Acknowledgement
The first author would like to thank the Indian Institute of Technology
(Indian School of Mines), Dhanbad for providing research fellowship and
other research facilities during this study. The authors appreciate the
help of Mr. M.L. Sahu, Head EHS of Nalwa Steel and Power Limited (NSPL),
Raigarh for assisting us in their dumpsites for sampling and
experimentation work.
Conflict of interest: The authors do not have a conflict of
interest in any form.
REFERENCES
Abdelhafez, A. A., Abbas, M. H., Attia, T. M., El Bably, W., & Mahrous,
S. E. (2018). Mineralization of organic carbon and nitrogen in semi-arid
soils under organic and inorganic fertilization. Environmental
Technology & Innovation , 9 , 243-253.
https://doi.org/10.1016/j.eti.2017.12.011
Ahirwal, J., Maiti, S.K., &Reddy, M.S. (2017a). Development of carbon,
nitrogen and phosphate stocks of reclaimed coal mine soil within 8 years
after forestation with Prosopis juliflora (Sw.) Dc. Catena,
156 , 42-50. https://doi.org/10.1016/j.catena.2017.03.019
Ahirwal, J., Maiti, S. K., & Singh, A. K. (2017b). Changes in ecosystem
carbon pool and soil CO2 flux following post-mine reclamation in dry
tropical environment, India. Science of the Total Environment ,583 , 153-162.
https://doi.org/10.1016/j.scitotenv.2017.01.043
Amorim, S. P., Nascimento, D., Boechat, C. L., Duarte, L. D. S. L.,
Rocha, C. B., & Carlos, F. S. (2020). Grasses and legumes as cover
crops affect microbial attributes in oxisol in the cerrado (savannah
environment) in the northeast region 1. Revista Caatinga ,33 (1), 31-42.
https://doi.org/10.1590/1983-21252020v33n104rc
Ansong Omari, R., Bellingrath-Kimura, D. S., Fujii, Y., Sarkodee-Addo,
E., Appiah Sarpong, K., & Oikawa, Y. (2018). Nitrogen mineralization
and microbial biomass dynamics in different tropical soils amended with
contrasting organic resources. Soil Systems , 2 (4), 63.
https://doi.org/10.3390/soilsystems2040063
Bhandari, K. B., West, C. P., & Acosta-Martinez, V. (2020). Assessing
the role of inter seeding alfalfa into grass on improving pasture soil
health in semi-arid Texas High Plains. Applied Soil Ecology ,147 , 103399. https://doi.org/10.1016/j.apsoil.2019.103399
Blake, G. R., & Hartge, K. H. (1986). Bulk density. Methods of
soil analysis: Part 1 Physical and mineralogical methods , 5 ,
363-375. https://doi.org/10.2136/sssabookser5.1.2ed.c13.
Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic,
and available forms of phosphorus in soils. Soil Science ,59 (1), 39-46.
Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985).
Chloroform fumigation and the release of soil nitrogen: a rapid direct
extraction method to measure microbial biomass nitrogen in soil.Soil Biology and Biochemistry , 17 (6), 837-842.
https://doi.org/10.1016/0038-0717(85)90144-0
Campos, A. C., Etchevers, J. B., Oleschko, K. L., & Hidalgo, C. M.
(2014). Soil microbial biomass and nitrogen mineralization rates along
an altitudinal gradient on the Cofre de Perote Volcano (Mexico): the
importance of landscape position and land use. Land Degradation &
Development , 25 (6), 581-593.
https://doi.org/10.1002/ldr.2185
Casida Jr, L. E., Klein, D. A., & Santoro, T. (1964). Soil
dehydrogenase activity. Soil Science , 98 (6), 371-376.
de Oliveira, S. P., de Lacerda, N. B., Blum, S. C., Escobar, M. E. O.,
& de Oliveira, T. S. (2015). Organic carbon and nitrogen stocks in
soils of northeastern Brazil converted to irrigated agriculture.Land Degradation & Development , 26 (1), 9-21.
https://doi.org/10.1002/ldr.2264
Elgersma, A., &Soegaard, K. (2016). Effects of species diversity on
seasonal variation in herbage yield and nutritive value of seven binary
grass-legume mixtures and pure grass under cutting. European
Journal of Agronomy , 78 , 73-83.
https://doi.org/10.1016/j.eja.2016.04.011
Fill, J. M., Pearson, E., Knight, T. M., & Crandall, R. M. (2019). An
invasive legume increases perennial grass biomass: An indirect pathway
for plant community change. PloS one , 14 (1), e0211295.
https://doi.org/10.1371/journal.pone.0211295.
Frouz, J. (2017). Effects of soil development time and litter quality on
soil carbon sequestration: Assessing soil carbon saturation with a field
transplant experiment along a post‐mining chronosequence. Land
Degradation & Development , 28 (2), 664-672.
https://doi.org/10.1002/ldr.2580
Frouz, J. (2018). Effects of soil macro-and mesofauna on litter
decomposition and soil organic matter stabilization. Geoderma ,332 , 161-172.
https://doi.org/10.1016/j.geoderma.2017.08.039
Frouz, J., Novotna, K., Cermakova, L., & Pivokonsky, M. (2020). Soil
fauna reduce soil respiration by supporting N leaching from litter.Applied Soil Ecology , 153 , 103585.
https://doi.org/10.1016/j.apsoil.2020.103585
Ghafoor A., Poeplau, C., Katterer, T. (2017) Fate of straw- and root
derived carbon in a Swedish agricultural soil. Biology and
Fertility of Soils, 53 , 257–267.
https://doi.org/10.1007/s00374-016-1168-7
Guan, S.Y. (1986). Soil enzyme and its research approaches; China
Agriculture Press: Beijing, China.
Guan, X. K., Turner, N. C., Song, L., Gu, Y. J., Wang, T. C., & Li, F.
M. (2016). Soil carbon sequestration by three perennial legume pasture s
is greater in deeper soil layers than in the surface soil.Biogeosciences , 13 (2), 527. https://
doi:10.5194/bg-13-527-2016
Guoju, X., Yanbin, H., Qiang, Z., Jing, W., & Ming, L. (2020). Impact
of cultivation on soil organic carbon and carbon sequestration potential
in semiarid regions of China. Soil Use and Management ,36 (1), 83-92. https://doi.org/10.1111/sum.12540
Halde, C., & Entz, M. H. (2016). Plant species and mulch application
rate affected decomposition of cover crop mulches used in organic
rotational no-till systems. Canadian Journal of Plant Science ,96 (1), 59-71. https://doi.org/10.1139/cjps-2015-0095
Hou, H., Wang, C., Ding, Z., Zhang, S., Yang, Y., Ma, J., & Li, J.
(2018). Variation in the soil microbial community of reclaimed land over
different reclamation periods. Sustainability , 10 (7),
2286. https://doi.org/10.3390/su10072286
Ibrahim, A., Abaidoo, R. C., Fatondji, D., & Opoku, A. (2015).
Integrated use of fertilizer micro-dosing and Acacia tumidamulching increases millet yield and water use efficiency in Sahelian
semi-arid environment. Nutrient Cycling in Agroecosystems ,103 (3), 375-388. https://doi.org/10.1007/s10705-015-9752-z
Jackson, M. L. (1958). Soil chemical analysis prentice Hall. Inc.,
Englewood Cliffs, NJ , 498 , 183-204.
Jilkova, V., Strakova, P., &Frouz, J. (2020). Foliage C: N ratio, stage
of organic matter decomposition and interaction with soil affect
microbial respiration and its response to C and N addition more than C:
N changes during decomposition. Applied Soil Ecology , 152 ,
103568. https://doi.org/10.1016/j.apsoil.2020.103568
Joniec, J. (2018). Enzymatic activity as an indicator of regeneration
processes in degraded soil reclaimed with various types of waste.International Journal of Environmental Science and Technology ,15 (10), 2241-2252.
https://doi.org/10.1007/s13762-017-1602-x
Kader, M. A., Senge, M., Mojid, M. A., & Ito, K. (2017). Recent
advances in mulching materials and methods for modifying soil
environment. Soil and Tillage Research , 168 , 155-166.
https://doi.org/10.1016/j.still.2017.01.001
Keeney, D. R., & Nelson, D. W. (1983). Nitrogen—Inorganic forms. In
AL Page et al.(ed.) Methods of soil analysis. Part 2. 2nd ed. Agron.
Monogr. 9. ASA and SSSA, Madison, WI. p. 643–698.
https://doi.org/10.2134/agronmonogr9.2.2ed.c33.
Lei, L., & McDonald, L. M. (2019). Soil moisture and temperature
effects on nitrogen mineralization in a high tunnel farming system.Communications in Soil Science and Plant Analysis , 50 (17),
2140-2150. https://doi.org/10.1080/00103624.2019.1654503
Li, F., Sorensen, P., Li, X., & Olesen, J. E. (2020). Carbon and
nitrogen mineralization differ between incorporated shoots and roots of
legume versus non-legume based cover crops. Plant and Soil ,446 (1), 243-257. https://doi.org/10.1007/s11104-019-04358-6
Li, Z., Tian, D., Wang, B., Wang, J., Wang, S., Chen, H. Y., & Niu, S.
(2019). Microbes drive global soil nitrogen mineralization and
availability. Global Change Biology , 25 (3), 1078-1088.
https://doi.org/10.1111/gcb.14557
Lima, M. T., Ribeiro, A. Í., Dias, H. C. T., Rosa, A. G., Pires, G. T.,
& Tonello, K. C. (2018). The dynamics of the substrate recovery of
waste dumps in calcary mining under natural regeneration. Cerne ,24 (1), 18-26. https://doi.org/10.1590/01047760201824012476
Liu, W., Yu, Z., Zhu, Q., Zhou, X., & Peng, C. (2020). Assessment of
biomass utilization potential of Caragana korshinskii and its
effect on carbon sequestration on the Northern Shaanxi Loess Plateau,
China. Land Degradation & Development , 31 (1), 53-64.
https://doi.org/10.1002/ldr.3425
Luo, G., Rensing, C., Chen, H., Liu, M., Wang, M., Guo, S., & Shen, Q.
(2018). Deciphering the associations between soil microbial diversity
and ecosystem multifunctionality driven by long-term fertilization
management. Functional Ecology , 32 (4), 1103-1116.
https://doi.org/10.1111/1365-2435.13039
Maiti, S. K. (2012). Ecorestoration of the coalmine degraded
lands . Springer Science & Business Media.
Maiti, S. K., & Maiti, D. (2015). Ecological restoration of waste dumps
by topsoil blanketing, coir-matting and seeding with grass–legume
mixture. Ecological Engineering , 77 , 74-84.
https://doi.org/10.1016/j.ecoleng.2015.01.003
Marques, A. R., Vianna, C. R., Monteiro, M. L., Pires, B. O. S., de
Carvalho Urashima, D., & Pontes, P. P. (2016). Utilizing coir
geotextile with grass and legume on soil of Cerrado, Brazil: An
alternative strategy in improving the input of nutrients in degraded
pasture soil? Applied Soil Ecology , 107 , 290-297.
https://doi.org/10.1016/j.apsoil.2016.06.002
Marzi, M., Shahbazi, K., Kharazi, N., & Rezaei, M. (2020). The
influence of organic amendment source on carbon and nitrogen
mineralization in different soils. Journal of Soil Science and
Plant Nutrition , 20 (1), 177-191.
https://doi.org/10.1007/s42729-019-00116-w
Munoz-Rojas, M., Erickson, T. E., Dixon, K. W., & Merritt, D. J.
(2016). Soil quality indicators to assess functionality of restored
soils in degraded semiarid ecosystems. Restoration Ecology ,24 , 43-52. https://doi.org/10.1111/rec.12368
Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon,
and organic matter. Methods of soil analysis: Part 3 Chemical
methods , 5 , 961-1010.
Pramanik, P., Bandyopadhyay, K. K., Bhaduri, D., Bhattacharyya, R., &
Aggarwal, P. (2015). Effect of mulch on soil thermal regimes-A review.International Journal of Agriculture, Environment and
Biotechnology , 8 (3), 645-658.
https://doi.org/10.5958/2230-732X.2015.00072.8
Prommer, J., Walker, T. W., Wanek, W., Braun, J., Zezula, D., Hu, Y., &
Richter, A. (2020). Increased microbial growth, biomass, and turnover
drive soil organic carbon accumulation at higher plant diversity.Global Change Biology , 26 (2), 669-681.
https://doi.org/10.1111/gcb.14777
Radicetti, E., Campiglia, E., Marucci, A., & Mancinelli, R. (2017) How
winter cover crops and tillage intensities affect nitrogen availability
in eggplant. Nutrient Cycling in Agroecosystems, 108 , 177–194.
https://doi.org/10.1007/s10705-017-9849-7
Sekaran, U., Loya, J. R., Abagandura, G. O., Subramanian, S., Owens, V.,
& Kumar, S. (2020). Intercropping of kura clover
(Trifoliumambiguum M. Bieb) with prairie cordgrass
(Spartina pectinata link.) enhanced soil biochemical activities
and microbial community structure. Applied Soil Ecology ,147 , 103427. https://doi.org/10.1016/j.apsoil.2019.103427
Semenov, V. M., Pautova, N. B., Lebedeva, T. N., Khromychkina, D. P.,
Semenova, N. A., & de Gerenyu, V. L. (2019). Plant residues
decomposition and formation of active organic matter in the soil of the
incubation experiments. Eurasian Soil Science , 52 (10),
1183-1194. https://doi.org/10.1134/S1064229319100119
Shang, Z. H., Cao, J. J., Guo, R. Y., Long, R. J., & Deng, B. (2014).
The response of soil organic carbon and nitrogen 10 years after
returning cultivated alpine steppe to grassland by abandonment or
reseeding. Catena , 119 , 28-35.
https://doi.org/10.1016/j.catena.2014.03.006
Shao, Q., Gu, W., Dai, Q. Y., Makoto, S., & Liu, Y. (2014).
Effectiveness of geotextile mulches for slope restoration in semi-arid
northern China. Catena , 116 , 1-9.
https://doi.org/10.1016/j.catena.2013.12.006
Subbiah, B. V., & Asija, G. L. (1956). A rapid procedure for assessment
of available nitrogen in soils. Current Science , 25, 259-260.
Talema, A., Poesen, J., Muys, B., Padro, R., Dibaba, H., & Diels, J.
(2019). Survival and growth analysis of multipurpose trees, shrubs, and
grasses used to rehabilitate badlands in the subhumid tropics.Land degradation & Development , 30 (4), 470-480.
https://doi.org/10.1002/ldr.3239
Tian, J., Wei, K., Condron, L. M., Chen, Z., Xu, Z., Feng, J., & Chen,
L. (2017). Effects of elevated nitrogen and precipitation on soil
organic nitrogen fractions and nitrogen-mineralizing enzymes in
semi-arid steppe and abandoned cropland. Plant and Soil ,417 (1-2), 217-229.
https://doi.org/10.1007/s11104-017-3253-6
Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction
method for measuring soil microbial biomass C. Soil biology and
Biochemistry , 19 (6), 703-707.
Wang, J., Liu, H., Wu, X., Li, C., & Wang, X. (2017). Effects of
different types of mulches and legumes for the restoration of urban
abandoned land in semi-arid northern China. Ecological
Engineering , 102 , 55-63.
https://doi.org/10.1016/j.ecoleng.2017.02.001
Wang, G., Liu, S., Fang, Y., & Shangguan, Z. (2020). Adaptive changes
in root morphological traits of Gramineae and Leguminosae seedlings in
the ecological restoration of the semiarid region of northwest China.Land Degradation & Development, 1–13.
https://doi.org/10.1002/ldr.3616
Wu, G. L., Liu, Y., Tian, F. P., & Shi, Z. H. (2017). Legumes
functional group promotes soil organic carbon and nitrogen storage by
increasing plant diversity. Land Degradation & Development ,28 (4), 1336-1344. https://doi.org/10.1002/ldr.2570
Wu, H., Lü, L., Zhang, Y., Xu, C., Yang, H., Zhou, W., … & Han, X.
(2019). Sediment addition and legume cultivation result in sustainable,
long‐term increases in ecosystem functions of sandy grasslands.Land Degradation & Development , 30 (14), 1667-1676.
https://doi.org/10.1002/ldr.3348
Wu, X., Xu, H., Tuo, D., Wang, C., Fu, B., Lv, Y., & Liu, G. (2020).
Land use change and stand age regulate soil respiration by influencing
soil substrate supply and microbial community. Geoderma ,359 , 113991. https://doi.org/10.1016/j.geoderma.2019.113991
Yang, Y., Yang, J., Zhao, T., Huang, X., & Zhao, P. (2016). Ecological
restoration of highway slope by covering with straw-mat and seeding with
grass–legume mixture. Ecological Engineering , 90 , 68-76.
https://doi.org/10.1016/j.ecoleng.2016.01.052
Yu, T., Lin, F., Liu, X., & Wang, X. (2020). Recovery Role in Soil
Structural, Carbon and Nitrogen Properties of the Conversion of
Vegetable Land to Alfalfa Land in Northwest China. Journal of Soil
Science and Plant Nutrition , 1-12.
https://doi.org/10.1007/s42729-020-00218-w
Yuan, Z. Q., Yu, K. L., Epstein, H., Fang, C., Li, J. T., Liu, Q. Q., &
Li, F. M. (2016). Effects of legume species introduction on vegetation
and soil nutrient development on abandoned croplands in a semi-arid
environment on the Loess Plateau, China. Science of the Total
Environment , 541 , 692-700.
https://doi.org/10.1016/j.scitotenv.2015.09.108
Zhang, R., Huang, Q., Yan, T., Yang, J., Zheng, Y., Li, H., & Li, M.
(2019). Effects of intercropping mulch on the content and composition of
soil dissolved organic matter in apple orchard on the loess plateau.Journal of Environmental Management , 250 , 109531.
https://doi.org/10.1016/j.jenvman.2019.109531
Zuber, S. M., &Villamil, M. B. (2016). Meta-analysis approach to assess
effect of tillage on microbial biomass and enzyme activities. Soil
Biology and Biochemistry , 97 , 176-187.
https://doi.org/10.1016/j.soilbio.2016.03.011