References
1. Petrie, M. & Kempenaers, B. Extra-pair paternity in birds: explaining variation between species and populations. Trends Ecol. Evol. 13, 52–58 (1998).
2. Clutton-Brock, T. Sexual selection in males and females. Science (80-. ). 318, 1882–1885 (2007).
3. Huck, M., Fernandez-Duque, E., Babb, P. L. & Schurr, T. G. Correlates of genetic monogamy in socially monogamous mammals: insights from Azara’s owl monkeys. Proc. R. Soc. B Biol. Sci. 281, 1–8 (2014).
4. Isvaran, K. & Clutton-Brock, T. Ecological correlates of extra-group paternity in mammals. Proc. Biol. Sci. 274, 219–24 (2007).
5. Lukas, D. & Clutton-Brock, T. H. The evolution of social monogamy in mammals. Science (80-. ). 341, 526–530 (2013).
6. Opie, C., Atkinson, Q. D., Dunbar, R. I. M. & Shultz, S. Male infanticide leads to social monogamy in primates. Proc. Natl. Acad. Sci. U. S. A. 110, 13328–32 (2013).
7. Arct, A., Drobniak, S. M. & Cichoń, M. Genetic similarity between mates predicts extrapair paternity — a meta-analysis of bird studies. Behav. Ecol. 26, 959–968 (2015).
8. Brouwer, L. et al. Multiple hypotheses explain variation in extra-pair paternity at different levels in a single bird family. Molecular Ecology 26, (2017).
9. Trivers, R. L. Parental investment and sexual selection. in Sexual selection and the descent of man (ed. Campbell, B.) 136–179 (Aldine, 1972).
10. Jennions, M. D. & Petrie, M. Why do females mate mulitply? A review of genetic benefits. Biol. Rev. 75, 21–64 (2000).
11. Foerster, K., Delhey, K., Johnsen, A., Lifjeld, J. T. & Kempenaers, B. Females increase offspring heterozygosity and fitness through extra-pair matings. Nature 425, 714–717 (2003).
12. Cohas, A. et al. The genetic similarity between pair members influences the frequency of extrapair paternity in alpine marmots. Anim. Behav. 76, 87–95 (2008).
13. Leclaire, S., Nielsen, J. F., Sharp, S. P. & Clutton-Brock, T. H. Mating strategies in dominant meerkats: evidence for extra-pair paternity in relation to genetic relatedness between pair mates. J. Evol. Biol. 26, 1499–1507 (2013).
14. Schwensow, N., Fietz, J., Dausmann, K. & Sommer, S. MHC-associated mating strategies and the importance of overall genetic diversity in an obligate pair-living primate. Evol. Ecol. 22, 617–636 (2008).
15. Kempenaers, B. Mate choice and genetic quality: a review of the heterozygosity theory. Adv. Study Behav. 37, 189–278 (2007).
16. Brown, J. L. A theory of mate choice based on heterozygosity. Behav. Ecol. 8, 60–65 (1997).
17. Zeh, J. A. & Zeh, D. W. The evolution of polyandry II: post-copulatory defences against genetic incompatibility. Proc. R. Soc. B Biol. Sci. 264, 69–75 (1997).
18. Coltman, D., Pilkington, J., Smith, J. & Pemberton, J. Parasite-mediated selection against inbred soay sheep in a free- living island population. Evolution (N. Y). 53, 1259–1267 (1999).
19. Ortego, J., Calabuig, G., Cordero, P. J. & Aparicio, J. M. Egg production and individual genetic diversity in lesser kestrels. Mol. Ecol. 16, 2383–2392 (2007).
20. Hoffman, J. I., Forcada, J., Trathan, P. N. & Amos, W. Female fur seals show active choice for males that are heterozygous and unrelated. Nature 445, 912–914 (2007).
21. García-Navas, V., Ortego, J. & Sanz, J. J. Heterozygosity-based assortative mating in blue tits (Cyanistes caeruleus): implications for the evolution of mate choice. Proc. R. Soc. B Biol. Sci. 276, 2931–2940 (2009).
22. Sommer, S. Major histocompatibility complex and mate choice in a monogamous rodent. Behav. Ecol. Sociobiol. 58, 181–189 (2005).
23. Sin, Y. W. et al. MHC class II-assortative mate choice in European badgers (Meles meles). Mol. Ecol. 24, 3138–3150 (2015).
24. Hansson, B. et al. No evidence for inbreeding avoidance in a great reed warbler population. Behav. Ecol. 18, 157–164 (2007).
25. Leedale, A. E. et al. Cost, risk, and avoidance of inbreeding in a cooperatively breeding bird. Proc. Natl. Acad. Sci. 201918726 (2020). doi:10.1073/pnas.1918726117
26. Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980).
27. Huchard, E., Knapp, L. A., Wang, J., Raymond, M. & Cowlishaw, G. MHC, mate choice and heterozygote advantage in a wild social primate. Mol. Ecol. 19, 2545–2561 (2010).
28. Dobson, S. F. Competition for mates and predominant juvenile male dispersal in mammals. Anim. Behav. 30, 1183–1192 (1982).
29. Doolan, S. P. & Macdonald, D. W. Dispersal and extra-territorial prospecting by slender-tailed meerkats (Suricata suricatta) in the south-western Kalahari. J. Zool. 240, 59–73 (1996).
30. Fernandez-Duque, E. Natal dispersal in monogamous owl monkeys (Aotus azarai) of the Argentinean Chaco. Behaviour 146, 583–606 (2009).
31. Ribble, D. O. Dispersal in a monogamous rodent, Peromyscus californicus. Ecology 73, 859–866 (1992).
32. Favre, L., Balloux, F., Goudet, J. & Perrin, N. Female-biased dispersal in the monogamous mammal Crocidura russula: evidence from field data and microsatellite patterns. Proc. R. Soc. B Biol. Sci. 264, 127–132 (1997).
33. Van Belle, S., Fernandez-Duque, E. & Di Fiore, A. Demography and life history of wild red titi monkeys (Callicebus discolor) and equatorial sakis (Pithecia aequatorialis) in Amazonian Ecuador: a 12-year study. Am. J. Primatol. 78, 204–215 (2016).
34. Bicca-Marques, J. C. & Heymann, E. W. Ecology and behavior of titi monkeys (genus Callicebus). in Evolutionary biology and conservation of titis, sakis and uacaris (eds. Barnett, A., Veiga, L. M., Ferrari, S. F. & Norconk, M. A.) 196–207 (Cambridge University Press, 2013).
35. Anzenberger, G. The pairbond in the titi monkey (Callicebus moloch): intrinsic versus extrinsic contributions of the pairmates. Folia Primatol. 50, 188–203 (1988).
36. Fernandez-Duque, E., Fiore, A. Di & de Luna, A. G. Pair-mate relationships and parenting in equatorial saki monkeys (Pithecia aequatorialis) and red titi monkeys (</i>Callicebus discolor</i>) of Ecuador. in Evolutionary biology and conservation of titis, sakis and uacaris (eds. Veiga, L. M., Barnett, A. A., Ferrari, S. F. & Norconk, M. A.) 295–302 (Cambridge University Press, 2013).
37. Oka, T. & Takenaka, O. Wild gibbons’ parentage tested by non-invasive DNA sampling and PCR-amplified polymorphic microsatellites. Primates 42, 67–73 (2001).
38. Dolotovskaya, S., Walker, S. & Heymann, E. W. What makes a pair bond in a Neotropical primate: female and male contributions. R. Soc. Open Sci. 7, 191489 (2019).
39. Kinzey, W. G. & Wright, P. C. Grooming behavior in the titi monkey (Callicebus torquatus). Am. J. Primatol. 3, 267–275 (1982).
40. Spence-Aizenberg, A., Di Fiore, A. & Fernandez-Duque, E. Social monogamy, male–female relationships, and biparental care in wild titi monkeys (Callicebus discolor). Primates 57, 103–112 (2016).
41. Kinzey, W. G. & Robinson, J. G. Intergroup loud calls, range size, and spacing in Callicebus torquatus. Am. J. Phys. Anthropol. 60, 539–544 (1983).
42. Penteriani, V., Ferrer, M. & Delgado, M. M. Floater strategies and dynamics in birds, and their importance in conservation biology: towards an understanding of nonbreeders in avian populations. Anim. Conserv. 14, 233–241 (2011).
43. Fernandez-Duque, E. & Huck, M. Till death (or an intruder) do us part: intrasexual-competition in a monogamous primate. PLoS One 8, e53724 (2013).
44. Huck, M. & Fernandez-Duque, E. Children of divorce: effects of adult replacements on previous offspring in Argentinean owl monkeys. Behav. Ecol. Sociobiol. 66, 505–517 (2012).
45. Nimje, P. S. et al. Almost faithful: SNP markers reveal low levels of extra-pair paternity in the Eurasian beavers. PeerJ Prepr. 7, e27866v1 (2019).
46. Barelli, C. et al. Extra-pair paternity confirmed in wild white-handed gibbons. Am. J. Primatol. 75, 1185–1195 (2013).
47. Cohas, A., Yoccoz, N. G., Da Silva, A., Goossens, B. & Allainé, D. Extra-pair paternity in the monogamous alpine marmot (Marmota marmota): the roles of social setting and female mate choice. Behav. Ecol. Sociobiol. 59, 597–605 (2006).
48. Kenyon, M., Roos, C., Binh, V. T. & Chivers, D. Extrapair paternity in golden-cheeked gibbons (Nomascus gabriellae) in the secondary lowland forest of Cat Tien National Park, Vietnam. Folia Primatol. 82, 154–164 (2011).
49. Lawrence, J. Understanding the pair bond in brown titi monkeys (Callicebus brunneus): male and female reprodcutive interests (PhD thesis). PhD Thesis (Columbia University, New York, 2007).
50. Rodman, P. S. & Bossuyt, F. J. Fathers and stepfathers: familial relations of old and new males within groups of Callicebus brunneus in southeastern Peru [Abstract]. Am J Phys Anthr. 132, 201 (2007).
51. Westneat, D. F. & Stewart, I. R. K. Extra-pair paternity in birds: causes, correlates, and conflict. Annu. Rev. Ecol. Evol. Syst. 34, 365–396 (2003).
52. Poiani, A. & Wilks, C. Sexually transmitted diseases: a possible cost of promiscuity in birds? Auk 117, 1061–1065 (2000).
53. Westneat, D. F. The ecology and evolution of extra-pair copulations in birds. Curr. Ornithol. 7, 331–369 (1990).
54. Westneat, D. F. & Sherman, P. W. Density and extra-pair fertilizations in birds: a comparative analysis. Behav. Ecol. Sociobiol. 41, 205–215 (1997).
55. Syrůčková, A. et al. Genetic relationships within colonies suggest genetic monogamy in the Eurasian beaver (Castor fiber). Mammal Res. 60, 139–147 (2015).
56. Mason, W. A. Social organization of the South American monkey, Callicebus moloch: a preliminary report. Tulane Stud Zool 13, 23–28 (1966).
57. Bicca-Marques, J. C. & Heymann, E. W. Ecology and behavior of titi monkeys (genus Callicebus). in Evolutionary biology and conservation of titis, sakis and uacaris (eds. Veiga, L. M., Barnett, A. A., Ferrari, S. F. & Norconk, M. A.) 196–207 (Cambridge University Press, 2013).
58. Fernandez-Duque, E. & Fiore, A. Di. The evolution of pair-living, sexual monogamy, and cooperative infant care: insights from research on wild owl monkeys, titi monkeys, sakis, and tamarins. Yearb. Phys. Anthropol. 1–86 (2020). doi:10.1111/j.1365-2958.2003.03935.x
59. Dacier, A., De Luna, A. G., Fernandez-Duque, E. & Di Fiore, A. Estimating population density of Amazonian titi monkeys (Callicebus discolor) via playback point counts. Biotropica 43, 135–140 (2011).
60. Van Belle, S., Martins, A., Fernandez-Duque, E. & Di Fiore, A. Patterns of paternity in wild socially monogamous titis (Callicebus discolor) and sakis (Pithecia aequatorialis) at the Tiputini Biodiversity Station, Ecuador (conference abstract). in International Primatological Society and American Society of Primatologists (2016).
61. Jantschke, B., Welker, C. & Klaiber-Schuh, A. Notes on breeding of the titi monkey Callicebus cupreus. Folia Primatol. 65, 210–213 (1995).
62. Valeggia, C. R., Mendoza, S. P., Fernandez-Duque, E., Mason, W. A. & Lasley, B. Reproductive biology of female titi monkeys (Callicebus moloch) in captivity. Am. J. Primatol. 47, 183–195 (1999).
63. Brotherton, P. N. M., Pemberton, J. M., Komers, P. E. & Malarky, G. Genetic and behavioural evidence of monogamy in a mammal, Kirk’s dik–dik (Madoqua kirkii). Proc. R. Soc. London B Biol. Sci. 264, 675–681 (1997).
64. Foerster, K., Valcu, M., Johnsen, A. & Kempenaers, B. A spatial genetic structure and effects of relatedness on mate choice in a wild bird population. Mol. Ecol. 15, 4555–4567 (2006).
65. Geffen, E. et al. Kin encounter rate and inbreeding avoidance in canids. Mol. Ecol. 20, 5348–5358 (2011).
66. Jamieson, I. G., Taylor, S. S., Tracy, L. N., Kokko, H. & Armstrong, D. P. Why some species of birds do not avoid inbreeding: Insights from New Zealand robins and saddlebacks. Behav. Ecol. 20, 575–584 (2009).
67. Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
68. Parreira, B., Quéméré, E., Vanpé, C., Carvalho, I. & Chikhi, L. Genetic consequences of social structure in the golden-crowned sifaka. Heredity (Edinb). 1–12 (2020). doi:10.1038/s41437-020-0345-5
69. Szulkin, M. & Sheldon, B. C. Dispersal as a means of inbreeding avoidance in a wild bird population. Proc. R. Soc. B Biol. Sci. 275, 703–711 (2008).
70. Dolotovskaya, S. & Heymann, E. W. Do less or eat more: strategies to cope with costs of parental care in a pair-living monkey. Anim. Behav. 163, 163–173 (2020).
71. Dolotovskaya, S., Flores Amasifuen, C., Haas, C. E., Nummert, F. & Heymann, E. W. Active anti-predator behaviour of red titi monkeys (Plecturocebus cupreus). Primate Biol. 6, 59–64 (2019).
72. Souza-Alves, J. P., Caselli, C. B., Gestich, C. C. & Nagy-Reis, M. B. Should I store, or should I sync? The breeding strategy of two small Neotropical primates under predictable resource availability. Primates 60, 113–118 (2019).
73. Mendoza, A. et al. Population genetics of the California National Primate Research Center’s (CNPRC) captive Callicebus cupreus colony. Primates 56, 37–44 (2015).
74. Martins, A. B. Characterization and evaluation of microsatellite loci suitable for studies on mating system, parentage, and genetic identity in red titi monkeys (Callicebus discolor) and saki monkeys (Pithecia aequatorialis). (The University of Texas at Austin, 2015).
75. Menescal, L. A., Gonçalves, E. C., Silva, A., Ferrari, S. F. & Schneider, M. P. C. Genetic diversity of red-bellied titis (Callicebus moloch) from Eastern Amazonia based on microsatellite markers. Biochem. Genet. 47, 235–240 (2009).
76. Barbian, H. J. et al. CHIIMP: an automated high-throughput microsatellite genotyping platform reveals greater allelic diversity in wild chimpanzees. Ecol. Evol. 16, 7946–7963 (2018).
77. Di Fiore, A. A rapid genetic method for sex assignment in non-human primates. Conserv. Genet. 6, 1053–1058 (2005).
78. Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
79. Adamack, A. T. & Gruber, B. PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).
80. Gouy, M., Guindon, S. & Gascuel, O. Sea view version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).
81. Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).
82. Pew, J., Muir, P. H., Wang, J. & Frasier, T. R. related: an R package for analysing pairwise relatedness from codominant molecular markers. Mol. Ecol. Resour. 15, 557–561 (2015).
83. Wang, J. An estimator for pairwise relatedness using molecular markers. Genetics 160, 1203–1215 (2002).
84. Jones, O. R. & Wang, J. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551–555 (2010).
85. Frasier, T. R. STORM: software for testing hypotheses of relatedness and mating patterns. Mol. Ecol. Resour. 8, 1263–1266 (2008).
86. Li, C. C., Weeks, D. E. & Chakravarti, A. Similarity of DNA fingerprints due to chance and relatedness. Hum. Hered. 43, 45–52 (1993).
87. Lynch, M. & Ritland, K. Estimation of pairwise relatedness with molecular markers. Genetics 152, 1753–1766 (1999).
88. Van de Casteele, T., Galbusera, P. & Matthysen, E. A comparison of microsatellite-based pairwise relatedness estimators. Mol. Ecol. 10, 1539–1549 (2001).
89. Coulon, A. Genhet: an easy-to-use R function to estimate individual heterozygosity. Mol. Ecol. Resour. 10, 167–169 (2010).
90. Alexander, A. et al. What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)? Mol. Ecol. 25, 2754–2772 (2016).
91. Wang, J. Coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145 (2011).
92. Smouse, P. E. & Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity (Edinb). 82, 561–573 (1999).
93. Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).
94. Huck, M., Di Fiore, A. & Fernandez-Duque, E. Of apples and oranges? The evolution of ‘monogamy’ in non-human primates. Front. Ecol. Evol. 7, 472 (2020).
95. Kappeler, P. M. A framework for studying social complexity. Behav. Ecol. Sociobiol. 73, 13 (2019).
96. Hennessy, C. A., Dubach, J. & Gehrt, S. D. Long-term pair bonding and genetic evidence for monogamy among urban coyotes (Canis latrans). J. Mammal. 93, 732–742 (2012).
97. Ribble, D. O. The monogamous mating system of Peromyscus californicus as revealed by DNA fingerprinting. Behav. Ecol. Sociobiol. 29, 161–166 (1991).
98. Sommer, S. & Tichy, H. Major histocompatibility complex (MHC) class II polymorphism and paternity in the monogamous Hypogeomys antimena, the endangered, largest endemic Malagasy rodent. Mol. Ecol. 8, 1259–1272 (1999).
99. Wu, J. S., Chiang, P. J. & Lin, L. K. Monogamous system in the Taiwan vole Microtus kikuchii inferred from microsatellite DNA and home ranges. Zool. Stud. 51, 204–212 (2012).
100. Bonadonna, G. et al. Evidence of genetic monogamy in the lemur Indri (Indri indri). Am. J. Primatol. 81, e22993 (2019).
Acknowledgments
We thank Camilo Flores Amasifuén, Migdonio Huanuiri Arirama, Ney Shahuano Tello, Mathieu Maréchal, Sarah Walker, and all other field assistants without whom the field work would not have been possible. We also thank Christiane Schwarz for her excellent work in the genetics laboratory.
This work was conducted under all necessary permissions and ethical guidelines from the relevant authorities of Peru (research permit no. 249-2017-SERFOR/DGGSPFFS from the Servicio Nacional Forestal y de Fauna Silvestre of the Peruvian Ministry of Agriculture) and the German Primate Center.
The research was funded by German Primate Center, Leakey Foundation, German Research Foundation (DFG; Project nr. 407493972), International Primatological Society and Primate Action Fund.
Author contributions
S.D., C.R. and E.W.H. designed the study. S.D. collected data in the field, did laboratory work and analysed the data. The paper was written by S.D., C.R. and E.W.H.
Additional information
Data Accessibility: All data needed to evaluate the conclusions in the paper, including genotypes of all study animals, are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from S.D. (
s.dolotovskaya@gmail.com) or C.R. (
croos@dpz.eu).
Competing Interests: The authors declare no competing interests.
Ethics: This work was conducted under all necessary permits (research permit no. 249-2017-SERFOR/DGGSPFFS from the Servicio Nacional Forestal y de Fauna Silvestre of the Peruvian Ministry of Agriculture) and ethical guidelines from the relevant authorities of Peru and the German Primate Center.