Reference
Ali, R.S., Kandeler, E., Marhan, S., Demyan, M.S., Ingwersen, J.,
Mirzaeitalarposhti, R., Rasche, F., Cadisch, G., & Poll, C. (2018).
Controls on microbially regulated soil organic carbon decomposition at
the regional scale. Soil Biology & Biochemistry , 118, 59–68.
Austin, A.T., Yahdjian, L., Stark, J.M., Belnap, J., Porporato, A.,
Norton, U., Ravetta, D.A., & Schaeffer, S.M. (2004). Water pulses and
biogeochemical cycles in arid and semiarid ecosystems. Oecologia ,
141, 221–235.
Bardgett, R. D., Hobbs, P. J., & Frostegård, A. (1996). Changes in soil
fungal:bacterial biomass ratios following reductions in the intensity of
management of an upland grassland. Biology and Fertility of
Soils , 22, 261–264.
Blair, G.J., Lefroy, R.D.B., & Lisle, L. (1995). Soil carbon fractions
based on their degree of oxidation and the development of a carbon
management index for agricultural systems. Australian Journal of
Agricultural Research , 46, 1459–1466.
Bond-Lamberty, B., Bailey, V.L., Chen, M., Gough, C.M., & Vargas, R.
(2018). Globally rising soil heterotrophic respiration over recent
decades. Nature , 560, 80–83.
Bond-Lamberty, B., & Thomson, A. (2010). A global database of soil
respiration data. Biogeosciences , 7, 1915–1926.
Bradford, M.A., Veen, G.F., Bonis, A., Bradford, E.M., Classen, A.T.,
Cornelissen, H.C., Crowther, T.W., De Long, J.R., Freschet, G.T.,
Kardol, P., Manrubia-Freixa, M., Maynard, D.S., Newman, G.S.,
Logtestijn, R.S.P., Viketoft, M., Wardle, D.A., Wieder, W.R., Wood,
S.A., & van der Putten, W.H. (2017). A test of the hierarchical model
of litter decomposition. Nature Ecology & Evolution , 1,
1836–1845.
Chang, C.T., Sabaté, S., Sperlich, D., Poblador, S., Sabater, F., &
Gracia, C. (2014). Does soil moisture overrule temperature dependence of
soil respiration in Mediterranean riparian forests?Biogeosciences , 11, 6173–6185.
Chen, L., Smith, P., & Yang, Y. (2015). How has soil carbon stock
changed over recent decades? Global Change Biology , 21,
3197–3199.
Colman, B.P., & Schimel, J.P. (2013). Drivers of microbial respiration
and net N mineralization at the continental scale. Soil Biology &
Biochemistry , 60, 65–76.
Creamer, C.A., de Menezes, A.B., Krull, E.S., Sanderman, J.,
Newton-Walters, R., & Farrell, M. (2015). Microbial community structure
mediates response of soil C decomposition to litter addition and
warming. Soil Biology & Biochemistry , 80, 175–188.
Crowther, T.W., van den Hoogen, J., Wan, J., Mayes, M.A., Keiser, A.D.,
Mo, L., Averill, C., & Maynard, D.S. (2019). The global soil community
and its influence on biogeochemistry. Science , 365, 772–781.
Dai, S., Li, L., Ye, R., Zhu-Barker, X., & Horwath, W.R. (2017). The
temperature sensitivity of organic carbon mineralization is affected by
exogenous carbon inputs and soil organic carbon content. European
Journal of Soil Biology , 81, 69–75.
de Boer, W., Folman, L.B., Summerbell, R.C., & Boddy, L. (2005). Living
in a fungal world: impact of fungi on soil bacterial niche development.FEMS Microbiology Reviews , 29, 795–811.
Dacal, M., Bradford, M.A., Plaza, C., Plaza, C., Maestre, F.T., &
García-Palacios, P. (2019). Soil microbial respiration adapts to ambient
temperature in global drylands. Nature Ecology & Evolution , 3,
232–238.
Delgado-Baquerizo, M., Giaramida, L., Reich, P.B., Khachane, A.N.,
Hamonts, K., Edwards, C., Lawton, L.A., & Singh, B.K. (2016a). Lack of
functional redundancy in the relationship between microbial diversity
and ecosystem functioning. Journal of Ecology , 104, 936–946.
Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C.,
Gaitan, J.J., Encinar, D., Berdugo, M., Campbell, C.D., & Singh, B.K.
(2016b). Microbial diversity drives multifunctionality in terrestrial
ecosystems. Nature Communications , 7, 10541.
Delgado-Baquerizo, M., Bardgett, R.D., Vitousek, P.M., Maestre, F.T., &
Williams, M.A. (2019). Changes in belowground biodiversity during
ecosystem development. Proceedings of the National Academy of
Sciences USA , 116, 6891–6896.
Dungait, J.A.J., Hopkins, D.W., Gregory, A.S., & Whitmore, A.P. (2012).
Soil organic matter turnover is governed by accessibility not
recalcitrance. Global Change Biology , 18, 1781–1796.
Feng, J., & Zhu, B. (2019). A global meta-analysis of soil respiration
and its components in response to phosphorus addition. Soil
Biology & Biochemistry, 135, 38–47.
Hamdi, S., Moyano, F., Sall, S., Bernoux, M., & Chevallier, T. (2013).
Synthesis analysis of the temperature sensitivity of soil respiration
from laboratory studies in relation to incubation methods and soil
conditions. Soil Biology & Biochemistry , 58, 115–126.
Herbst M, Bornemann L, Graf A, Welp G, Vereecken H, & Amelung, W.
(2011). A geostatistical approach to the field-scale pattern of
heterotrophic soil CO2 emission using covariates.Biogeochemistry , 111, 377–392.
IPCC. (2017). Climate change 2017: The physical science basis,
contribution of working group-I to the fourth assessment report of the
intergovernmental panel on climate change. Cambridge, UK: Cambridge
University Press.
Jenkinson, D.S., & Ladd, J.N. (1981). Microbial biomass in soil:
measurement and turnover. Pages 415–472 in E. A. Paul and J. N. Ladd,
editors. Soil biochemistry. Academic Press, Dekker, New York, New York,
USA.
Kandeler, E., Mosier, A.R., Morgan, J.A., Milchunas, D.G., King, J.Y.,
Rudolph, S., & Tscherko, D. (2006). Response of soil microbial biomass
and enzyme activities to the transient elevation of carbon dioxide in a
semi-arid grassland. Soil Biology & Biochemistry , 38,
2448–2460.
Karhu, K., Auffret, M.D., Dungait, J.A., Hopkins, D.W., Prosser, J.I.,
Singh, B.K., Subke, J.-A., Wookey, P.A., Ågren, G.I., Sebastià, M.-T.,
Gouriveau, F., Bergkvist, G., Meir, P., Nottingham, A.T., Salinas, N.,
& Hartley, I.P. (2014). Temperature sensitivity of soil respiration
rates enhanced by microbial community response. Nature , 513,
81–84.
Lehmann, J., & Kleber, M. (2015). The contentious nature of soil
organic matter. Nature 528, 60–68.
Li, J.W., Jian, S.Y., de Koff, J.P., Lane, C.S., Wang, G.S., Mayes,
M.A., & Hui, D.F. (2018). Differential effects of warming and nitrogen
fertilization on soil respiration and microbial dynamics in switchgrass
croplands. GCB Bioenergy , 10, 565–576.
Li, J., Nie, M., Pendall, E., Reich, P.B., Pei, J., Noh, N.J., Zhu, T.,
Li, B., & Fang, C. (2020). Biogeographic variation in temperature
sensitivity of decomposition in forest soils. Global Change
Biology , 26, 1873–1885.
Liu, S., Wang, H., Tian, P., Yao, X., Sun, H., Wang, Q., &
Delgado-baquerizo, M. (2020). Decoupled diversity patterns in bacteria
and fungi across continental forest ecosystems. Soil Biology &
Biochemistry , 144, 107763.
Liu, Y., He, N., Wen, X., Xu, L., Sun, X., Yu, G., Liang, L., &
Schipper, L.A. (2018a). The optimum temperature of soil microbial
respiration: Patterns and controls. Soil Biology & Biochemistry ,
121, 35–42.
Liu, Y., Delgado-Baquerizo, M., Wang, J., Hu, H., Yang, Z., & He, J.
(2018b). New insights into the role of microbial community composition
in driving soil respiration rates. Soil Biology & Biochemistry ,
118, 35–41.
Lu, R. (2000). Methods of soil agricultural chemistry analysis. Beijing:
Chinese Agricultural Science and Technology Press, p24–26, 272–288.
Meyer, N., Welp, G., Borneman,n L., & Amelung, W. (2017). Microbial
nitrogen mining affects spatio-temporal patterns of substrate-induced
respiration during seven years of bare fallow. Soil Biology &
Biochemistry , 104, 175–184.
Moore-Kucera, J., & Dick, R.P. (2008). Application of13C-labeled litter and root materials for in situ
decomposition studies using phospholipid fatty acids. Soil Biology
& Biochemistry , 40, 2485–2493.
Ngao, J., Epron, D., Delpierre, N., Bréda, N., Granier, A., & Longdoz,
B. (2012). Spatial variability of soil CO2 efflux linked
to soil parameters and ecosystem characteristics in a temperate beech
forest. Agricultural and Forest Meteorology , 154–155, 136–146.
Priess, J.A., & Fölster, H. (2001). Microbial properties and soil
respiration in submontane forests of Venezuelian Guyana: characteristics
and response to fertilizer treatments. Soil Biology &
Biochemistry , 33, 503–509.
Ramirez, K.S., Craine, J.M., & Fierer, N. (2012). Consistent effects of
nitrogen amendments on soil microbial communities and processes across
biomes. Global Change Biology , 18, 1918–1927.
Rinnan, R., & Bååth, E. (2009). Differential utilization of carbon
substrates by bacteria and fungi in tundra soil. Applied
Environmental Microbiology , 75, 3611–3620.
Rodeghiero, M., & Cescatti, A. (2005). Main determinants of forest soil
respiration along an elevation/temperature gradient in the Italian Alps.Global Change Biology , 11, 1024–1041.
Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G.,
Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning,
D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., & Trumbore, S.E.
(2011). Persistence of soil organic matter as an ecosystem property.Nature , 478, 49–56.
Stoyan, H., De-Polli, H., Bo¨ hm, S., Robertson, G.P., & Paul, E.A.
(2000). Spatial heterogeneity of soil respiration and related properties
at the plant scale. Plant and Soil , 222, 203–214.
Takur, M.P., Reich, P.B., Hobbie, S.E., Stefanski, A., Rich, R., Rice,
K.E., Eddy, W.C., & Eisenhauer, N. (2018). Reduced feeding activity of
soil detritivores under warmer and drier conditions. Nature
Climate Change , 8, 75–78.
Tedersoo, L., & Bahram M. (2019). Mycorrhizal types differ in
ecophysiology and alter plant nutrition and soil processes.Biological Reviews, 94, 1857–1880.
Trivedi, P., Delgado-Baquerizo, M., Trivedi, C., Hu, H.W., Anderson,
I.C., Jeffries, T.C., Zhou, J., & Singh, B. (2016). Microbial
regulation of the soil carbon cycle: evidence from gene-enzyme
relationships. The ISME Journal , 10, 2593–2604.
Wagg, C., Bender, S.F., Widmer, F., & van der Heijden, M.G.A. (2014).
Soil biodiversity and soil community composition determine ecosystem
multifunctionality. Proceedings of the National Academy of
Sciences of the United States of America , 111, 5266–5270.
Wang, Q., He, N., Yu, G., Gao, Y., Wen, X., Wang, R., Koerner, S.E., &
Yu, Q. (2016). Soil microbial respiration rate and temperature
sensitivity along a north-south forest transect in eastern China:
Patterns and influencing factors. Journal of Geophysical Research:Biogeosciences , 121, 399–410.
Wang, Q., Liu, S., & Tian, P. (2018). Carbon quality and soil microbial
property control the latitudinal pattern in temperature sensitivity of
soil microbial respiration across Chinese forest ecosystems.Global Change Biology , 24, 2841–2849.
Wang, Q., Zhang, W., Sun, T., Chen, L., Pang, X., Wang, Y., & Xiao, F.
(2017). N and P fertilization reduced soil autotrophic and heterotrophic
respiration in a young Cunninghamia lanceolata forest.Agricultural and Forest Meteorology , 232, 66–73.
Wang, Q., Zhao, X., Chen, L., Yang, Q., Chen, S., & Zhang, W. (2019).
Global synthesis of temperature sensitivity of soil organic carbon
decomposition: Latitudinal patterns and mechanisms. Functional
Ecology , 33, 514–523.
Waring, B.G., Averill, C., & Hawkes, C.V. (2013). Differences in fungal
and bacterial physiology alter soil carbon and nitrogen cycling:
insights from meta-analysis and theoretical models. Ecology
Letters , 16, 887–894.
Xu, X., Schimel, J.P., Janssens, I.A., Song, X., Song, C., Yu, G.,
Sinsabaugh, R.L., Tang, D., Zhang, X., & Thornton, P.E. (2017). Global
pattern and controls of soil microbial metabolic quotient.Ecological Monographs , 87, 429–441.
Zhang, J., He, N., Liu, C., Xu, L., Chen, Z., Li, Y., Wang, R., Yu, G.,
Sun, W., Xiao, C., Chen, H.Y.H., & Reich, P. (2020). Variation and
evolution of C:N ratio among different organs enable plants to adapt to
N-limited environments. Global Change Biology , DOI:
10.1111/gcb.14973.