References
Adamack, A. T., & Gruber, B. (2014). PopGenReport: simplifying basic
population genetic analyses in R. Methods in Ecology and
Evolution , 5 (4), 384–387.
https://doi.org/10.1111/2041-210X.12158
Anzenberger, G. (1988). The pairbond in the titi monkey
(Callicebus moloch ): intrinsic versus extrinsic contributions of
the pairmates. Folia Primatologica , 50 , 188–203.
Arct, A., Drobniak, S. M., & Cichoń, M. (2015). Genetic similarity
between mates predicts extrapair paternity — a meta-analysis of bird
studies. Behavioral Ecology , 26 , 959–968.
https://doi.org/10.1093/beheco/arv004
Barbian, H. J., Connell, A. J., Avitto, A. N., Russell, R. M., Smith, A.
G., Gundlapally, M. S., … Hahn, B. H. (2018). CHIIMP: an
automated high-throughput microsatellite genotyping platform reveals
greater allelic diversity in wild chimpanzees. Ecology and
Evolution , 16 , 7946–7963. https://doi.org/10.1002/ece3.4302
Barelli, C., Matsudaira, K., Wolf, T., Roos, C., Heistermann, M.,
Hodges, K., … Reichard, U. H. (2013). Extra-pair paternity
confirmed in wild white-handed gibbons. American Journal of
Primatology , 75 (12), 1185–1195.
https://doi.org/10.1002/ajp.22180
Bicca-Marques, J. C., & Heymann, E. W. (2013). Ecology and behavior of
titi monkeys (genus Callicebus ). In A. Barnett, L. M. Veiga, S.
F. Ferrari, & M. A. Norconk (Eds.), Evolutionary biology and
conservation of titis, sakis and uacaris (pp. 196–207). Cambridge:
Cambridge University Press.
Blomqvist, D., Andersson, M., Küpper, C., Cuthill, I. C., Kis, J.,
Lanctot, R. B., … Kempenaers, B. (2002). Genetic similarity
between mates and extra-pair parentage in three species of shorebirds.Nature , 419 (6907), 613–615.
https://doi.org/10.1038/nature01104
Blyton, M. D. J., Shaw, R. E., Peakall, R., Lindenmayer, D. B., &
Banks, S. C. (2016). The role of relatedness in mate choice by an
arboreal marsupial in the presence of fine-scale genetic structure.Behavioral Ecology and Sociobiology , 70 (3), 313–321.
https://doi.org/10.1007/s00265-015-2049-z
Bonadonna, G., Torti, V., Gregorio, C., Valente, D., Randrianarison, R.
M., Pozzi, L., … Giacoma, C. (2019). Evidence of genetic monogamy
in the lemur Indri (Indri indri ). American Journal of
Primatology , 81 , e22993. https://doi.org/10.1002/ajp.22993
Bowler, D. E., & Benton, T. G. (2005). Causes and consequences of
animal dispersal strategies: relating individual behaviour to spatial
dynamics. Biological Reviews of the Cambridge Philosophical
Society , 80 (2), 205–225.
https://doi.org/10.1017/S1464793104006645
Brotherton, P. N. M., Pemberton, J. M., Komers, P. E., & Malarky, G.
(1997). Genetic and behavioural evidence of monogamy in a mammal, Kirk’s
dik–dik (Madoqua kirkii). Proceedings of the Royal Society of
London B: Biological Sciences , 264 (1382), 675–681.
https://doi.org/https://doi.org/10.1098/rspb.1997.0096
Brown, J. L. (1997). A theory of mate choice based on heterozygosity.Behavioral Ecology , 8 (1), 60–65.
https://doi.org/10.1093/beheco/8.1.60
Burton, M. L., Moore, C. C., Whiting, J. W. M., & Romney, A. K. (1996).
Regions based on social structure. Current Anthropology ,37 (1), 87–123. https://doi.org/10.1086/204474
Clutton-Brock, T. (2007). Sexual selection in males and females.Science , 318 (5858), 1882–1885.
https://doi.org/10.1126/science.1133311
Cohas, A., Yoccoz, N. G., Bonenfant, C., Goossens, B., Genton, C.,
Galan, M., … Allainé, D. (2008). The genetic similarity between
pair members influences the frequency of extrapair paternity in alpine
marmots. Animal Behaviour , 76 (1), 87–95.
https://doi.org/10.1016/j.anbehav.2008.01.012
Cohas, A., Yoccoz, N. G., Da Silva, A., Goossens, B., & Allainé, D.
(2006). Extra-pair paternity in the monogamous alpine marmot (Marmota
marmota): the roles of social setting and female mate choice.Behavioral Ecology and Sociobiology , 59 (5), 597–605.
https://doi.org/10.1007/s00265-005-0086-8
Coltman, D., Pilkington, J., Smith, J., & Pemberton, J. (1999).
Parasite-mediated selection against inbred soay sheep in a free- living
island population. Evolution , 53 (4), 1259–1267.
Coulon, A. (2010). Genhet: an easy-to-use R function to estimate
individual heterozygosity. Molecular Ecology Resources ,10 (1), 167–169. https://doi.org/10.1111/j.1755-0998.2009.02731.x
Di Fiore, A. (2005). A rapid genetic method for sex assignment in
non-human primates. Conservation Genetics , 6 (6),
1053–1058. https://doi.org/10.1007/s10592-005-9086-5
Dobson, S. F. (1982). Competition for mates and predominant juvenile
male dispersal in mammals. Animal Behaviour , 30 (4),
1183–1192. https://doi.org/10.1016/S0003-3472(82)80209-1
Dolotovskaya, S., & Heymann, E. W. (2020). Do less or eat more:
strategies to cope with costs of parental care in a pair-living monkey.Animal Behaviour , 163 , 163–173.
https://doi.org/10.1016/j.anbehav.2020.03.012
Dolotovskaya, S., Walker, S., & Heymann, E. W. (2019). What makes a
pair bond in a Neotropical primate: female and male contributions.Royal Society Open Science , 7 , 191489.
https://doi.org/https://doi.org/10.1098/rsos.191489
Dubois, F., & Cézilly, F. (2002). Breeding success and mate retention
in birds: A meta-analysis. Behavioral Ecology and Sociobiology ,52 (5), 357–364. https://doi.org/10.1007/s00265-002-0521-z
Favre, L., Balloux, F., Goudet, J., & Perrin, N. (1997). Female-biased
dispersal in the monogamous mammal Crocidura russula : evidence
from field data and microsatellite patterns. Proceedings of the
Royal Society B: Biological Sciences , 264 (1378), 127–132.
https://doi.org/10.1098/rspb.1997.0019
Fernandez-Duque, E. (2009). Natal dispersal in monogamous owl monkeys
(Aotus azarai) of the Argentinean Chaco. Behaviour ,146 (4–5), 583–606. https://doi.org/10.1163/156853908X397925
Fernandez-Duque, E., Fiore, A. Di, & de Luna, A. G. (2013). Pair-mate
relationships and parenting in equatorial saki monkeys (Pithecia
aequatorialis) and red titi monkeys (Callicebus discolor) of Ecuador. In
L. M. Veiga, A. A. Barnett, S. F. Ferrari, & M. A. Norconk (Eds.),Evolutionary biology and conservation of titis, sakis and uacaris(pp. 295–302). New York: Cambridge University Press.
Fernandez-Duque, E., & Huck, M. (2013). Till death (or an intruder) do
us part: intrasexual-competition in a monogamous primate. PLoS
ONE , 8 (1), e53724. https://doi.org/10.1371/journal.pone.0053724
Foerster, K., Delhey, K., Johnsen, A., Lifjeld, J. T., & Kempenaers, B.
(2003). Females increase offspring heterozygosity and fitness through
extra-pair matings. Nature , 425 (6959), 714–717.
https://doi.org/10.1038/nature01969
Frasier, T. R. (2008). STORM: software for testing hypotheses of
relatedness and mating patterns. Molecular Ecology Resources ,8 (6), 1263–1266.
https://doi.org/10.1111/j.1755-0998.2008.02358.x
García-Navas, V., Ortego, J., & Sanz, J. J. (2009).
Heterozygosity-based assortative mating in blue tits (Cyanistes
caeruleus): implications for the evolution of mate choice.Proceedings of the Royal Society B: Biological Sciences ,276 (1669), 2931–2940. https://doi.org/10.1098/rspb.2009.0417
Goslee, S. C., & Urban, D. L. (2007). The ecodist package for
dissimilarity-based analysis of ecological data. Journal of
Statistical Software , 22 (7), 1–19.
https://doi.org/10.18637/jss.v022.i07
Greenwood, P. J. (1980). Mating systems, philopatry and dispersal in
birds and mammals. Animal Behaviour , 28 (4), 1140–1162.
https://doi.org/10.1016/S0003-3472(80)80103-5
Hansson, B., Jack, L., Christians, J. K., Pemberton, J. M., Åkesson, M.,
Westerdahl, H., … Hasselquist, D. (2007). No evidence for
inbreeding avoidance in a great reed warbler population.Behavioral Ecology , 18 (1), 157–164.
https://doi.org/10.1093/beheco/arl062
Hennessy, C. A., Dubach, J., & Gehrt, S. D. (2012). Long-term pair
bonding and genetic evidence for monogamy among urban coyotes
(Canis latrans ). Journal of Mammalogy , 93 (3),
732–742. https://doi.org/10.1644/11-MAMM-A-184.1
Hoffman, J. I., Forcada, J., Trathan, P. N., & Amos, W. (2007). Female
fur seals show active choice for males that are heterozygous and
unrelated. Nature , 445 (7130), 912–914.
https://doi.org/10.1038/nature05558
Huchard, E., Knapp, L. A., Wang, J., Raymond, M., & Cowlishaw, G.
(2010). MHC, mate choice and heterozygote advantage in a wild social
primate. Molecular Ecology , 19 (12), 2545–2561.
https://doi.org/10.1111/j.1365-294X.2010.04644.x
Huck, M., Di Fiore, A., & Fernandez-Duque, E. (2020). Of apples and
oranges? The evolution of “monogamy” in non-human primates.Frontiers in Ecology and Evolution , 7 , 472.
https://doi.org/10.3389/FEVO.2019.00472
Huck, M., & Fernandez-Duque, E. (2012). Children of divorce: Effects of
adult replacements on previous offspring in Argentinean owl monkeys.Behavioral Ecology and Sociobiology , 66 (3), 505–517.
https://doi.org/10.1007/s00265-011-1297-9
Huck, M., Fernandez-Duque, E., Babb, P. L., & Schurr, T. G. (2014).
Correlates of genetic monogamy in socially monogamous mammals: insights
from Azara’s owl monkeys. Proceedings of the Royal Society B:
Biological Sciences , 281 , 1–8.
https://doi.org/10.1098/rspb.2014.0195
Isvaran, K., & Clutton-Brock, T. (2007). Ecological correlates of
extra-group paternity in mammals. Proceedings. Biological Sciences
/ The Royal Society , 274 (1607), 219–224.
https://doi.org/10.1098/rspb.2006.3723
Jennions, M. D., & Petrie, M. (2000). Why do females mate mulitply? A
review of genetic benefits. Biological Review , 75 , 21–64.
Jones, O. R., & Wang, J. (2010). COLONY: a program for parentage and
sibship inference from multilocus genotype data. Molecular Ecology
Resources , 10 (3), 551–555.
https://doi.org/10.1111/j.1755-0998.2009.02787.x
Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how
the computer program CERVUS accommodates genotyping error increases
success in paternity assignment. Molecular Ecology , 16 (5),
1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x
Kappeler, P. M. (2019). A framework for studying social complexity.Behavioral Ecology and Sociobiology , 73 (1), 13.
https://doi.org/10.1007/s00265-018-2601-8
Kempenaers, B. (2007). Mate choice and genetic quality: a review of the
heterozygosity theory. Advances in the Study of Behavior ,37 (07), 189–278. https://doi.org/10.1016/S0065-3454(07)37005-8
Kenyon, M., Roos, C., Binh, V. T., & Chivers, D. (2011). Extrapair
paternity in golden-cheeked gibbons (Nomascus gabriellae ) in the
secondary lowland forest of Cat Tien National Park, Vietnam. Folia
Primatologica , 82 (3), 154–164.
https://doi.org/10.1159/000333143
Kinzey, W. G., & Robinson, J. G. (1983). Intergroup loud calls, range
size, and spacing in Callicebus torquatus . American Journal
of Physical Anthropology , 60 (4), 539–544.
Kinzey, W. G., & Wright, P. C. (1982). Grooming behavior in the titi
monkey (Callicebus torquatus). American Journal of Primatology ,3 (1–4), 267–275. https://doi.org/10.1002/ajp.1350030124
Lardy, S., Cohas, A., Figueroa, I., & Allainé, D. (2011). Mate change
in a socially monogamous mammal: evidences support the “forced
divorce” hypothesis. Behavioral Ecology , 22 (1), 120–125.
https://doi.org/10.1093/beheco/arq168
Lawrence, J. (2007). Understanding the pair bond in brown titi monkeys
(Callicebus brunneus ): male and female reprodcutive interests
(PhD thesis). Columbia University, New York.
Leclaire, S., Nielsen, J. F., Sharp, S. P., & Clutton-Brock, T. H.
(2013). Mating strategies in dominant meerkats: evidence for extra-pair
paternity in relation to genetic relatedness between pair mates.Journal of Evolutionary Biology , 26 (7), 1499–1507.
https://doi.org/10.1111/jeb.12151
Leedale, A. E., Simeoni, M., Sharp, S. P., Green, J. P., Slate, J.,
Lachlan, R. F., … Hatchwell, B. J. (2020). Cost, risk, and
avoidance of inbreeding in a cooperatively breeding bird.Proceedings of the National Academy of Sciences , 201918726.
https://doi.org/10.1073/pnas.1918726117
Leigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for
haplotype network construction. Methods in Ecology and Evolution ,6 (9), 1110–1116. https://doi.org/10.1111/2041-210X.12410
Lukas, D., & Clutton-Brock, T. H. (2013). The evolution of social
monogamy in mammals. Science , 341 (6145), 526–530.
https://doi.org/10.1126/science.1238677
Martins, A. B. (2015). Characterization and evaluation of
microsatellite loci suitable for studies on mating system, parentage,
and genetic identity in red titi monkeys ( Callicebus discolor)
and saki monkeys ( Pithecia aequatorialis) . The University of
Texas at Austin.
Mayer, M., Zedrosser, A., & Rosell, F. (2017). When to leave: the
timing of natal dispersal in a large, monogamous rodent, the Eurasian
beaver. Animal Behaviour , 123 (May 2018), 375–382.
https://doi.org/10.1016/j.anbehav.2016.11.020
Mendoza, A., Ng, J., Bales, K. L., Mendoza, S. P., George, D. A., Smith,
D. G., & Kanthaswamy, S. (2015). Population genetics of the California
National Primate Research Center’s (CNPRC) captive Callicebus
cupreus colony. Primates , 56 (1), 37–44.
https://doi.org/10.1007/s10329-014-0446-y
Menescal, L. A., Gonçalves, E. C., Silva, A., Ferrari, S. F., &
Schneider, M. P. C. (2009). Genetic diversity of red-bellied titis
(Callicebus moloch ) from Eastern Amazonia based on microsatellite
markers. Biochemical Genetics , 47 (3–4), 235–240.
https://doi.org/10.1007/s10528-008-9220-4
Mulder, M. B. (2009). Serial monogamy as polygyny or polyandry? Marriage
in the Tanzanian Pimbwe. Human Nature , 20 (2), 130–150.
https://doi.org/10.1007/s12110-009-9060-x
Nimje, P. S., Tinnesand, H. V., Buesching, C., Sæbø, M., Senn, H.,
Zedrosser, A., & Rosell, F. (2019). Almost faithful: SNP markers reveal
low levels of extra-pair paternity in the Eurasian beavers. PeerJ
Preprints , 7 , e27866v1.
https://doi.org/10.7287/peerj.preprints.27866v1
Oka, T., & Takenaka, O. (2001). Wild gibbons’ parentage tested by
non-invasive DNA sampling and PCR-amplified polymorphic microsatellites.Primates , 42 (1), 67–73.
https://doi.org/10.1007/BF02640690
Opie, C., Atkinson, Q. D., Dunbar, R. I. M., & Shultz, S. (2013). Male
infanticide leads to social monogamy in primates. Proceedings of
the National Academy of Sciences of the United States of America ,110 (33), 13328–13332. https://doi.org/10.1073/pnas.1307903110
Ortego, J., Calabuig, G., Cordero, P. J., & Aparicio, J. M. (2007). Egg
production and individual genetic diversity in lesser kestrels.Molecular Ecology , 16 (11), 2383–2392.
https://doi.org/10.1111/j.1365-294X.2007.03322.x
Penteriani, V., Ferrer, M., & Delgado, M. M. (2011). Floater strategies
and dynamics in birds, and their importance in conservation biology:
towards an understanding of nonbreeders in avian populations.Animal Conservation , 14 (3), 233–241.
https://doi.org/10.1111/j.1469-1795.2010.00433.x
Petrie, M., & Kempenaers, B. (1998). Extra-pair paternity in birds:
explaining variation between species and populations. Trends in
Ecology & Evolution , 13 (2), 52–58.
https://doi.org/10.1016/S0169-5347(97)01232-9
Pew, J., Muir, P. H., Wang, J., & Frasier, T. R. (2015). related: an R
package for analysing pairwise relatedness from codominant molecular
markers. Molecular Ecology Resources , 15 (3), 557–561.
https://doi.org/10.1111/1755-0998.12323
Ribble, D. O. (1991). The monogamous mating system of Peromyscus
californicus as revealed by DNA fingerprinting. Behavioral
Ecology and Sociobiology , 29 (3), 161–166.
https://doi.org/10.1007/BF00166397
Ribble, D. O. (1992). Dispersal in a monogamous rodent, Peromyscus
californicus . Ecology , 73 (3), 859–866.
Rodman, P. S., & Bossuyt, F. J. (2007). Fathers and stepfathers:
familial relations of old and new males within groups of Callicebus
brunneus in southeastern Peru [Abstract]. Am J Phys
Anthropol , 132 (S44), 201.
Schultz, A., Cristescu, R., Hanger, J., Loader, J., de Villiers, D., &
Frère, C. (2020). Inbreeding and disease avoidance in a free‐ranging
koala population. Molecular Ecology , 0–3.
https://doi.org/10.1111/mec.15488
Schwensow, N., Fietz, J., Dausmann, K., & Sommer, S. (2008).
MHC-associated mating strategies and the importance of overall genetic
diversity in an obligate pair-living primate. Evolutionary
Ecology , 22 (5), 617–636.
https://doi.org/10.1007/s10682-007-9186-4
Smouse, P. E., & Peakall, R. (1999). Spatial autocorrelation analysis
of individual multiallele and multilocus genetic structure.Heredity , 82 (5), 561–573.
https://doi.org/10.1038/sj.hdy.6885180
Sommer, S. (2005). Major histocompatibility complex and mate choice in a
monogamous rodent. Behavioral Ecology and Sociobiology ,58 (2), 181–189. https://doi.org/10.1007/s00265-005-0909-7
Sommer, S., & Tichy, H. (1999). Major histocompatibility complex (MHC)
class II polymorphism and paternity in the monogamous Hypogeomys
antimena, the endangered, largest endemic Malagasy rodent.Molecular Ecology , 8 (8), 1259–1272.
https://doi.org/10.1046/j.1365-294X.1999.00687.x
Spence-Aizenberg, A., Di Fiore, A., & Fernandez-Duque, E. (2016).
Social monogamy, male–female relationships, and biparental care in wild
titi monkeys (Callicebus discolor ). Primates ,57 (1), 103–112. https://doi.org/10.1007/s10329-015-0489-8
Syrůčková, A., Saveljev, A. P., Frosch, C., Durka, W., Savelyev, A. A.,
& Munclinger, P. (2015). Genetic relationships within colonies suggest
genetic monogamy in the Eurasian beaver (Castor fiber ).Mammal Research , 60 (2), 139–147.
https://doi.org/10.1007/s13364-015-0219-z
Szulkin, M., & Sheldon, B. C. (2008). Dispersal as a means of
inbreeding avoidance in a wild bird population. Proceedings of the
Royal Society B: Biological Sciences , 275 (1635), 703–711.
https://doi.org/10.1098/rspb.2007.0989
Trivers, R. L. (1972). Parental investment and sexual selection. In B.
Campbell (Ed.), Sexual selection and the descent of man (pp.
136–179). Chicago: Aldine.
Van Belle, S., Fernandez-Duque, E., & Di Fiore, A. (2016). Demography
and life history of wild red titi monkeys (Callicebus discolor )
and equatorial sakis (Pithecia aequatorialis ) in Amazonian
Ecuador: a 12-year study. American Journal of Primatology ,78 (2), 204–215. https://doi.org/10.1002/ajp.22493
Van De Casteele, T., Galbusera, P., Schenck, T., & Matthysen, E.
(2003). Seasonal and lifetime reproductive consequences of inbreeding in
the great tit Parus major. Behavioral Ecology , 14 (2),
165–174. https://doi.org/10.1093/beheco/14.2.165
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., & Shipley, P.
(2004). MICRO-CHECKER: software for identifying and correcting
genotyping errors in microsatellite data. Molecular Ecology
Notes , 4 (3), 535–538.
https://doi.org/10.1111/j.1471-8286.2004.00684.x
Wang, J. (2002). An estimator for pairwise relatedness using molecular
markers. Genetics , 160 (3), 1203–1215.
Wang, J. (2011). Coancestry: a program for simulating, estimating and
analysing relatedness and inbreeding coefficients. Molecular
Ecology Resources , 11 (1), 141–145.
https://doi.org/10.1111/j.1755-0998.2010.02885.x
Westneat, D. F., & Stewart, I. R. K. (2003). Extra-pair paternity in
birds: causes, correlates, and conflict. Annual Review of Ecology,
Evolution, and Systematics , 34 , 365–396.
https://doi.org/10.1146/annurev.ecolsys.34.011802.132439
Wheelwright, N. T., Freeman-Gallant, C. R., & Mauck, R. A. (2006).
Asymmetrical incest avoidance in the choice of social and genetic mates.Animal Behaviour , 71 (3), 631–639.
https://doi.org/10.1016/j.anbehav.2005.06.012
Wolff, J. O., & MacDonald, D. W. (2004). Promiscuous females protect
their offspring. Trends in Ecology and Evolution , 19 (3),
127–134. https://doi.org/10.1016/j.tree.2003.12.009
Wu, J. S., Chiang, P. J., & Lin, L. K. (2012). Monogamous system in the
Taiwan vole Microtus kikuchii inferred from microsatellite DNA
and home ranges. Zoological Studies , 51 (2), 204–212.
https://doi.org/Doi 10.1115/1.1518504
Zeh, J. A., & Zeh, D. W. (1996). The evolution of polyandry I:
Intragenomic conflict and genetic incompatibility. Proceedings of
the Royal Society B: Biological Sciences , 263 (1377), 1711–1717.
https://doi.org/10.1098/rspb.1996.0250
Zeh, J. A., & Zeh, D. W. (1997). The evolution of polyandry II:
Post-copulatory defences against genetic incompatibility.Proceedings of the Royal Society B: Biological Sciences ,264 (1378), 69–75. https://doi.org/10.1098/rspb.1997.0010