Flütsch S., Wang Y., Takemiya A., Vialet-Chabrand S.R., Klejchova M., Nigro A., Hills A. & Lawson T. (2020) Guard cell starch degradation yields glucose for rapid stomatal opening in Arabidopsis. The Plant Cell 32, 2325–2344.
Fujita T., Noguchi K. & Terashima I. (2013) Apoplastic mesophyll signals induce rapid stomatal responses to CO2 inCommelina communis . New Phyto 199 , 395–406.
Gautier H., Vavasseur A., Gans P. & Lasc G. (1991) Relationship between respiration and photosynthesis in guard cell and mesophyll cell protoplasts of Commelina communis L. Plant Physiol95 , 636–641.
Goins G.D., Yorio N.C., Sanwo M.M. & Brown C.S. (1997) Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J Exp Bot 48 , 1407–1413.
Gruszecki W.L., Wardak A. & Maksymiec W. (1997) The effect of blue light of electron transport in photosystem II reconstituted in planar bilayer lipid membrane.J Photochem Photobiol 39 , 265–268.
He J., Qin L., Emma L.C., Chong E.L.C., Choong T.W. & Lee S.K. (2017) Plant growth and photosynthetic characteristics ofSembryanthemum crystallinum grown aeroponically under different blue- and red-LEDs. Front Plant Sci 8 , 361–374.
Hei S., Liu Z., Huang A. & She X. (2017) The regulator of G-protein signalling protein mediates D-glucose-induced stomatal closure via triggering hydrogen peroxide and nitric oxide production inArabidopsisFunc Plant Biol 45 , 509–518.
Hogewoning S.W., Trouwborst G., Maljaars H., Poorter H., van Leperen W. & Harbinson J. (2010) Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot 61 , 3107–3117.
Hsiao T.C. (1976) Stomatal ion transport. In Transport in Plants (eds U. Luttge & M.G. Pitman), pp 195-221. Springer, Berlin.
Humble G.D. & Raschke K. (1971) Stomatal opening quantitatively related to potassium transport evidence from electron probe analysis.Plant Physiol 48 , 447–453.
Imamura S. (1943) Untersuchungen über den Mechanismus der Turgorschwankung der Spaltoffnungs-Schliesszellen. Japanese J Bot12 , 251–346.
Inoue S.I. & Kinoshita T. (2017) Blue light regulation of stomatal opening and the plasma membrane H+-ATPase. Plant Physiol 174 , 531–538.
Kang Y., Outlaw W.H., Anderson P.C. & Fiore G.B. (2007) Guard cell apoplastic sucrose concentration – a link between leaf photosynthesis and stomatal aperture size in apoplastic phloem loader Vicia fabaL. Plant Cell Environ 30 , 551–558.
Kelly G., Moshelion M., David-Schwartz R., Halperin O., Wallach R., Attia Z., Belausov E. & Granot D. (2013) Hexokinase mediates stomatal closure. Plant J 75 , 977–988.
Kottapalli J., David-Schwartz R., Khamaisi B., Brandsma D., Lugassi N. & Egbaria A. (2018). Sucrose-induced stomatal closure is conserved across evolution. PLoS One  13 , e0205359.
Li Y., Xu S., Gao J., Pan S. & Wang G. (2016) Glucose- and mannose-induced stomatal closure is mediated by ROS production, Ca2+ and water channel in Vicia fabaPhysiol Planta 156 , 252–26112.
Lima V.F., Medeiros D.B., Dos Anjos L., Gago J., Fernie A.R. & Daloso D.M. (2018) Toward multifaceted roles of sucrose in the regulation of stomatal movement. Plant Signal Behavior 13 , e1494468.
Lugassi N., Yadav B.S., Egbaria A., Wolf D., Kelly G., Neuhaus E., Raveh E., Carmi N. & Granot D. (2019) Expression of Arabidopsis  hexokinase in tobacco guard cells increases water-use efficiency and confers tolerance to drought and salt stress.Plants8 , 613–628.
Lugassi N., Kelly G., Arad T., Farkash C., Yaniv Y., Yeselson Y., Schaffer A.A., Raveh E., Granot D. & Carmi N. (2020) Expression of hexokinase in stomata of citrus fruit reduces fruit transpiration and affects seed development. Front Plant Sci 11 , 1–10.
Lawson T., Oxborough K., Morison J.I.L. & Baker N.R. (2002) Responses of photosynthetic electron transport in stomatal guard cells and mesophyll cells in intact leaves to light, CO2 and humidity. Plant Physiol 128 , 52–62.
Lawson T., Oxborough K., Morison J.I.L. & Baker N.R. (2003) The responses of guard and mesophyll cell photosynthesis to CO2, O2, light, and water stress in a range of species are similar. J Exp Bot 54 , 1743–1752.
Lawson T., Simkin A.J., Kelly G. & Granot D. (2014) Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour.New Phyto 203 , 1064–81.
Lebaudy A., nor Ve’ry A.A. & Sentenac H. (2007) K+channel activity in plants: Genes, regulations and functions. FEBS Letters 581 , 2357–2366.
Lee J.S. & Bowling D.J.F. (1992) Effect of the mesophyll on stomatal opening in Commelina communis . J Exp Bot 43 , 951–957.
Lee J.S. & Park C.H. (2016) Morphological characteristics and conceptualization of guard cells in different plants. Korean J Environ Sci 25 , 1289–1297.
Lee J.S. (2019) The sustainable reasons of controversy over the mechanisms for the stomatal opening. J Plant Biol 62 , 254–262.
Lu P., Outlaw W.H., Smith B.G. & Freed G.A. (1997) A new mechanism for the regulation of stomatal aperture size in intact leaves: Accumulation of mesophyll-derived sucrose in the guard cell wall of Vicia faba . Plant Physiol 114 , 109–118.
Marchetti J., Bougaran G.T., Jauffrais T., Lefebvre S., Rouxel C., Jean B.S., Lukomska E., Robert R. & Cadoret J.P. (2013) Effects of blue light on the biochemical composition and photosynthetic activity ofIsochrysis sp. J App Phycol 25 , 109–119.
Matthews J.S.A., Vialet-Chabrand S. & Lawson T. (2020) Role of blue and red light in stomatal dynamic behavior. J Exp Bot 71 , 2253–2269.
McAdam S.A. & Brodribb T.J. (2012) Stomatal innovation and the rise of seed plants. Eco Letters 15 , 1–8.
Miao Y.X., Wang X.Z., Gao L.H., Chen Q.Y. & Qu M. (2016) Blue light is more essential than red light for maintaining the activities of photosystem II and I and photosynthetic electron transport capacity in cucumber leaves. J Inte Agri 15 , 87–100.
Mott K.A. (2009) Opinion: stomatal responses to light and CO2 depend on the mesophyll. Plant Cell Environ32 , 1479–1486.
Mott K.A., Sibbernsen E.D. & Shope J.C. (2008) The role of the mesophyll in stomatal responses to light and CO2.Plant Cell Environ 31 , 1299–1306.
Nelson S.D. & Mayo J.M. (1975) The occurrence of functional nonchlorophyllous guard cells in Paphiopedilum spp.Canadian J Bot 53 , 1–7.