cEa,bα,1(t).

Therefore, from (4.6) we obtain that

‖x(t)‖ ≤ δ · ε/δ ≤ ε.

�

Theorem 4.10. Assume f(t, x(t), x(ρm(t))) = [0, 0, · · · , 0︸ ︷︷ ︸
n

]T and t =

σl(a), l ≥ 1. If (ν(σl(a)))−αI−A is a invertible matrix, which is denoted as
A2 = (ν(σl(a))−αI−A)−1, then the solution of system (4.1) can be rewritten
as

x(σl(a)) =

[
−α+ l − 1

l − 1

]
q̃

(ν(σl(a)))−αA2x(a) +A2Bx(σl−n(a))

(4.8)

−
l−1∑
j=1

ν(σl(a))−α−1

[
−α− j + l − 1

l − j

]
q̃

ν(σj(a))A2x(σj(a)),

where l ≥ 1 and σl−n(a) = ρn−l(a).

Proof. From [10, Lemma 3.5], we have

C
a∇α(q,h)x(t) = −ĥ−α(σl(a), a)x(a) + x(σl(a))(ν(σl(a)))−α(4.9)

+
l−1∑
j=1

ĥ−α−1(σl(a), σj−1(a))x(σj(a))ν(σj(a)).
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Applying (4.9) to (4.1), we have

(ν(σl(a))−αI −A)x(σl(a)) =ĥ−α(σl(a), a)x(a) +Bx(σl−n(a))

(4.10)

−
l−1∑
j=1

ĥ−α−1(σl(a), σj−1(a))x(σj(a))ν(σj(a)).

As a result, we can update (4.10) as

x(σl(a)) =ĥ−α(σl(a), a)(ν(σl(a))−αI −A)−1x(a)

(4.11)

+ (ν(σl(a))−αI −A)−1Bx(σl−n(a))

−
l−1∑
j=1

ĥ−α−1(σl(a), σj−1(a))ν(σj(a))(ν(σl(a))−αI −A)−1x(σj(a))

=ν(σl(a))−α
[
−α+ l − 1

l − 1

]
q̃

A2x(a) +A2Bx(σl−n(a))

−
l−1∑
j=1

ν(σl(a))−α−1

[
−α− j + l − 1

l − j

]
q̃

ν(σj(a))A2x(σj(a)).

This complete the proof. �

Remark 4.11. Letting xl = x(σl(a)), νl = ν(σl(a)), from Theorem 4.10
we can derive the explicit numerical formulae for fractional difference sys-
tems (4.1)

xl =ν−αl

[
−α+ l − 1

l − 1

]
q̃

A2x0 +A2Bxl−n

−
l−1∑
j=1

ν−α−1
l

[
−α− j + l − 1

l − j

]
q̃

νjA2xj ,

where l ≥ 1.

5. Examples

Example 5.1.
(5.1)

C
0 ∇0.7

(1,0.5)x(t) =

(
0.1 0.1
0.05 0.15

)
x(t) +

(
0 0.1

0.1 0.2

)
x(ρ3(t)), t ∈ T̃σ(0)

(1,0.5),

x(t) = (0.05, 0.05)T , t ∈ [ρ2(0), 0]T,
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where α = 0.7, ‖φ‖c = maxt∈[ρ2(0),0]T ‖x(t)‖2 = 0.1, ‖A‖2 = 0.2065, ‖B‖2 =

0.2414, b = 0.4479, a = 0, q = 1, h = 0.5, (ν(t))αb = hαb = 0.50.7 ∗ 0.4479 =
0.2757 < 1. We use δ = 0.11 and ε = 0.6.

From [24, Corollary 4.4] we know that for fractional difference equation

(5.2) C
a∇α(q,h)x(t) = bx(t), t ∈ T̃σ(a)

(q,h), 0 < α < 1, x(a) = 1,

its solution is x(t) = Ea,bα,1(t). Let t = σk(a), k ∈ N0, from [10, Remark 3.9]

we have exact values of x(t) can be written as

x(σk(a)) =

x(a) + bhα
∑k−1

i=1

(
α− 1 + k − i

k − i

)
x(σi(a))

1− hαb
,(5.3)

for k ≥ 1.

Table 1. The values of δEa,bα,1(σk(a)) in Example 5.1.

k δEa,bα,1(σk(a)) k δEa,bα,1(σk(a)) k δEa,bα,1(σk(a)) k δEa,bα,1(σk(a))

1 0.1519 3 0.2375 5 0.3507 7 0.5074
2 0.1923 4 0.2897 6 0.4226 8 0.6079

From Table 1, we can have the finite-time H = σ7(0) = 3.5s for m = 3.
From Fig 4, we can see that for ‖ϕ‖c = 0.1 < 0.11 = δ, the 2-norm of
the solution ‖x(t)‖2 ≤ ε = 0.6 for [0, σ7(0)]T, which support Theorem 3.4
numerically.

−2 −1 0 1 2 3 4 5 6 7
0.05

0.1

0.15

0.2

0.25

0.3

k

||x||
2
      

Figure 4. Solution’s norm ‖x‖2 within H = 3.5s: α =
0.7, q = 1, h = 0.5 and m = 3.
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Example 5.2.
(5.4)

C
1 ∇0.5

(1.2,0.3)x(t) =

(
0.1 0.1
0.05 0.15

)
x(t) +

(
0 0.1

0.1 0.2

)
x(ρ3(t)), t ∈ T̃σ(1)

(1.2,0.3),

x(t) = (0.05, 0.05)T , t ∈ [ρ2(1), 1]T,

where q = 1.2, h = 0.3, a = 1, α = 0.5,‖φ‖c = maxt∈[ρ2(1),1]T ‖x(t)‖2 = 0.1,

‖A‖2 = 0.2065, ‖B‖2 = 0.2414, b = 0.4479, (ν(t))αb = (ν(σ5(a)))αb < 1.
We use δ = 0.11 and ε = 0.6.

From [24, Corollary 4.4] we know that for fractional (q, h)-difference
equation

(5.5) C
a∇α(q,h)x(t) = bx(t), t ∈ T̃σ(a)

(q,h), 0 < α < 1, x(a) = 1,

its solution is x(t) = Ea,bα,1(t). Let t = σk(a), k ∈ N0, from [10, Remark 3.9]

we have exact values of x(t) can be written as

x(σk(a)) =

x(a) +
∑k−1

j=1(ν(σk(a)))α−1

[
α− 1 + k − j

k − j

]
q̃

bν
(
σj(a)

)
x(σj(a))

1− (ν(σk(a)))αb
,

(5.6)

for k ≥ 1.

Table 2. The values of δEa,bα,1(σk(a)) in Example 5.2.

k 1 2 3 4 5 6

δEa,bα,1(σk(a)) 0.1661 0.2172 0.2818 0.3727 0.5111 0.7388

From Table 2, we can have the finite-time H = σ5(1)s = 4.7208s for
m = 3. From Fig 5, we can see that for ‖ϕ‖c = 0.1 < 0.11 = δ, the 2-norm
of the solution ‖x(t)‖2 ≤ ε = 0.6 for t ∈ [1, σ5(1)]T, which support Theorem
3.4 numerically.

Example 5.3.
(5.7)

C
1 ∇0.5

(1.2,0.3)x(t) =

(
0.1 0.1
0.05 0.15

)
x(t) +

(
0 0.1

0.1 0.2

)
x(ρ3(t)) + 0.1

(
cosx(t)

cosx(ρ3(t))

)
,

t ∈ T̃σ(1)
(1.2,0.3),

x(t) = (0.03, 0.03)T , t ∈ [ρ2(1), 1]T,

where f(t, x(t), x(ρ3(t))) = 0.1

(
cosx2(t)

cosx1(ρ3(t))

)
, q = 1.2, h = 0.3, a = 1, α =

0.5,‖φ‖c = maxt∈[ρ2(1),1]T ‖x(t)‖1 = 0.1, ‖A‖1 = 0.2500, ‖B‖1 = 0.3000,
b = 0.6500.
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Figure 5. Solution’s norm ‖x‖2 within H = 4.7208s: α =
0.5, q = 1.2, h = 0.3 and m = 3.

Since

‖f(t, x(t), x(ρ3(t)))− f(t, x̃(t), x̃(ρ3(t)))‖1
=| cosx2(t)− cos x̃2(t)|+ | cosx1(ρ3(t))− cos x̃1(ρ3(t))|
≤|x2(t)− x̃2(t)|+ |x1(ρ3(t))− x̃1(ρ3(t))|
≤‖x(t)− x̃(t)‖1 + ‖x(ρ3(t))− x̃(ρ3(t))‖1.

Thus, condition (H1) holds with L = 0.1. (ν(t))αb = (ν(σ4(a)))αb < 1. We
use δ = 0.11 and ε = 0.9.

Table 3. The values of δEa,bα,1(σk(a)) in Example 5.3.

k 1 2 3 4 5

δEa,bα,1(σk(a)) 0.2036 0.3115 0.4833 0.7984 1.4628

From Table 3 we can have the finite-time H = σ4(1)s = 3.6840s for
m = 3 and the 1-norm of the solution ‖x(t)‖1 ≤ ε = 0.9 for t ∈ [1, σ4(1)]T.

6. Conclusions

In this paper, we establish a fractional (q, h)-Gronwall inequality, which
is the generalization of the some existing works. With the help of this in-
equality, we prove the uniqueness and give the finite-time stability criterion
for the solution of nonlinear fractional delay (q, h)-difference systems. Sev-
eral numerical examples are given to show the validity and effectiveness of
the obtained results. In addition, using three counterexamples, we point out
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the problems which may be ignored easily when we deal with the fractional
delay difference systems.
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