Reference
Ali, R.S., Kandeler, E., Marhan, S., Demyan, M.S., Ingwersen, J., Mirzaeitalarposhti, R., Rasche, F., Cadisch, G., & Poll, C. (2018). Controls on microbially regulated soil organic carbon decomposition at the regional scale. Soil Biology & Biochemistry , 118, 59–68.
Austin, A.T., Yahdjian, L., Stark, J.M., Belnap, J., Porporato, A., Norton, U., Ravetta, D.A., & Schaeffer, S.M. (2004). Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia , 141, 221–235.
Bardgett, R. D., Hobbs, P. J., & Frostegård, A. (1996). Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biology and Fertility of Soils , 22, 261–264.
Blair, G.J., Lefroy, R.D.B., & Lisle, L. (1995). Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research , 46, 1459–1466.
Bond-Lamberty, B., Bailey, V.L., Chen, M., Gough, C.M., & Vargas, R. (2018). Globally rising soil heterotrophic respiration over recent decades. Nature , 560, 80–83.
Bond-Lamberty, B., & Thomson, A. (2010). A global database of soil respiration data. Biogeosciences , 7, 1915–1926.
Bradford, M.A., Veen, G.F., Bonis, A., Bradford, E.M., Classen, A.T., Cornelissen, H.C., Crowther, T.W., De Long, J.R., Freschet, G.T., Kardol, P., Manrubia-Freixa, M., Maynard, D.S., Newman, G.S., Logtestijn, R.S.P., Viketoft, M., Wardle, D.A., Wieder, W.R., Wood, S.A., & van der Putten, W.H. (2017). A test of the hierarchical model of litter decomposition. Nature Ecology & Evolution , 1, 1836–1845.
Chang, C.T., Sabaté, S., Sperlich, D., Poblador, S., Sabater, F., & Gracia, C. (2014). Does soil moisture overrule temperature dependence of soil respiration in Mediterranean riparian forests?Biogeosciences , 11, 6173–6185.
Chen, L., Smith, P., & Yang, Y. (2015). How has soil carbon stock changed over recent decades? Global Change Biology , 21, 3197–3199.
Colman, B.P., & Schimel, J.P. (2013). Drivers of microbial respiration and net N mineralization at the continental scale. Soil Biology & Biochemistry , 60, 65–76.
Creamer, C.A., de Menezes, A.B., Krull, E.S., Sanderman, J., Newton-Walters, R., & Farrell, M. (2015). Microbial community structure mediates response of soil C decomposition to litter addition and warming. Soil Biology & Biochemistry , 80, 175–188.
Crowther, T.W., van den Hoogen, J., Wan, J., Mayes, M.A., Keiser, A.D., Mo, L., Averill, C., & Maynard, D.S. (2019). The global soil community and its influence on biogeochemistry. Science , 365, 772–781.
Dai, S., Li, L., Ye, R., Zhu-Barker, X., & Horwath, W.R. (2017). The temperature sensitivity of organic carbon mineralization is affected by exogenous carbon inputs and soil organic carbon content. European Journal of Soil Biology , 81, 69–75.
de Boer, W., Folman, L.B., Summerbell, R.C., & Boddy, L. (2005). Living in a fungal world: impact of fungi on soil bacterial niche development.FEMS Microbiology Reviews , 29, 795–811.
Dacal, M., Bradford, M.A., Plaza, C., Plaza, C., Maestre, F.T., & García-Palacios, P. (2019). Soil microbial respiration adapts to ambient temperature in global drylands. Nature Ecology & Evolution , 3, 232–238.
Delgado-Baquerizo, M., Giaramida, L., Reich, P.B., Khachane, A.N., Hamonts, K., Edwards, C., Lawton, L.A., & Singh, B.K. (2016a). Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. Journal of Ecology , 104, 936–946.
Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D., Berdugo, M., Campbell, C.D., & Singh, B.K. (2016b). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications , 7, 10541.
Delgado-Baquerizo, M., Bardgett, R.D., Vitousek, P.M., Maestre, F.T., & Williams, M.A. (2019). Changes in belowground biodiversity during ecosystem development. Proceedings of the National Academy of Sciences USA , 116, 6891–6896.
Dungait, J.A.J., Hopkins, D.W., Gregory, A.S., & Whitmore, A.P. (2012). Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology , 18, 1781–1796.
Feng, J., & Zhu, B. (2019). A global meta-analysis of soil respiration and its components in response to phosphorus addition. Soil Biology & Biochemistry, 135, 38–47.
Hamdi, S., Moyano, F., Sall, S., Bernoux, M., & Chevallier, T. (2013). Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biology & Biochemistry , 58, 115–126.
Herbst M, Bornemann L, Graf A, Welp G, Vereecken H, & Amelung, W. (2011). A geostatistical approach to the field-scale pattern of heterotrophic soil CO2 emission using covariates.Biogeochemistry , 111, 377–392.
IPCC. (2017). Climate change 2017: The physical science basis, contribution of working group-I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.
Jenkinson, D.S., & Ladd, J.N. (1981). Microbial biomass in soil: measurement and turnover. Pages 415–472 in E. A. Paul and J. N. Ladd, editors. Soil biochemistry. Academic Press, Dekker, New York, New York, USA.
Kandeler, E., Mosier, A.R., Morgan, J.A., Milchunas, D.G., King, J.Y., Rudolph, S., & Tscherko, D. (2006). Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland. Soil Biology & Biochemistry , 38, 2448–2460.
Karhu, K., Auffret, M.D., Dungait, J.A., Hopkins, D.W., Prosser, J.I., Singh, B.K., Subke, J.-A., Wookey, P.A., Ågren, G.I., Sebastià, M.-T., Gouriveau, F., Bergkvist, G., Meir, P., Nottingham, A.T., Salinas, N., & Hartley, I.P. (2014). Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature , 513, 81–84.
Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature 528, 60–68.
Li, J.W., Jian, S.Y., de Koff, J.P., Lane, C.S., Wang, G.S., Mayes, M.A., & Hui, D.F. (2018). Differential effects of warming and nitrogen fertilization on soil respiration and microbial dynamics in switchgrass croplands. GCB Bioenergy , 10, 565–576.
Li, J., Nie, M., Pendall, E., Reich, P.B., Pei, J., Noh, N.J., Zhu, T., Li, B., & Fang, C. (2020). Biogeographic variation in temperature sensitivity of decomposition in forest soils. Global Change Biology , 26, 1873–1885.
Liu, S., Wang, H., Tian, P., Yao, X., Sun, H., Wang, Q., & Delgado-baquerizo, M. (2020). Decoupled diversity patterns in bacteria and fungi across continental forest ecosystems. Soil Biology & Biochemistry , 144, 107763.
Liu, Y., He, N., Wen, X., Xu, L., Sun, X., Yu, G., Liang, L., & Schipper, L.A. (2018a). The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology & Biochemistry , 121, 35–42.
Liu, Y., Delgado-Baquerizo, M., Wang, J., Hu, H., Yang, Z., & He, J. (2018b). New insights into the role of microbial community composition in driving soil respiration rates. Soil Biology & Biochemistry , 118, 35–41.
Lu, R. (2000). Methods of soil agricultural chemistry analysis. Beijing: Chinese Agricultural Science and Technology Press, p24–26, 272–288.
Meyer, N., Welp, G., Borneman,n L., & Amelung, W. (2017). Microbial nitrogen mining affects spatio-temporal patterns of substrate-induced respiration during seven years of bare fallow. Soil Biology & Biochemistry , 104, 175–184.
Moore-Kucera, J., & Dick, R.P. (2008). Application of13C-labeled litter and root materials for in situ decomposition studies using phospholipid fatty acids. Soil Biology & Biochemistry , 40, 2485–2493.
Ngao, J., Epron, D., Delpierre, N., Bréda, N., Granier, A., & Longdoz, B. (2012). Spatial variability of soil CO2 efflux linked to soil parameters and ecosystem characteristics in a temperate beech forest. Agricultural and Forest Meteorology , 154–155, 136–146.
Priess, J.A., & Fölster, H. (2001). Microbial properties and soil respiration in submontane forests of Venezuelian Guyana: characteristics and response to fertilizer treatments. Soil Biology & Biochemistry , 33, 503–509.
Ramirez, K.S., Craine, J.M., & Fierer, N. (2012). Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology , 18, 1918–1927.
Rinnan, R., & Bååth, E. (2009). Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Applied Environmental Microbiology , 75, 3611–3620.
Rodeghiero, M., & Cescatti, A. (2005). Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps.Global Change Biology , 11, 1024–1041.
Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., & Trumbore, S.E. (2011). Persistence of soil organic matter as an ecosystem property.Nature , 478, 49–56.
Stoyan, H., De-Polli, H., Bo¨ hm, S., Robertson, G.P., & Paul, E.A. (2000). Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant and Soil , 222, 203–214.
Takur, M.P., Reich, P.B., Hobbie, S.E., Stefanski, A., Rich, R., Rice, K.E., Eddy, W.C., & Eisenhauer, N. (2018). Reduced feeding activity of soil detritivores under warmer and drier conditions. Nature Climate Change , 8, 75–78.
Tedersoo, L., & Bahram M. (2019). Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes.Biological Reviews, 94, 1857–1880.
Trivedi, P., Delgado-Baquerizo, M., Trivedi, C., Hu, H.W., Anderson, I.C., Jeffries, T.C., Zhou, J., & Singh, B. (2016). Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships. The ISME Journal , 10, 2593–2604.
Wagg, C., Bender, S.F., Widmer, F., & van der Heijden, M.G.A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America , 111, 5266–5270.
Wang, Q., He, N., Yu, G., Gao, Y., Wen, X., Wang, R., Koerner, S.E., & Yu, Q. (2016). Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research:Biogeosciences , 121, 399–410.
Wang, Q., Liu, S., & Tian, P. (2018). Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems.Global Change Biology , 24, 2841–2849.
Wang, Q., Zhang, W., Sun, T., Chen, L., Pang, X., Wang, Y., & Xiao, F. (2017). N and P fertilization reduced soil autotrophic and heterotrophic respiration in a young Cunninghamia lanceolata forest.Agricultural and Forest Meteorology , 232, 66–73.
Wang, Q., Zhao, X., Chen, L., Yang, Q., Chen, S., & Zhang, W. (2019). Global synthesis of temperature sensitivity of soil organic carbon decomposition: Latitudinal patterns and mechanisms. Functional Ecology , 33, 514–523.
Waring, B.G., Averill, C., & Hawkes, C.V. (2013). Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecology Letters , 16, 887–894.
Xu, X., Schimel, J.P., Janssens, I.A., Song, X., Song, C., Yu, G., Sinsabaugh, R.L., Tang, D., Zhang, X., & Thornton, P.E. (2017). Global pattern and controls of soil microbial metabolic quotient.Ecological Monographs , 87, 429–441.
Zhang, J., He, N., Liu, C., Xu, L., Chen, Z., Li, Y., Wang, R., Yu, G., Sun, W., Xiao, C., Chen, H.Y.H., & Reich, P. (2020). Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biology , DOI: 10.1111/gcb.14973.