References
Akamatsu, Y., Kume, G., Gotou, M., Kono, T., Fujii, T., Inui, R., &
Kurita, Y. (2020). Using environmental DNA analyses to assess the
occurrence and abundance of the endangered amphidromous fishPlecoglossus altivelis ryukyuensis . Biodiversity Data Journal, 8,
e39679.
Andruszkiewicz, E. A., Koseff, J. R., Fringer, O. B., Ouellette, N. T.,
Lowe, A. B., Edwards, C. A., & Boehm, A. B. (2019). Modeling
environmental DNA transport in the coastal ocean using Lagrangian
particle tracking. Frontiers in Marine Science, 6, 477.
Andruszkiewicz, E. A., Zhang, W. G., Lavery, A. C., & Govindarajan, A.
F. (2021). Environmental DNA shedding and decay rates from diverse
animal forms and thermal regimes. Environmental DNA, 3(2), 492-514.
Baker, C. S., Steel, D., Nieukirk, S., & Klinck, H. (2018).
Environmental DNA (eDNA) from the wake of the whales: droplet digital
PCR for detection and species identification. Frontiers in Marine
Science, 5, 133.
Baldigo, B. P., Sporn, L. A., George, S. D., & Ball, J. A. (2017).
Efficacy of environmental DNA to detect and quantify brook trout
populations in headwater streams of the Adirondack Mountains, New York.
Transactions of the American Fisheries Society, 146(1), 99-111.
Balduzzi, S., Rücker, G., & Schwarzer, G. (2019). How to perform a
meta-analysis with R: a practical tutorial. Evidence-Based Mental
Health, 22(4), 153-160.
Bálint, M., Pfenninger, M., Grossart, H. P., Taberlet, P., Vellend, M.,
Leibold, M. A., … & Bowler, D. (2018). Environmental DNA time series
in ecology. Trends in Ecology & Evolution, 33(12), 945-957.
Barnes, M. A. & Turner, C. R. (2016). The ecology of environmental DNA
and implications for conservation genetics. Conservation Genetics,
17(1), 1-17.
Boivin‐Delisle, D., Laporte, M., Burton, F., Dion, R., Normandeau, E.,
& Bernatchez, L. (2021). Using environmental DNA for biomonitoring of
freshwater fish communities: Comparison with established gillnet surveys
in a boreal hydroelectric impoundment. Environmental DNA, 3(1), 105-120.
Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R.
(2010). A basic introduction to fixed‐effect and random‐effects models
for meta‐analysis. Research Synthesis Methods, 1(2), 97-111.
Bracken, F. S., Rooney, S. M., Kelly‐Quinn, M., King, J. J., &
Carlsson, J. (2019). Identifying spawning sites and other critical
habitat in lotic systems using eDNA “snapshots”: A case study using
the sea lamprey Petromyzon marinus L . Ecology and Evolution,
9(1), 553-567.
Brys, R., Halfmaerten, D., Neyrinck, S., Mauvisseau, Q., Auwerx, J.,
Sweet, M., & Mergeay, J. (2021). Reliable eDNA detection and
quantification of the European weather loach (Misgurnus
fossilis ). Journal of Fish Biology, 98(2), 399-414.
Bylemans, J., Furlan, E. M., Gleeson, D. M., Hardy, C. M., & Duncan, R.
P. (2018). Does size matter? An experimental evaluation of the relative
abundance and decay rates of aquatic environmental DNA. Environmental
Science & Technology, 52(11), 6408-6416.
Capo, E., Spong, G., Koizumi, S., Puts, I., Olajos, F., Königsson, H.,
… & Byström, P. (2021). Droplet digital PCR applied to environmental
DNA, a promising method to estimate fish population abundance from
humic‐rich aquatic ecosystems. Environmental DNA, 3(2), 343-352.
Carraro, L., Hartikainen, H., Jokela, J., Bertuzzo, E., & Rinaldo, A.
(2018). Estimating species distribution and abundance in river networks
using environmental DNA. Proceedings of the National Academy of
Sciences, 115(46), 11724-11729.
Cerco, C. F., Schultz, M. T., Noel, M. R., Skahill, B., & Kim, S. C.
(2018). A fate and transport model for Asian carp environmental DNA in
the Chicago area waterways system. Journal of Great Lakes Research,
44(4), 813-823.
Chin, S. C., Waldman, J., Bednarski, M., Camhi, M., LaBelle, J., &
Elizabeth Alter, S. (2021). Relating American Eel Abundance to
Environmental DNA Concentration in the Bronx River. North American
Journal of Fisheries Management, 41(4), 1141-1150.
Cornman, R. S., McKenna Jr, J. E., & Fike, J. A. (2021). Composition
and distribution of fish environmental DNA in an Adirondack watershed.
PeerJ, 9, e10539.
Currier, C. A., Morris, T. J., Wilson, C. C., & Freeland, J. R. (2018).
Validation of environmental DNA (eDNA) as a detection tool for at‐risk
freshwater pearly mussel species (Bivalvia: Unionidae). Aquatic
Conservation: Marine and Freshwater Ecosystems, 28(3), 545-558.
Curtis, A. N., Tiemann, J. S., Douglass, S. A., Davis, M. A., & Larson,
E. R. (2020). High stream flows dilute environmental DNA (eDNA)
concentrations and reduce detectability. Diversity and Distributions.
https://doi.org/10.1111/ddi.13196
Deiner, K., & Altermatt, F. (2014). Transport distance of invertebrate
environmental DNA in a natural river. PLoS ONE, 9(2), e88786.
Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière‐Roussel,
A., Altermatt, F., … & Bernatchez, L. (2017). Environmental DNA
metabarcoding: Transforming how we survey animal and plant communities.
Molecular Ecology, 26(21), 5872-5895.
Djurhuus, A., Closek, C. J., Kelly, R. P., Pitz, K. J., Michisaki, R.
P., Starks, H. A., … & Breitbart, M. (2020). Environmental DNA
reveals seasonal shifts and potential interactions in a marine
community. Nature Communications, 11, 254.
Doi, H., Inui, R., Akamatsu, Y., Kanno, K., Yamanaka, H., Takahara, T.,
& Minamoto, T. (2017). Environmental DNA analysis for estimating the
abundance and biomass of stream fish. Freshwater Biology, 62(1), 30-39.
Doi, H., Uchii, K., Takahara, T., Matsuhashi, S., Yamanaka, H., &
Minamoto, T. (2015). Use of droplet digital PCR for estimation of fish
abundance and biomass in environmental DNA surveys. PLoS ONE, 10(3),
e0122763.
Dougherty, M. M., Larson, E. R., Renshaw, M. A., Gantz, C. A., Egan, S.
P., Erickson, D. M., & Lodge, D. M. (2016). Environmental DNA (eDNA)
detects the invasive rusty crayfish Orconectes rusticus at low
abundances. Journal of Applied Ecology, 53(3), 722-732.
Dunn, N., Priestley, V., Herraiz, A., Arnold, R., & Savolainen, V.
(2017). Behavior and season affect crayfish detection and density
inference using environmental DNA. Ecology and Evolution, 7(19),
7777-7785.
Egger, M., & Smith, G. D. (1998). Meta-analysis bias in location and
selection of studies. BMJ, 316(7124), 61-66.
Eichmiller, J. J., Miller, L. M., & Sorensen, P. W. (2016). Optimizing
techniques to capture and extract environmental DNA for detection and
quantification of fish. Molecular Ecology Resources, 16(1), 56-68.
Erickson, R. A., Rees, C. B., Coulter, A. A., Merkes, C. M., McCalla, S.
G., Touzinsky, K. F., … & Amberg, J. J. (2016). Detecting the
movement and spawning activity of bigheaded carps with environmental
DNA. Molecular Ecology Resources, 16(4), 957-965.
Evans, N. T., Olds, B. P., Renshaw, M. A., Turner, C. R., Li, Y., Jerde,
C. L., … & Lodge, D. M. (2016). Quantification of mesocosm fish and
amphibian species diversity via environmental DNA metabarcoding.
Molecular Ecology Resources, 16(1), 29-41.
Everts, T., Halfmaerten, D., Neyrinck, S., De Regge, N., Jacquemyn, H.,
& Brys, R. (2021). Accurate detection and quantification of seasonal
abundance of American bullfrog (Lithobates catesbeianus ) using
ddPCR eDNA assays. Scientific Reports, 11, 11282.
Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008).
Species detection using environmental DNA from water samples. Biology
Letters, 4(4), 423-425.
Fisher, R. A. (1921). On the ’probable error’ of a coefficient of
correlation deduced from a small sample. Metron, 1, 1-32.
Fremier, A. K., Strickler, K. M., Parzych, J., Powers, S., & Goldberg,
C. S. (2019). Stream transport and retention of environmental DNA pulse
releases in relation to hydrogeomorphic scaling factors. Environmental
Science & Technology, 53(12), 6640-6649.
Fukaya, K., Murakami, H., Yoon, S., Minami, K., Osada, Y., Yamamoto, S.,
… & Kondoh, M. (2021). Estimating fish population abundance by
integrating quantitative data on environmental DNA and hydrodynamic
modelling. Molecular Ecology, 30(13), 3057-3067.
Guivas, R. A., & Brammell, B. F. (2020). Use of environmental DNA to
determine Fantail Darter (Etheostoma flabellare ) density in a
laboratory setting: Effects of biomass and filtration method.
International Journal of Zoology, 2020, 4731686.
Haddaway, N. R., Bethel, A., Dicks, L. V., Koricheva, J., Macura, B.,
Petrokofsky, G., … & Stewart, G. B. (2020). Eight problems with
literature reviews and how to fix them. Nature Ecology & Evolution,
4(12), 1582-1589.
Hadfield, D. J. (2010). MCMC Methods for Multi-Response Generalized
Linear Mixed Models: The MCMCglmm R Package. Journal of Statistical
Software, 33(2), 1-22. https://www.jstatsoft.org/v33/i02/.
Hadley, N. F. (1986). The arthropod cuticle. Scientific American,
255(1), 104-113.
Hansen, B. K., Bekkevold, D., Clausen, L. W., & Nielsen, E. E. (2018).
The sceptical optimist: challenges and perspectives for the application
of environmental DNA in marine fisheries. Fish and Fisheries, 19(5),
751-768.
Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003).
Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557-560.
Horiuchi, T., Masuda, R., Murakami, H., Yamamoto, S., & Minamoto, T.
(2019). Biomass‐dependent emission of environmental DNA in jack mackerelTrachurus japonicus juveniles. Journal of Fish Biology, 95(3),
979-981.
Itakura, H., Wakiya, R., Sakata, M. K., Hsu, H. Y., Chen, S. C., Yang,
C. C., … & Minamoto, T. (2020). Estimations of riverine distribution,
abundance, and biomass of Anguillid Eels in Japan and Taiwan using
environmental DNA analysis. Zoological Studies, 59, e17.
Itakura, H., Wakiya, R., Yamamoto, S., Kaifu, K., Sato, T., & Minamoto,
T. (2019). Environmental DNA analysis reveals the spatial distribution,
abundance, and biomass of Japanese eels at the river‐basin scale.
Aquatic Conservation: Marine and Freshwater Ecosystems, 29(3), 361-373.
Iwai, N., Yasumiba, K., & Takahara, T. (2019). Efficacy of
environmental DNA to detect and quantify stream tadpoles ofOdorrana splendida . Royal Society Open Science, 6(1), 181798.
Jane, S. F., Wilcox, T. M., McKelvey, K. S., Young, M. K., Schwartz, M.
K., Lowe, W. H., … & Whiteley, A. R. (2015). Distance, flow and PCR
inhibition: e DNA dynamics in two headwater streams. Molecular Ecology
Resources, 15(1), 216-227.
Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2019b).
Particle size distribution of environmental DNA from the nuclei of
marine fish. Environmental Science & Technology, 53(16), 9947-9956.
Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2020b).
Estimating shedding and decay rates of environmental nuclear DNA with
relation to water temperature and biomass. Environmental DNA, 2(2),
140-151.
Jo, T., & Minamoto, T. (2021). Complex interactions between
environmental DNA (eDNA) state and water chemistries on eDNA persistence
suggested by meta‐analyses. Molecular Ecology Resources, 21(5),
1490-1503.
Jo, T., Murakami, H., Masuda, R., & Minamoto, T. (2020a). Selective
collection of long fragments of environmental DNA using larger pore size
filter. Science of the Total Environment, 735, 139462.
Jo, T., Murakami, H., Masuda, R., Sakata, M. K., Yamamoto, S., &
Minamoto, T. (2017). Rapid degradation of longer DNA fragments enables
the improved estimation of distribution and biomass using environmental
DNA. Molecular Ecology Resources, 17(6), e25-e33.
Jo, T., Murakami, H., Yamamoto, S., Masuda, R., & Minamoto, T. (2019a).
Effect of water temperature and fish biomass on environmental DNA
shedding, degradation, and size distribution. Ecology and Evolution,
9(3), 1135-1146.
Jo, T., Takao, K., Minamoto, T. (2021). Linking the state of
environmental DNA to its application for biomonitoring and stock
assessment: targeting mitochondrial/nuclear genes, and different DNA
fragment lengths and particle sizes. Environmental DNA, in press.
https://doi.org/10.1002/edn3.253
Johnsen, S. I., Strand, D. A., Rusch, J. C., & Vrålstad, T. (2020).
Environmental DNA (eDNA) monitoring of noble crayfish Astacus
astacus in lentic environments offers reliable presence-absence
surveillance–but fails to predict population density. Frontiers in
Environmental Science, 8, 612253.
Kakuda, A., Doi, H., Souma, R., Nagano, M., Minamoto, T., & Katano, I.
(2019). Environmental DNA detection and quantification of invasive
red-eared sliders, Trachemy scripta elegans , in ponds and the
influence of water quality. PeerJ, 7, e8155.
Kamoroff, C., & Goldberg, C. S. (2018). Environmental DNA
quantification in a spatial and temporal context: a case study examining
the removal of brook trout from a high alpine basin. Limnology, 19(3),
335-342.
Klobucar, S. L., Rodgers, T. W., & Budy, P. (2017). At the forefront:
evidence of the applicability of using environmental DNA to quantify the
abundance of fish populations in natural lentic waters with additional
sampling considerations. Canadian Journal of Fisheries and Aquatic
Sciences, 74(12), 2030-2034.
Klymus, K. E., Richter, C. A., Chapman, D. C., & Paukert, C. (2015).
Quantification of eDNA shedding rates from invasive bighead carpHypophthalmichthys nobilis and silver carpHypophthalmichthys molitrix . Biological Conservation, 183, 77-84.
Kumar, G., Eble, J. E., & Gaither, M. R. (2020). A practical guide to
sample preservation and pre‐PCR processing of aquatic environmental DNA.
Molecular Ecology Resources, 20(1), 29-39.
Lacoursière‐Roussel, A., Rosabal, M., & Bernatchez, L. (2016a).
Estimating fish abundance and biomass from eDNA concentrations:
variability among capture methods and environmental conditions.
Molecular Ecology Resources, 16(6), 1401-1414.
Lacoursière‐Roussel, A., Côté, G., Leclerc, V., & Bernatchez, L.
(2016b). Quantifying relative fish abundance with eDNA: a promising tool
for fisheries management. Journal of Applied Ecology, 53(4), 1148-1157.
Larson, E. R., Renshaw, M. A., Gantz, C. A., Umek, J., Chandra, S.,
Lodge, D. M., & Egan, S. P. (2017). Environmental DNA (eDNA) detects
the invasive crayfishes Orconectes rusticus andPacifastacus leniusculus in large lakes of North America.
Hydrobiologia, 800(1), 173-185.
Li, W., Hou, X., Xu, C., Qin, M., Wang, S., Wei, L., … & Li, Y.
(2021). Validating eDNA measurements of the richness and abundance of
anurans at a large scale. Journal of Animal Ecology, 90(6), 1466-1479.
Ma, H., Stewart, K., Lougheed, S., Zheng, J., Wang, Y., & Zhao, J.
(2016). Characterization, optimization, and validation of environmental
DNA (eDNA) markers to detect an endangered aquatic mammal. Conservation
Genetics Resources, 8(4), 561-568.
Mächler, E., Deiner, K., Spahn, F., & Altermatt, F. (2016). Fishing in
the water: effect of sampled water volume on environmental DNA-based
detection of macroinvertebrates. Environmental Science & Technology,
50(1), 305-312.
Maruyama, A., Sugatani, K., Watanabe, K., Yamanaka, H., & Imamura, A.
(2018). Environmental DNA analysis as a non‐invasive quantitative tool
for reproductive migration of a threatened endemic fish in rivers.
Ecology and Evolution, 8(23), 11964-11974.
Mauvisseau, Q., Parrondo, M., Fernández, M. P., García, L., Martínez, J.
L., García-Vázquez, E., & Borrell, Y. J. (2017). On the way for
detecting and quantifying elusive species in the sea: The Octopusvulgaris case study. Fisheries research, 191, 41-48.
Merkes, C. M., McCalla, S. G., Jensen, N. R., Gaikowski, M. P., &
Amberg, J. J. (2014). Persistence of DNA in carcasses, slime and avian
feces may affect interpretation of environmental DNA data. PLoS ONE,
9(11), e113346.
Minamoto, T., Uchii, K., Takahara, T., Kitayoshi, T., Tsuji, S.,
Yamanaka, H., & Doi, H. (2017). Nuclear internal transcribed spacer‐1
as a sensitive genetic marker for environmental DNA studies in common
carp Cyprinus carpio . Molecular Ecology Resources, 17(2),
324-333.
Minegishi, Y., Wong, M. K. S., Kanbe, T., Araki, H., Kashiwabara, T.,
Ijichi, M., … & Hyodo, S. (2019). Spatiotemporal distribution of
juvenile chum salmon in Otsuchi Bay, Iwate, Japan, inferred from
environmental DNA. PLoS ONE, 14(9), e0222052.
Mizumoto, H., Urabe, H., Kanbe, T., Fukushima, M., & Araki, H. (2018).
Establishing an environmental DNA method to detect and estimate the
biomass of Sakhalin taimen, a critically endangered Asian salmonid.
Limnology, 19(2), 219-227.
Nevers, M. B., Byappanahalli, M. N., Morris, C. C., Shively, D.,
Przybyla-Kelly, K., Spoljaric, A. M., … & Roseman, E. F. (2018).
Environmental DNA (eDNA): A tool for quantifying the abundant but
elusive round goby (Neogobius melanostomus ). PLoS ONE, 13(1),
e0191720.
Nichols, P. K., & Marko, P. B. (2019). Rapid assessment of coral cover
from environmental DNA in Hawai’i. Environmental DNA, 1(1), 40-53.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T.
C., Mulrow, C. D., … & Moher, D. (2021). The PRISMA 2020 statement:
an updated guideline for reporting systematic reviews. BMJ, 372, n71.
Pawlowski, J., Apothéloz‐Perret‐Gentil, L., & Altermatt, F. (2020).
Environmental DNA: What’s behind the term? Clarifying the terminology
and recommendations for its future use in biomonitoring. Molecular
Ecology, 29(22), 4258-4264.
Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2013).
Estimating occupancy and abundance of stream amphibians using
environmental DNA from filtered water samples. Canadian Journal of
Fisheries and Aquatic Sciences, 70(8), 1123-1130.
Ponce, J. J., Arismendi, I., & Thomas, A. (2021). Using in-situ
environmental DNA sampling to detect the invasive New Zealand Mud Snail
(Potamopyrgus antipodarum ) in freshwaters. PeerJ, 9, e11835.
R Core Team. (2021). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/.
Rodriguez-Ezpeleta, N., Morissette, O., Bean, C., Manu, S., Banerjee,
P., Lacoursiere-Roussel, A., … & Deiner, K. (in press). Trade-offs
between reducing complex terminology and producing accurate
interpretations from environmental DNA: Comment on “Environmental DNA:
What’s behind the term?” by Pawlowski et al., (2020). Molecular
Ecology. DOI: 10.1111/mec.15942
Ruppert, K. M., Kline, R. J., & Rahman, M. S. (2019). Past, present,
and future perspectives of environmental DNA (eDNA) metabarcoding: A
systematic review in methods, monitoring, and applications of global
eDNA. Global Ecology and Conservation, 17, e00547.
Salter, I., Joensen, M., Kristiansen, R., Steingrund, P., &
Vestergaard, P. (2019). Environmental DNA concentrations are correlated
with regional biomass of Atlantic cod in oceanic waters. Communications
Biology, 2, 461.
Sassoubre, L. M., Yamahara, K. M., Gardner, L. D., Block, B. A., &
Boehm, A. B. (2016). Quantification of environmental DNA (eDNA) shedding
and decay rates for three marine fish. Environmental Science &
Technology, 50(19), 10456-10464.
Schmelzle, M. C., & Kinziger, A. P. (2016). Using occupancy modelling
to compare environmental DNA to traditional field methods for
regional‐scale monitoring of an endangered aquatic species. Molecular
Ecology Resources, 16(4), 895-908.
Sepulveda, A. J., Al-Chokhachy, R., Laramie, M. B., Crapster, K.,
Knotek, L., Miller, B., … & Pilliod, D. S. (2021). It’s
complicated… environmental DNA as a predictor of trout and char
abundance in streams. Canadian Journal of Fisheries and Aquatic
Sciences, 78(4), 422-432.
Shinzato, C., Zayasu, Y., Kanda, M., Kawamitsu, M., Satoh, N.,
Yamashita, H., & Suzuki, G. (2018). Using seawater to document
coral-zoothanthella diversity: a new approach to coral reef monitoring
using environmental DNA. Frontiers in Marine Science, 5, 28.
Shogren, A. J., Tank, J. L., Egan, S. P., August, O., Rosi, E. J.,
Hanrahan, B. R., … & Bolster, D. (2018). Water flow and biofilm cover
influence environmental DNA detection in recirculating streams.
Environmental Science & Technology, 52(15), 8530-8537.
Shu, L., Ludwig, A., & Peng, Z. (2021). Environmental DNA metabarcoding
primers for freshwater fish detection and quantification: In silico and
in tanks. Ecology and Evolution, 11(12), 8281-8294.
Spear, M. J., Embke, H. S., Krysan, P. J., & Vander Zanden, M. J.
(2021). Application of eDNA as a tool for assessing fish population
abundance. Environmental DNA, 3(1), 83-91.
Stewart, K. A. (2019). Understanding the effects of biotic and abiotic
factors on sources of aquatic environmental DNA. Biodiversity and
Conservation, 28(5), 983-1001.
Stoeckle, M. Y., Adolf, J., Charlop-Powers, Z., Dunton, K. J., Hinks,
G., & VanMorter, S. M. (2020). Trawl and eDNA assessment of marine fish
diversity, seasonality, and relative abundance in coastal New Jersey,
USA. ICES Journal of Marine Science, 78(1), 293-304.
Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying
effects of UV-B, temperature, and pH on eDNA degradation in aquatic
microcosms. Biological Conservation, 183, 85-92.
Takahara, T., Minamoto, T., & Doi, H. (2013). Using environmental DNA
to estimate the distribution of an invasive fish species in ponds. PLoS
ONE, 8(2), e56584.
Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., & Kawabata, Z.
(2012). Estimation of fish biomass using environmental DNA. PLoS ONE,
7(4), e35868.
Takeuchi, A., Iijima, T., Kakuzen, W., Watanabe, S., Yamada, Y.,
Okamura, A., … & Tsukamoto, K. (2019). Release of eDNA by different
life history stages and during spawning activities of laboratory-reared
Japanese eels for interpretation of oceanic survey data. Scientific
Reports, 9, 6074.
Thomsen, P. F., Kielgast, J. O. S., Iversen, L. L., Wiuf, C., Rasmussen,
M., Gilbert, M. T. P., … & Willerslev, E. (2012). Monitoring
endangered freshwater biodiversity using environmental DNA. Molecular
Ecology, 21(11), 2565-2573.
Thomsen, P. F., Møller, P. R., Sigsgaard, E. E., Knudsen, S. W.,
Jørgensen, O. A., & Willerslev, E. (2016). Environmental DNA from
seawater samples correlate with trawl catches of subarctic, deepwater
fishes. PLoS ONE, 11(11), e0165252.
Turner, C. R., Barnes, M. A., Xu, C. C., Jones, S. E., Jerde, C. L., &
Lodge, D. M. (2014). Particle size distribution and optimal capture of
aqueous macrobial eDNA. Methods in Ecology and Evolution, 5(7), 676-684.
Ushio, M., Murakami, H., Masuda, R., Sado, T., Miya, M., Sakurai, S.,
… & Kondoh, M. (2018). Quantitative monitoring of multispecies fish
environmental DNA using high-throughput sequencing. Metabarcoding and
Metagenomics, 2, e23297.
Uthicke, S., Lamare, M., & Doyle, J. R. (2018). eDNA detection of
corallivorous seastar (Acanthaster cf. solaris ) outbreaks on the
Great Barrier Reef using digital droplet PCR. Coral Reefs, 37(4),
1229-1239.
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor
package. Journal of Statistical Software, 36(3), 1-48.
Weldon, L., O’Leary, C., Steer, M., Newton, L., Macdonald, H., &
Sargeant, S. L. (2020). A comparison of European eel Anguilla
anguilla eDNA concentrations to fyke net catches in five Irish lakes.
Environmental DNA, 2(4), 587-600.
Wilcox, T. M., McKelvey, K. S., Young, M. K., Sepulveda, A. J., Shepard,
B. B., Jane, S. F., … & Schwartz, M. K. (2016). Understanding
environmental DNA detection probabilities: A case study using a
stream-dwelling char Salvelinus fontinalis . Biological
Conservation, 194, 209-216.
Wu, Q., Kawano, K., Uehara, Y., Okuda, N., Hongo, M., Tsuji, S., … &
Minamoto, T. (2018). Environmental DNA reveals nonmigratory individuals
of Palaemon paucidens overwintering in Lake Biwa shallow waters.
Freshwater Science, 37(2), 307-314.
Yamamoto, S., Minami, K., Fukaya, K., Takahashi, K., Sawada, H.,
Murakami, H., … & Kondoh, M. (2016). Environmental DNA as a
‘snapshot’ of fish distribution: A case study of Japanese jack mackerel
in Maizuru Bay, Sea of Japan. PLoS ONE, 11(3), e0149786.
Yamanaka, H., & Minamoto, T. (2016). The use of environmental DNA of
fishes as an efficient method of determining habitat connectivity.
Ecological Indicators, 62, 147-153.
Yates, M. C., Fraser, D. J., & Derry, A. M. (2019). Meta‐analysis
supports further refinement of eDNA for monitoring aquatic
species‐specific abundance in nature. Environmental DNA, 1(1), 5-13.
Yates, M. C., Wilcox, T. M., McKelvey, K. S., Young, M. K., Schwartz, M.
K., & Derry, A. M. (2021a). Allometric scaling of eDNA production in
stream‐dwelling brook trout (Salvelinus fontinalis ) inferred from
population size structure. Environmental DNA, 3(3), 553-560.
Yates, M. C., Glaser, D. M., Post, J. R., Cristescu, M. E., Fraser, D.
J., & Derry, A. M. (2021b). The relationship between eDNA particle
concentration and organism abundance in nature is strengthened by
allometric scaling. Molecular Ecology, 30(13), 3068-3082.