References
Akamatsu, Y., Kume, G., Gotou, M., Kono, T., Fujii, T., Inui, R., & Kurita, Y. (2020). Using environmental DNA analyses to assess the occurrence and abundance of the endangered amphidromous fishPlecoglossus altivelis ryukyuensis . Biodiversity Data Journal, 8, e39679.
Andruszkiewicz, E. A., Koseff, J. R., Fringer, O. B., Ouellette, N. T., Lowe, A. B., Edwards, C. A., & Boehm, A. B. (2019). Modeling environmental DNA transport in the coastal ocean using Lagrangian particle tracking. Frontiers in Marine Science, 6, 477.
Andruszkiewicz, E. A., Zhang, W. G., Lavery, A. C., & Govindarajan, A. F. (2021). Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environmental DNA, 3(2), 492-514.
Baker, C. S., Steel, D., Nieukirk, S., & Klinck, H. (2018). Environmental DNA (eDNA) from the wake of the whales: droplet digital PCR for detection and species identification. Frontiers in Marine Science, 5, 133.
Baldigo, B. P., Sporn, L. A., George, S. D., & Ball, J. A. (2017). Efficacy of environmental DNA to detect and quantify brook trout populations in headwater streams of the Adirondack Mountains, New York. Transactions of the American Fisheries Society, 146(1), 99-111.
Balduzzi, S., Rücker, G., & Schwarzer, G. (2019). How to perform a meta-analysis with R: a practical tutorial. Evidence-Based Mental Health, 22(4), 153-160.
Bálint, M., Pfenninger, M., Grossart, H. P., Taberlet, P., Vellend, M., Leibold, M. A., … & Bowler, D. (2018). Environmental DNA time series in ecology. Trends in Ecology & Evolution, 33(12), 945-957.
Barnes, M. A. & Turner, C. R. (2016). The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics, 17(1), 1-17.
Boivin‐Delisle, D., Laporte, M., Burton, F., Dion, R., Normandeau, E., & Bernatchez, L. (2021). Using environmental DNA for biomonitoring of freshwater fish communities: Comparison with established gillnet surveys in a boreal hydroelectric impoundment. Environmental DNA, 3(1), 105-120.
Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2010). A basic introduction to fixed‐effect and random‐effects models for meta‐analysis. Research Synthesis Methods, 1(2), 97-111.
Bracken, F. S., Rooney, S. M., Kelly‐Quinn, M., King, J. J., & Carlsson, J. (2019). Identifying spawning sites and other critical habitat in lotic systems using eDNA “snapshots”: A case study using the sea lamprey Petromyzon marinus L . Ecology and Evolution, 9(1), 553-567.
Brys, R., Halfmaerten, D., Neyrinck, S., Mauvisseau, Q., Auwerx, J., Sweet, M., & Mergeay, J. (2021). Reliable eDNA detection and quantification of the European weather loach (Misgurnus fossilis ). Journal of Fish Biology, 98(2), 399-414.
Bylemans, J., Furlan, E. M., Gleeson, D. M., Hardy, C. M., & Duncan, R. P. (2018). Does size matter? An experimental evaluation of the relative abundance and decay rates of aquatic environmental DNA. Environmental Science & Technology, 52(11), 6408-6416.
Capo, E., Spong, G., Koizumi, S., Puts, I., Olajos, F., Königsson, H., … & Byström, P. (2021). Droplet digital PCR applied to environmental DNA, a promising method to estimate fish population abundance from humic‐rich aquatic ecosystems. Environmental DNA, 3(2), 343-352.
Carraro, L., Hartikainen, H., Jokela, J., Bertuzzo, E., & Rinaldo, A. (2018). Estimating species distribution and abundance in river networks using environmental DNA. Proceedings of the National Academy of Sciences, 115(46), 11724-11729.
Cerco, C. F., Schultz, M. T., Noel, M. R., Skahill, B., & Kim, S. C. (2018). A fate and transport model for Asian carp environmental DNA in the Chicago area waterways system. Journal of Great Lakes Research, 44(4), 813-823.
Chin, S. C., Waldman, J., Bednarski, M., Camhi, M., LaBelle, J., & Elizabeth Alter, S. (2021). Relating American Eel Abundance to Environmental DNA Concentration in the Bronx River. North American Journal of Fisheries Management, 41(4), 1141-1150.
Cornman, R. S., McKenna Jr, J. E., & Fike, J. A. (2021). Composition and distribution of fish environmental DNA in an Adirondack watershed. PeerJ, 9, e10539.
Currier, C. A., Morris, T. J., Wilson, C. C., & Freeland, J. R. (2018). Validation of environmental DNA (eDNA) as a detection tool for at‐risk freshwater pearly mussel species (Bivalvia: Unionidae). Aquatic Conservation: Marine and Freshwater Ecosystems, 28(3), 545-558.
Curtis, A. N., Tiemann, J. S., Douglass, S. A., Davis, M. A., & Larson, E. R. (2020). High stream flows dilute environmental DNA (eDNA) concentrations and reduce detectability. Diversity and Distributions. https://doi.org/10.1111/ddi.13196
Deiner, K., & Altermatt, F. (2014). Transport distance of invertebrate environmental DNA in a natural river. PLoS ONE, 9(2), e88786.
Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière‐Roussel, A., Altermatt, F., … & Bernatchez, L. (2017). Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology, 26(21), 5872-5895.
Djurhuus, A., Closek, C. J., Kelly, R. P., Pitz, K. J., Michisaki, R. P., Starks, H. A., … & Breitbart, M. (2020). Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nature Communications, 11, 254.
Doi, H., Inui, R., Akamatsu, Y., Kanno, K., Yamanaka, H., Takahara, T., & Minamoto, T. (2017). Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshwater Biology, 62(1), 30-39.
Doi, H., Uchii, K., Takahara, T., Matsuhashi, S., Yamanaka, H., & Minamoto, T. (2015). Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS ONE, 10(3), e0122763.
Dougherty, M. M., Larson, E. R., Renshaw, M. A., Gantz, C. A., Egan, S. P., Erickson, D. M., & Lodge, D. M. (2016). Environmental DNA (eDNA) detects the invasive rusty crayfish Orconectes rusticus at low abundances. Journal of Applied Ecology, 53(3), 722-732.
Dunn, N., Priestley, V., Herraiz, A., Arnold, R., & Savolainen, V. (2017). Behavior and season affect crayfish detection and density inference using environmental DNA. Ecology and Evolution, 7(19), 7777-7785.
Egger, M., & Smith, G. D. (1998). Meta-analysis bias in location and selection of studies. BMJ, 316(7124), 61-66.
Eichmiller, J. J., Miller, L. M., & Sorensen, P. W. (2016). Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish. Molecular Ecology Resources, 16(1), 56-68.
Erickson, R. A., Rees, C. B., Coulter, A. A., Merkes, C. M., McCalla, S. G., Touzinsky, K. F., … & Amberg, J. J. (2016). Detecting the movement and spawning activity of bigheaded carps with environmental DNA. Molecular Ecology Resources, 16(4), 957-965.
Evans, N. T., Olds, B. P., Renshaw, M. A., Turner, C. R., Li, Y., Jerde, C. L., … & Lodge, D. M. (2016). Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Molecular Ecology Resources, 16(1), 29-41.
Everts, T., Halfmaerten, D., Neyrinck, S., De Regge, N., Jacquemyn, H., & Brys, R. (2021). Accurate detection and quantification of seasonal abundance of American bullfrog (Lithobates catesbeianus ) using ddPCR eDNA assays. Scientific Reports, 11, 11282.
Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species detection using environmental DNA from water samples. Biology Letters, 4(4), 423-425.
Fisher, R. A. (1921). On the ’probable error’ of a coefficient of correlation deduced from a small sample. Metron, 1, 1-32.
Fremier, A. K., Strickler, K. M., Parzych, J., Powers, S., & Goldberg, C. S. (2019). Stream transport and retention of environmental DNA pulse releases in relation to hydrogeomorphic scaling factors. Environmental Science & Technology, 53(12), 6640-6649.
Fukaya, K., Murakami, H., Yoon, S., Minami, K., Osada, Y., Yamamoto, S., … & Kondoh, M. (2021). Estimating fish population abundance by integrating quantitative data on environmental DNA and hydrodynamic modelling. Molecular Ecology, 30(13), 3057-3067.
Guivas, R. A., & Brammell, B. F. (2020). Use of environmental DNA to determine Fantail Darter (Etheostoma flabellare ) density in a laboratory setting: Effects of biomass and filtration method. International Journal of Zoology, 2020, 4731686.
Haddaway, N. R., Bethel, A., Dicks, L. V., Koricheva, J., Macura, B., Petrokofsky, G., … & Stewart, G. B. (2020). Eight problems with literature reviews and how to fix them. Nature Ecology & Evolution, 4(12), 1582-1589.
Hadfield, D. J. (2010). MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package. Journal of Statistical Software, 33(2), 1-22. https://www.jstatsoft.org/v33/i02/.
Hadley, N. F. (1986). The arthropod cuticle. Scientific American, 255(1), 104-113.
Hansen, B. K., Bekkevold, D., Clausen, L. W., & Nielsen, E. E. (2018). The sceptical optimist: challenges and perspectives for the application of environmental DNA in marine fisheries. Fish and Fisheries, 19(5), 751-768.
Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557-560.
Horiuchi, T., Masuda, R., Murakami, H., Yamamoto, S., & Minamoto, T. (2019). Biomass‐dependent emission of environmental DNA in jack mackerelTrachurus japonicus juveniles. Journal of Fish Biology, 95(3), 979-981.
Itakura, H., Wakiya, R., Sakata, M. K., Hsu, H. Y., Chen, S. C., Yang, C. C., … & Minamoto, T. (2020). Estimations of riverine distribution, abundance, and biomass of Anguillid Eels in Japan and Taiwan using environmental DNA analysis. Zoological Studies, 59, e17.
Itakura, H., Wakiya, R., Yamamoto, S., Kaifu, K., Sato, T., & Minamoto, T. (2019). Environmental DNA analysis reveals the spatial distribution, abundance, and biomass of Japanese eels at the river‐basin scale. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(3), 361-373.
Iwai, N., Yasumiba, K., & Takahara, T. (2019). Efficacy of environmental DNA to detect and quantify stream tadpoles ofOdorrana splendida . Royal Society Open Science, 6(1), 181798.
Jane, S. F., Wilcox, T. M., McKelvey, K. S., Young, M. K., Schwartz, M. K., Lowe, W. H., … & Whiteley, A. R. (2015). Distance, flow and PCR inhibition: e DNA dynamics in two headwater streams. Molecular Ecology Resources, 15(1), 216-227.
Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2019b). Particle size distribution of environmental DNA from the nuclei of marine fish. Environmental Science & Technology, 53(16), 9947-9956.
Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2020b). Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass. Environmental DNA, 2(2), 140-151.
Jo, T., & Minamoto, T. (2021). Complex interactions between environmental DNA (eDNA) state and water chemistries on eDNA persistence suggested by meta‐analyses. Molecular Ecology Resources, 21(5), 1490-1503.
Jo, T., Murakami, H., Masuda, R., & Minamoto, T. (2020a). Selective collection of long fragments of environmental DNA using larger pore size filter. Science of the Total Environment, 735, 139462.
Jo, T., Murakami, H., Masuda, R., Sakata, M. K., Yamamoto, S., & Minamoto, T. (2017). Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA. Molecular Ecology Resources, 17(6), e25-e33.
Jo, T., Murakami, H., Yamamoto, S., Masuda, R., & Minamoto, T. (2019a). Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Ecology and Evolution, 9(3), 1135-1146.
Jo, T., Takao, K., Minamoto, T. (2021). Linking the state of environmental DNA to its application for biomonitoring and stock assessment: targeting mitochondrial/nuclear genes, and different DNA fragment lengths and particle sizes. Environmental DNA, in press. https://doi.org/10.1002/edn3.253
Johnsen, S. I., Strand, D. A., Rusch, J. C., & Vrålstad, T. (2020). Environmental DNA (eDNA) monitoring of noble crayfish Astacus astacus in lentic environments offers reliable presence-absence surveillance–but fails to predict population density. Frontiers in Environmental Science, 8, 612253.
Kakuda, A., Doi, H., Souma, R., Nagano, M., Minamoto, T., & Katano, I. (2019). Environmental DNA detection and quantification of invasive red-eared sliders, Trachemy scripta elegans , in ponds and the influence of water quality. PeerJ, 7, e8155.
Kamoroff, C., & Goldberg, C. S. (2018). Environmental DNA quantification in a spatial and temporal context: a case study examining the removal of brook trout from a high alpine basin. Limnology, 19(3), 335-342.
Klobucar, S. L., Rodgers, T. W., & Budy, P. (2017). At the forefront: evidence of the applicability of using environmental DNA to quantify the abundance of fish populations in natural lentic waters with additional sampling considerations. Canadian Journal of Fisheries and Aquatic Sciences, 74(12), 2030-2034.
Klymus, K. E., Richter, C. A., Chapman, D. C., & Paukert, C. (2015). Quantification of eDNA shedding rates from invasive bighead carpHypophthalmichthys nobilis and silver carpHypophthalmichthys molitrix . Biological Conservation, 183, 77-84.
Kumar, G., Eble, J. E., & Gaither, M. R. (2020). A practical guide to sample preservation and pre‐PCR processing of aquatic environmental DNA. Molecular Ecology Resources, 20(1), 29-39.
Lacoursière‐Roussel, A., Rosabal, M., & Bernatchez, L. (2016a). Estimating fish abundance and biomass from eDNA concentrations: variability among capture methods and environmental conditions. Molecular Ecology Resources, 16(6), 1401-1414.
Lacoursière‐Roussel, A., Côté, G., Leclerc, V., & Bernatchez, L. (2016b). Quantifying relative fish abundance with eDNA: a promising tool for fisheries management. Journal of Applied Ecology, 53(4), 1148-1157.
Larson, E. R., Renshaw, M. A., Gantz, C. A., Umek, J., Chandra, S., Lodge, D. M., & Egan, S. P. (2017). Environmental DNA (eDNA) detects the invasive crayfishes Orconectes rusticus andPacifastacus leniusculus in large lakes of North America. Hydrobiologia, 800(1), 173-185.
Li, W., Hou, X., Xu, C., Qin, M., Wang, S., Wei, L., … & Li, Y. (2021). Validating eDNA measurements of the richness and abundance of anurans at a large scale. Journal of Animal Ecology, 90(6), 1466-1479.
Ma, H., Stewart, K., Lougheed, S., Zheng, J., Wang, Y., & Zhao, J. (2016). Characterization, optimization, and validation of environmental DNA (eDNA) markers to detect an endangered aquatic mammal. Conservation Genetics Resources, 8(4), 561-568.
Mächler, E., Deiner, K., Spahn, F., & Altermatt, F. (2016). Fishing in the water: effect of sampled water volume on environmental DNA-based detection of macroinvertebrates. Environmental Science & Technology, 50(1), 305-312.
Maruyama, A., Sugatani, K., Watanabe, K., Yamanaka, H., & Imamura, A. (2018). Environmental DNA analysis as a non‐invasive quantitative tool for reproductive migration of a threatened endemic fish in rivers. Ecology and Evolution, 8(23), 11964-11974.
Mauvisseau, Q., Parrondo, M., Fernández, M. P., García, L., Martínez, J. L., García-Vázquez, E., & Borrell, Y. J. (2017). On the way for detecting and quantifying elusive species in the sea: The Octopusvulgaris case study. Fisheries research, 191, 41-48.
Merkes, C. M., McCalla, S. G., Jensen, N. R., Gaikowski, M. P., & Amberg, J. J. (2014). Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data. PLoS ONE, 9(11), e113346.
Minamoto, T., Uchii, K., Takahara, T., Kitayoshi, T., Tsuji, S., Yamanaka, H., & Doi, H. (2017). Nuclear internal transcribed spacer‐1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio . Molecular Ecology Resources, 17(2), 324-333.
Minegishi, Y., Wong, M. K. S., Kanbe, T., Araki, H., Kashiwabara, T., Ijichi, M., … & Hyodo, S. (2019). Spatiotemporal distribution of juvenile chum salmon in Otsuchi Bay, Iwate, Japan, inferred from environmental DNA. PLoS ONE, 14(9), e0222052.
Mizumoto, H., Urabe, H., Kanbe, T., Fukushima, M., & Araki, H. (2018). Establishing an environmental DNA method to detect and estimate the biomass of Sakhalin taimen, a critically endangered Asian salmonid. Limnology, 19(2), 219-227.
Nevers, M. B., Byappanahalli, M. N., Morris, C. C., Shively, D., Przybyla-Kelly, K., Spoljaric, A. M., … & Roseman, E. F. (2018). Environmental DNA (eDNA): A tool for quantifying the abundant but elusive round goby (Neogobius melanostomus ). PLoS ONE, 13(1), e0191720.
Nichols, P. K., & Marko, P. B. (2019). Rapid assessment of coral cover from environmental DNA in Hawai’i. Environmental DNA, 1(1), 40-53.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., … & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 372, n71.
Pawlowski, J., Apothéloz‐Perret‐Gentil, L., & Altermatt, F. (2020). Environmental DNA: What’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Molecular Ecology, 29(22), 4258-4264.
Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2013). Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Canadian Journal of Fisheries and Aquatic Sciences, 70(8), 1123-1130.
Ponce, J. J., Arismendi, I., & Thomas, A. (2021). Using in-situ environmental DNA sampling to detect the invasive New Zealand Mud Snail (Potamopyrgus antipodarum ) in freshwaters. PeerJ, 9, e11835.
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Rodriguez-Ezpeleta, N., Morissette, O., Bean, C., Manu, S., Banerjee, P., Lacoursiere-Roussel, A., … & Deiner, K. (in press). Trade-offs between reducing complex terminology and producing accurate interpretations from environmental DNA: Comment on “Environmental DNA: What’s behind the term?” by Pawlowski et al., (2020). Molecular Ecology. DOI: 10.1111/mec.15942
Ruppert, K. M., Kline, R. J., & Rahman, M. S. (2019). Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Global Ecology and Conservation, 17, e00547.
Salter, I., Joensen, M., Kristiansen, R., Steingrund, P., & Vestergaard, P. (2019). Environmental DNA concentrations are correlated with regional biomass of Atlantic cod in oceanic waters. Communications Biology, 2, 461.
Sassoubre, L. M., Yamahara, K. M., Gardner, L. D., Block, B. A., & Boehm, A. B. (2016). Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environmental Science & Technology, 50(19), 10456-10464.
Schmelzle, M. C., & Kinziger, A. P. (2016). Using occupancy modelling to compare environmental DNA to traditional field methods for regional‐scale monitoring of an endangered aquatic species. Molecular Ecology Resources, 16(4), 895-908.
Sepulveda, A. J., Al-Chokhachy, R., Laramie, M. B., Crapster, K., Knotek, L., Miller, B., … & Pilliod, D. S. (2021). It’s complicated… environmental DNA as a predictor of trout and char abundance in streams. Canadian Journal of Fisheries and Aquatic Sciences, 78(4), 422-432.
Shinzato, C., Zayasu, Y., Kanda, M., Kawamitsu, M., Satoh, N., Yamashita, H., & Suzuki, G. (2018). Using seawater to document coral-zoothanthella diversity: a new approach to coral reef monitoring using environmental DNA. Frontiers in Marine Science, 5, 28.
Shogren, A. J., Tank, J. L., Egan, S. P., August, O., Rosi, E. J., Hanrahan, B. R., … & Bolster, D. (2018). Water flow and biofilm cover influence environmental DNA detection in recirculating streams. Environmental Science & Technology, 52(15), 8530-8537.
Shu, L., Ludwig, A., & Peng, Z. (2021). Environmental DNA metabarcoding primers for freshwater fish detection and quantification: In silico and in tanks. Ecology and Evolution, 11(12), 8281-8294.
Spear, M. J., Embke, H. S., Krysan, P. J., & Vander Zanden, M. J. (2021). Application of eDNA as a tool for assessing fish population abundance. Environmental DNA, 3(1), 83-91.
Stewart, K. A. (2019). Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. Biodiversity and Conservation, 28(5), 983-1001.
Stoeckle, M. Y., Adolf, J., Charlop-Powers, Z., Dunton, K. J., Hinks, G., & VanMorter, S. M. (2020). Trawl and eDNA assessment of marine fish diversity, seasonality, and relative abundance in coastal New Jersey, USA. ICES Journal of Marine Science, 78(1), 293-304.
Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation, 183, 85-92.
Takahara, T., Minamoto, T., & Doi, H. (2013). Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS ONE, 8(2), e56584.
Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., & Kawabata, Z. (2012). Estimation of fish biomass using environmental DNA. PLoS ONE, 7(4), e35868.
Takeuchi, A., Iijima, T., Kakuzen, W., Watanabe, S., Yamada, Y., Okamura, A., … & Tsukamoto, K. (2019). Release of eDNA by different life history stages and during spawning activities of laboratory-reared Japanese eels for interpretation of oceanic survey data. Scientific Reports, 9, 6074.
Thomsen, P. F., Kielgast, J. O. S., Iversen, L. L., Wiuf, C., Rasmussen, M., Gilbert, M. T. P., … & Willerslev, E. (2012). Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology, 21(11), 2565-2573.
Thomsen, P. F., Møller, P. R., Sigsgaard, E. E., Knudsen, S. W., Jørgensen, O. A., & Willerslev, E. (2016). Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes. PLoS ONE, 11(11), e0165252.
Turner, C. R., Barnes, M. A., Xu, C. C., Jones, S. E., Jerde, C. L., & Lodge, D. M. (2014). Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods in Ecology and Evolution, 5(7), 676-684.
Ushio, M., Murakami, H., Masuda, R., Sado, T., Miya, M., Sakurai, S., … & Kondoh, M. (2018). Quantitative monitoring of multispecies fish environmental DNA using high-throughput sequencing. Metabarcoding and Metagenomics, 2, e23297.
Uthicke, S., Lamare, M., & Doyle, J. R. (2018). eDNA detection of corallivorous seastar (Acanthaster cf. solaris ) outbreaks on the Great Barrier Reef using digital droplet PCR. Coral Reefs, 37(4), 1229-1239.
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1-48.
Weldon, L., O’Leary, C., Steer, M., Newton, L., Macdonald, H., & Sargeant, S. L. (2020). A comparison of European eel Anguilla anguilla eDNA concentrations to fyke net catches in five Irish lakes. Environmental DNA, 2(4), 587-600.
Wilcox, T. M., McKelvey, K. S., Young, M. K., Sepulveda, A. J., Shepard, B. B., Jane, S. F., … & Schwartz, M. K. (2016). Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis . Biological Conservation, 194, 209-216.
Wu, Q., Kawano, K., Uehara, Y., Okuda, N., Hongo, M., Tsuji, S., … & Minamoto, T. (2018). Environmental DNA reveals nonmigratory individuals of Palaemon paucidens overwintering in Lake Biwa shallow waters. Freshwater Science, 37(2), 307-314.
Yamamoto, S., Minami, K., Fukaya, K., Takahashi, K., Sawada, H., Murakami, H., … & Kondoh, M. (2016). Environmental DNA as a ‘snapshot’ of fish distribution: A case study of Japanese jack mackerel in Maizuru Bay, Sea of Japan. PLoS ONE, 11(3), e0149786.
Yamanaka, H., & Minamoto, T. (2016). The use of environmental DNA of fishes as an efficient method of determining habitat connectivity. Ecological Indicators, 62, 147-153.
Yates, M. C., Fraser, D. J., & Derry, A. M. (2019). Meta‐analysis supports further refinement of eDNA for monitoring aquatic species‐specific abundance in nature. Environmental DNA, 1(1), 5-13.
Yates, M. C., Wilcox, T. M., McKelvey, K. S., Young, M. K., Schwartz, M. K., & Derry, A. M. (2021a). Allometric scaling of eDNA production in stream‐dwelling brook trout (Salvelinus fontinalis ) inferred from population size structure. Environmental DNA, 3(3), 553-560.
Yates, M. C., Glaser, D. M., Post, J. R., Cristescu, M. E., Fraser, D. J., & Derry, A. M. (2021b). The relationship between eDNA particle concentration and organism abundance in nature is strengthened by allometric scaling. Molecular Ecology, 30(13), 3068-3082.