References
Adamack, A. T., & Gruber, B. (2014). PopGenReport: simplifying basic population genetic analyses in R. Methods in Ecology and Evolution , 5 (4), 384–387. https://doi.org/10.1111/2041-210X.12158
Anzenberger, G. (1988). The pairbond in the titi monkey (Callicebus moloch ): intrinsic versus extrinsic contributions of the pairmates. Folia Primatologica , 50 , 188–203.
Arct, A., Drobniak, S. M., & Cichoń, M. (2015). Genetic similarity between mates predicts extrapair paternity — a meta-analysis of bird studies. Behavioral Ecology , 26 , 959–968. https://doi.org/10.1093/beheco/arv004
Barbian, H. J., Connell, A. J., Avitto, A. N., Russell, R. M., Smith, A. G., Gundlapally, M. S., … Hahn, B. H. (2018). CHIIMP: an automated high-throughput microsatellite genotyping platform reveals greater allelic diversity in wild chimpanzees. Ecology and Evolution , 16 , 7946–7963. https://doi.org/10.1002/ece3.4302
Barelli, C., Matsudaira, K., Wolf, T., Roos, C., Heistermann, M., Hodges, K., … Reichard, U. H. (2013). Extra-pair paternity confirmed in wild white-handed gibbons. American Journal of Primatology , 75 (12), 1185–1195. https://doi.org/10.1002/ajp.22180
Bicca-Marques, J. C., & Heymann, E. W. (2013). Ecology and behavior of titi monkeys (genus Callicebus ). In A. Barnett, L. M. Veiga, S. F. Ferrari, & M. A. Norconk (Eds.), Evolutionary biology and conservation of titis, sakis and uacaris (pp. 196–207). Cambridge: Cambridge University Press.
Blomqvist, D., Andersson, M., Küpper, C., Cuthill, I. C., Kis, J., Lanctot, R. B., … Kempenaers, B. (2002). Genetic similarity between mates and extra-pair parentage in three species of shorebirds.Nature , 419 (6907), 613–615. https://doi.org/10.1038/nature01104
Blyton, M. D. J., Shaw, R. E., Peakall, R., Lindenmayer, D. B., & Banks, S. C. (2016). The role of relatedness in mate choice by an arboreal marsupial in the presence of fine-scale genetic structure.Behavioral Ecology and Sociobiology , 70 (3), 313–321. https://doi.org/10.1007/s00265-015-2049-z
Bonadonna, G., Torti, V., Gregorio, C., Valente, D., Randrianarison, R. M., Pozzi, L., … Giacoma, C. (2019). Evidence of genetic monogamy in the lemur Indri (Indri indri ). American Journal of Primatology , 81 , e22993. https://doi.org/10.1002/ajp.22993
Bowler, D. E., & Benton, T. G. (2005). Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biological Reviews of the Cambridge Philosophical Society , 80 (2), 205–225. https://doi.org/10.1017/S1464793104006645
Brotherton, P. N. M., Pemberton, J. M., Komers, P. E., & Malarky, G. (1997). Genetic and behavioural evidence of monogamy in a mammal, Kirk’s dik–dik (Madoqua kirkii). Proceedings of the Royal Society of London B: Biological Sciences , 264 (1382), 675–681. https://doi.org/https://doi.org/10.1098/rspb.1997.0096
Brown, J. L. (1997). A theory of mate choice based on heterozygosity.Behavioral Ecology , 8 (1), 60–65. https://doi.org/10.1093/beheco/8.1.60
Burton, M. L., Moore, C. C., Whiting, J. W. M., & Romney, A. K. (1996). Regions based on social structure. Current Anthropology ,37 (1), 87–123. https://doi.org/10.1086/204474
Clutton-Brock, T. (2007). Sexual selection in males and females.Science , 318 (5858), 1882–1885. https://doi.org/10.1126/science.1133311
Cohas, A., Yoccoz, N. G., Bonenfant, C., Goossens, B., Genton, C., Galan, M., … Allainé, D. (2008). The genetic similarity between pair members influences the frequency of extrapair paternity in alpine marmots. Animal Behaviour , 76 (1), 87–95. https://doi.org/10.1016/j.anbehav.2008.01.012
Cohas, A., Yoccoz, N. G., Da Silva, A., Goossens, B., & Allainé, D. (2006). Extra-pair paternity in the monogamous alpine marmot (Marmota marmota): the roles of social setting and female mate choice.Behavioral Ecology and Sociobiology , 59 (5), 597–605. https://doi.org/10.1007/s00265-005-0086-8
Coltman, D., Pilkington, J., Smith, J., & Pemberton, J. (1999). Parasite-mediated selection against inbred soay sheep in a free- living island population. Evolution , 53 (4), 1259–1267.
Coulon, A. (2010). Genhet: an easy-to-use R function to estimate individual heterozygosity. Molecular Ecology Resources ,10 (1), 167–169. https://doi.org/10.1111/j.1755-0998.2009.02731.x
Di Fiore, A. (2005). A rapid genetic method for sex assignment in non-human primates. Conservation Genetics , 6 (6), 1053–1058. https://doi.org/10.1007/s10592-005-9086-5
Dobson, S. F. (1982). Competition for mates and predominant juvenile male dispersal in mammals. Animal Behaviour , 30 (4), 1183–1192. https://doi.org/10.1016/S0003-3472(82)80209-1
Dolotovskaya, S., & Heymann, E. W. (2020). Do less or eat more: strategies to cope with costs of parental care in a pair-living monkey.Animal Behaviour , 163 , 163–173. https://doi.org/10.1016/j.anbehav.2020.03.012
Dolotovskaya, S., Walker, S., & Heymann, E. W. (2019). What makes a pair bond in a Neotropical primate: female and male contributions.Royal Society Open Science , 7 , 191489. https://doi.org/https://doi.org/10.1098/rsos.191489
Dubois, F., & Cézilly, F. (2002). Breeding success and mate retention in birds: A meta-analysis. Behavioral Ecology and Sociobiology ,52 (5), 357–364. https://doi.org/10.1007/s00265-002-0521-z
Favre, L., Balloux, F., Goudet, J., & Perrin, N. (1997). Female-biased dispersal in the monogamous mammal Crocidura russula : evidence from field data and microsatellite patterns. Proceedings of the Royal Society B: Biological Sciences , 264 (1378), 127–132. https://doi.org/10.1098/rspb.1997.0019
Fernandez-Duque, E. (2009). Natal dispersal in monogamous owl monkeys (Aotus azarai) of the Argentinean Chaco. Behaviour ,146 (4–5), 583–606. https://doi.org/10.1163/156853908X397925
Fernandez-Duque, E., Fiore, A. Di, & de Luna, A. G. (2013). Pair-mate relationships and parenting in equatorial saki monkeys (Pithecia aequatorialis) and red titi monkeys (Callicebus discolor) of Ecuador. In L. M. Veiga, A. A. Barnett, S. F. Ferrari, & M. A. Norconk (Eds.),Evolutionary biology and conservation of titis, sakis and uacaris(pp. 295–302). New York: Cambridge University Press.
Fernandez-Duque, E., & Huck, M. (2013). Till death (or an intruder) do us part: intrasexual-competition in a monogamous primate. PLoS ONE , 8 (1), e53724. https://doi.org/10.1371/journal.pone.0053724
Foerster, K., Delhey, K., Johnsen, A., Lifjeld, J. T., & Kempenaers, B. (2003). Females increase offspring heterozygosity and fitness through extra-pair matings. Nature , 425 (6959), 714–717. https://doi.org/10.1038/nature01969
Frasier, T. R. (2008). STORM: software for testing hypotheses of relatedness and mating patterns. Molecular Ecology Resources ,8 (6), 1263–1266. https://doi.org/10.1111/j.1755-0998.2008.02358.x
García-Navas, V., Ortego, J., & Sanz, J. J. (2009). Heterozygosity-based assortative mating in blue tits (Cyanistes caeruleus): implications for the evolution of mate choice.Proceedings of the Royal Society B: Biological Sciences ,276 (1669), 2931–2940. https://doi.org/10.1098/rspb.2009.0417
Goslee, S. C., & Urban, D. L. (2007). The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software , 22 (7), 1–19. https://doi.org/10.18637/jss.v022.i07
Greenwood, P. J. (1980). Mating systems, philopatry and dispersal in birds and mammals. Animal Behaviour , 28 (4), 1140–1162. https://doi.org/10.1016/S0003-3472(80)80103-5
Hansson, B., Jack, L., Christians, J. K., Pemberton, J. M., Åkesson, M., Westerdahl, H., … Hasselquist, D. (2007). No evidence for inbreeding avoidance in a great reed warbler population.Behavioral Ecology , 18 (1), 157–164. https://doi.org/10.1093/beheco/arl062
Hennessy, C. A., Dubach, J., & Gehrt, S. D. (2012). Long-term pair bonding and genetic evidence for monogamy among urban coyotes (Canis latrans ). Journal of Mammalogy , 93 (3), 732–742. https://doi.org/10.1644/11-MAMM-A-184.1
Hoffman, J. I., Forcada, J., Trathan, P. N., & Amos, W. (2007). Female fur seals show active choice for males that are heterozygous and unrelated. Nature , 445 (7130), 912–914. https://doi.org/10.1038/nature05558
Huchard, E., Knapp, L. A., Wang, J., Raymond, M., & Cowlishaw, G. (2010). MHC, mate choice and heterozygote advantage in a wild social primate. Molecular Ecology , 19 (12), 2545–2561. https://doi.org/10.1111/j.1365-294X.2010.04644.x
Huck, M., Di Fiore, A., & Fernandez-Duque, E. (2020). Of apples and oranges? The evolution of “monogamy” in non-human primates.Frontiers in Ecology and Evolution , 7 , 472. https://doi.org/10.3389/FEVO.2019.00472
Huck, M., & Fernandez-Duque, E. (2012). Children of divorce: Effects of adult replacements on previous offspring in Argentinean owl monkeys.Behavioral Ecology and Sociobiology , 66 (3), 505–517. https://doi.org/10.1007/s00265-011-1297-9
Huck, M., Fernandez-Duque, E., Babb, P. L., & Schurr, T. G. (2014). Correlates of genetic monogamy in socially monogamous mammals: insights from Azara’s owl monkeys. Proceedings of the Royal Society B: Biological Sciences , 281 , 1–8. https://doi.org/10.1098/rspb.2014.0195
Isvaran, K., & Clutton-Brock, T. (2007). Ecological correlates of extra-group paternity in mammals. Proceedings. Biological Sciences / The Royal Society , 274 (1607), 219–224. https://doi.org/10.1098/rspb.2006.3723
Jennions, M. D., & Petrie, M. (2000). Why do females mate mulitply? A review of genetic benefits. Biological Review , 75 , 21–64.
Jones, O. R., & Wang, J. (2010). COLONY: a program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources , 10 (3), 551–555. https://doi.org/10.1111/j.1755-0998.2009.02787.x
Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology , 16 (5), 1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x
Kappeler, P. M. (2019). A framework for studying social complexity.Behavioral Ecology and Sociobiology , 73 (1), 13. https://doi.org/10.1007/s00265-018-2601-8
Kempenaers, B. (2007). Mate choice and genetic quality: a review of the heterozygosity theory. Advances in the Study of Behavior ,37 (07), 189–278. https://doi.org/10.1016/S0065-3454(07)37005-8
Kenyon, M., Roos, C., Binh, V. T., & Chivers, D. (2011). Extrapair paternity in golden-cheeked gibbons (Nomascus gabriellae ) in the secondary lowland forest of Cat Tien National Park, Vietnam. Folia Primatologica , 82 (3), 154–164. https://doi.org/10.1159/000333143
Kinzey, W. G., & Robinson, J. G. (1983). Intergroup loud calls, range size, and spacing in Callicebus torquatus . American Journal of Physical Anthropology , 60 (4), 539–544.
Kinzey, W. G., & Wright, P. C. (1982). Grooming behavior in the titi monkey (Callicebus torquatus). American Journal of Primatology ,3 (1–4), 267–275. https://doi.org/10.1002/ajp.1350030124
Lardy, S., Cohas, A., Figueroa, I., & Allainé, D. (2011). Mate change in a socially monogamous mammal: evidences support the “forced divorce” hypothesis. Behavioral Ecology , 22 (1), 120–125. https://doi.org/10.1093/beheco/arq168
Lawrence, J. (2007). Understanding the pair bond in brown titi monkeys (Callicebus brunneus ): male and female reprodcutive interests (PhD thesis). Columbia University, New York.
Leclaire, S., Nielsen, J. F., Sharp, S. P., & Clutton-Brock, T. H. (2013). Mating strategies in dominant meerkats: evidence for extra-pair paternity in relation to genetic relatedness between pair mates.Journal of Evolutionary Biology , 26 (7), 1499–1507. https://doi.org/10.1111/jeb.12151
Leedale, A. E., Simeoni, M., Sharp, S. P., Green, J. P., Slate, J., Lachlan, R. F., … Hatchwell, B. J. (2020). Cost, risk, and avoidance of inbreeding in a cooperatively breeding bird.Proceedings of the National Academy of Sciences , 201918726. https://doi.org/10.1073/pnas.1918726117
Leigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution ,6 (9), 1110–1116. https://doi.org/10.1111/2041-210X.12410
Lukas, D., & Clutton-Brock, T. H. (2013). The evolution of social monogamy in mammals. Science , 341 (6145), 526–530. https://doi.org/10.1126/science.1238677
Martins, A. B. (2015). Characterization and evaluation of microsatellite loci suitable for studies on mating system, parentage, and genetic identity in red titi monkeys ( Callicebus discolor) and saki monkeys ( Pithecia aequatorialis) . The University of Texas at Austin.
Mayer, M., Zedrosser, A., & Rosell, F. (2017). When to leave: the timing of natal dispersal in a large, monogamous rodent, the Eurasian beaver. Animal Behaviour , 123 (May 2018), 375–382. https://doi.org/10.1016/j.anbehav.2016.11.020
Mendoza, A., Ng, J., Bales, K. L., Mendoza, S. P., George, D. A., Smith, D. G., & Kanthaswamy, S. (2015). Population genetics of the California National Primate Research Center’s (CNPRC) captive Callicebus cupreus colony. Primates , 56 (1), 37–44. https://doi.org/10.1007/s10329-014-0446-y
Menescal, L. A., Gonçalves, E. C., Silva, A., Ferrari, S. F., & Schneider, M. P. C. (2009). Genetic diversity of red-bellied titis (Callicebus moloch ) from Eastern Amazonia based on microsatellite markers. Biochemical Genetics , 47 (3–4), 235–240. https://doi.org/10.1007/s10528-008-9220-4
Mulder, M. B. (2009). Serial monogamy as polygyny or polyandry? Marriage in the Tanzanian Pimbwe. Human Nature , 20 (2), 130–150. https://doi.org/10.1007/s12110-009-9060-x
Nimje, P. S., Tinnesand, H. V., Buesching, C., Sæbø, M., Senn, H., Zedrosser, A., & Rosell, F. (2019). Almost faithful: SNP markers reveal low levels of extra-pair paternity in the Eurasian beavers. PeerJ Preprints , 7 , e27866v1. https://doi.org/10.7287/peerj.preprints.27866v1
Oka, T., & Takenaka, O. (2001). Wild gibbons’ parentage tested by non-invasive DNA sampling and PCR-amplified polymorphic microsatellites.Primates , 42 (1), 67–73. https://doi.org/10.1007/BF02640690
Opie, C., Atkinson, Q. D., Dunbar, R. I. M., & Shultz, S. (2013). Male infanticide leads to social monogamy in primates. Proceedings of the National Academy of Sciences of the United States of America ,110 (33), 13328–13332. https://doi.org/10.1073/pnas.1307903110
Ortego, J., Calabuig, G., Cordero, P. J., & Aparicio, J. M. (2007). Egg production and individual genetic diversity in lesser kestrels.Molecular Ecology , 16 (11), 2383–2392. https://doi.org/10.1111/j.1365-294X.2007.03322.x
Penteriani, V., Ferrer, M., & Delgado, M. M. (2011). Floater strategies and dynamics in birds, and their importance in conservation biology: towards an understanding of nonbreeders in avian populations.Animal Conservation , 14 (3), 233–241. https://doi.org/10.1111/j.1469-1795.2010.00433.x
Petrie, M., & Kempenaers, B. (1998). Extra-pair paternity in birds: explaining variation between species and populations. Trends in Ecology & Evolution , 13 (2), 52–58. https://doi.org/10.1016/S0169-5347(97)01232-9
Pew, J., Muir, P. H., Wang, J., & Frasier, T. R. (2015). related: an R package for analysing pairwise relatedness from codominant molecular markers. Molecular Ecology Resources , 15 (3), 557–561. https://doi.org/10.1111/1755-0998.12323
Ribble, D. O. (1991). The monogamous mating system of Peromyscus californicus as revealed by DNA fingerprinting. Behavioral Ecology and Sociobiology , 29 (3), 161–166. https://doi.org/10.1007/BF00166397
Ribble, D. O. (1992). Dispersal in a monogamous rodent, Peromyscus californicus . Ecology , 73 (3), 859–866.
Rodman, P. S., & Bossuyt, F. J. (2007). Fathers and stepfathers: familial relations of old and new males within groups of Callicebus brunneus in southeastern Peru [Abstract]. Am J Phys Anthropol , 132 (S44), 201.
Schultz, A., Cristescu, R., Hanger, J., Loader, J., de Villiers, D., & Frère, C. (2020). Inbreeding and disease avoidance in a free‐ranging koala population. Molecular Ecology , 0–3. https://doi.org/10.1111/mec.15488
Schwensow, N., Fietz, J., Dausmann, K., & Sommer, S. (2008). MHC-associated mating strategies and the importance of overall genetic diversity in an obligate pair-living primate. Evolutionary Ecology , 22 (5), 617–636. https://doi.org/10.1007/s10682-007-9186-4
Smouse, P. E., & Peakall, R. (1999). Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure.Heredity , 82 (5), 561–573. https://doi.org/10.1038/sj.hdy.6885180
Sommer, S. (2005). Major histocompatibility complex and mate choice in a monogamous rodent. Behavioral Ecology and Sociobiology ,58 (2), 181–189. https://doi.org/10.1007/s00265-005-0909-7
Sommer, S., & Tichy, H. (1999). Major histocompatibility complex (MHC) class II polymorphism and paternity in the monogamous Hypogeomys antimena, the endangered, largest endemic Malagasy rodent.Molecular Ecology , 8 (8), 1259–1272. https://doi.org/10.1046/j.1365-294X.1999.00687.x
Spence-Aizenberg, A., Di Fiore, A., & Fernandez-Duque, E. (2016). Social monogamy, male–female relationships, and biparental care in wild titi monkeys (Callicebus discolor ). Primates ,57 (1), 103–112. https://doi.org/10.1007/s10329-015-0489-8
Syrůčková, A., Saveljev, A. P., Frosch, C., Durka, W., Savelyev, A. A., & Munclinger, P. (2015). Genetic relationships within colonies suggest genetic monogamy in the Eurasian beaver (Castor fiber ).Mammal Research , 60 (2), 139–147. https://doi.org/10.1007/s13364-015-0219-z
Szulkin, M., & Sheldon, B. C. (2008). Dispersal as a means of inbreeding avoidance in a wild bird population. Proceedings of the Royal Society B: Biological Sciences , 275 (1635), 703–711. https://doi.org/10.1098/rspb.2007.0989
Trivers, R. L. (1972). Parental investment and sexual selection. In B. Campbell (Ed.), Sexual selection and the descent of man (pp. 136–179). Chicago: Aldine.
Van Belle, S., Fernandez-Duque, E., & Di Fiore, A. (2016). Demography and life history of wild red titi monkeys (Callicebus discolor ) and equatorial sakis (Pithecia aequatorialis ) in Amazonian Ecuador: a 12-year study. American Journal of Primatology ,78 (2), 204–215. https://doi.org/10.1002/ajp.22493
Van De Casteele, T., Galbusera, P., Schenck, T., & Matthysen, E. (2003). Seasonal and lifetime reproductive consequences of inbreeding in the great tit Parus major. Behavioral Ecology , 14 (2), 165–174. https://doi.org/10.1093/beheco/14.2.165
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., & Shipley, P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes , 4 (3), 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
Wang, J. (2002). An estimator for pairwise relatedness using molecular markers. Genetics , 160 (3), 1203–1215.
Wang, J. (2011). Coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Molecular Ecology Resources , 11 (1), 141–145. https://doi.org/10.1111/j.1755-0998.2010.02885.x
Westneat, D. F., & Stewart, I. R. K. (2003). Extra-pair paternity in birds: causes, correlates, and conflict. Annual Review of Ecology, Evolution, and Systematics , 34 , 365–396. https://doi.org/10.1146/annurev.ecolsys.34.011802.132439
Wheelwright, N. T., Freeman-Gallant, C. R., & Mauck, R. A. (2006). Asymmetrical incest avoidance in the choice of social and genetic mates.Animal Behaviour , 71 (3), 631–639. https://doi.org/10.1016/j.anbehav.2005.06.012
Wolff, J. O., & MacDonald, D. W. (2004). Promiscuous females protect their offspring. Trends in Ecology and Evolution , 19 (3), 127–134. https://doi.org/10.1016/j.tree.2003.12.009
Wu, J. S., Chiang, P. J., & Lin, L. K. (2012). Monogamous system in the Taiwan vole Microtus kikuchii inferred from microsatellite DNA and home ranges. Zoological Studies , 51 (2), 204–212. https://doi.org/Doi 10.1115/1.1518504
Zeh, J. A., & Zeh, D. W. (1996). The evolution of polyandry I: Intragenomic conflict and genetic incompatibility. Proceedings of the Royal Society B: Biological Sciences , 263 (1377), 1711–1717. https://doi.org/10.1098/rspb.1996.0250
Zeh, J. A., & Zeh, D. W. (1997). The evolution of polyandry II: Post-copulatory defences against genetic incompatibility.Proceedings of the Royal Society B: Biological Sciences ,264 (1378), 69–75. https://doi.org/10.1098/rspb.1997.0010