Acknowledgement
The first author would like to thank the Indian Institute of Technology (Indian School of Mines), Dhanbad for providing research fellowship and other research facilities during this study. The authors appreciate the help of Mr. M.L. Sahu, Head EHS of Nalwa Steel and Power Limited (NSPL), Raigarh for assisting us in their dumpsites for sampling and experimentation work.
Conflict of interest: The authors do not have a conflict of interest in any form.
REFERENCES
Abdelhafez, A. A., Abbas, M. H., Attia, T. M., El Bably, W., & Mahrous, S. E. (2018). Mineralization of organic carbon and nitrogen in semi-arid soils under organic and inorganic fertilization. Environmental Technology & Innovation , 9 , 243-253. https://doi.org/10.1016/j.eti.2017.12.011
Ahirwal, J., Maiti, S.K., &Reddy, M.S. (2017a). Development of carbon, nitrogen and phosphate stocks of reclaimed coal mine soil within 8 years after forestation with Prosopis juliflora (Sw.) Dc. Catena, 156 , 42-50. https://doi.org/10.1016/j.catena.2017.03.019
Ahirwal, J., Maiti, S. K., & Singh, A. K. (2017b). Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India. Science of the Total Environment ,583 , 153-162. https://doi.org/10.1016/j.scitotenv.2017.01.043
Amorim, S. P., Nascimento, D., Boechat, C. L., Duarte, L. D. S. L., Rocha, C. B., & Carlos, F. S. (2020). Grasses and legumes as cover crops affect microbial attributes in oxisol in the cerrado (savannah environment) in the northeast region 1. Revista Caatinga ,33 (1), 31-42. https://doi.org/10.1590/1983-21252020v33n104rc
Ansong Omari, R., Bellingrath-Kimura, D. S., Fujii, Y., Sarkodee-Addo, E., Appiah Sarpong, K., & Oikawa, Y. (2018). Nitrogen mineralization and microbial biomass dynamics in different tropical soils amended with contrasting organic resources. Soil Systems , 2 (4), 63. https://doi.org/10.3390/soilsystems2040063
Bhandari, K. B., West, C. P., & Acosta-Martinez, V. (2020). Assessing the role of inter seeding alfalfa into grass on improving pasture soil health in semi-arid Texas High Plains. Applied Soil Ecology ,147 , 103399. https://doi.org/10.1016/j.apsoil.2019.103399
Blake, G. R., & Hartge, K. H. (1986). Bulk density. Methods of soil analysis: Part 1 Physical and mineralogical methods , 5 , 363-375. https://doi.org/10.2136/sssabookser5.1.2ed.c13.
Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science ,59 (1), 39-46.
Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil.Soil Biology and Biochemistry , 17 (6), 837-842. https://doi.org/10.1016/0038-0717(85)90144-0
Campos, A. C., Etchevers, J. B., Oleschko, K. L., & Hidalgo, C. M. (2014). Soil microbial biomass and nitrogen mineralization rates along an altitudinal gradient on the Cofre de Perote Volcano (Mexico): the importance of landscape position and land use. Land Degradation & Development , 25 (6), 581-593. https://doi.org/10.1002/ldr.2185
Casida Jr, L. E., Klein, D. A., & Santoro, T. (1964). Soil dehydrogenase activity. Soil Science , 98 (6), 371-376.
de Oliveira, S. P., de Lacerda, N. B., Blum, S. C., Escobar, M. E. O., & de Oliveira, T. S. (2015). Organic carbon and nitrogen stocks in soils of northeastern Brazil converted to irrigated agriculture.Land Degradation & Development , 26 (1), 9-21. https://doi.org/10.1002/ldr.2264
Elgersma, A., &Soegaard, K. (2016). Effects of species diversity on seasonal variation in herbage yield and nutritive value of seven binary grass-legume mixtures and pure grass under cutting. European Journal of Agronomy , 78 , 73-83. https://doi.org/10.1016/j.eja.2016.04.011
Fill, J. M., Pearson, E., Knight, T. M., & Crandall, R. M. (2019). An invasive legume increases perennial grass biomass: An indirect pathway for plant community change. PloS one , 14 (1), e0211295. https://doi.org/10.1371/journal.pone.0211295.
Frouz, J. (2017). Effects of soil development time and litter quality on soil carbon sequestration: Assessing soil carbon saturation with a field transplant experiment along a post‐mining chronosequence. Land Degradation & Development , 28 (2), 664-672. https://doi.org/10.1002/ldr.2580
Frouz, J. (2018). Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma ,332 , 161-172. https://doi.org/10.1016/j.geoderma.2017.08.039
Frouz, J., Novotna, K., Cermakova, L., & Pivokonsky, M. (2020). Soil fauna reduce soil respiration by supporting N leaching from litter.Applied Soil Ecology , 153 , 103585. https://doi.org/10.1016/j.apsoil.2020.103585
Ghafoor A., Poeplau, C., Katterer, T. (2017) Fate of straw- and root derived carbon in a Swedish agricultural soil. Biology and Fertility of Soils, 53 , 257–267. https://doi.org/10.1007/s00374-016-1168-7
Guan, S.Y. (1986). Soil enzyme and its research approaches; China Agriculture Press: Beijing, China.
Guan, X. K., Turner, N. C., Song, L., Gu, Y. J., Wang, T. C., & Li, F. M. (2016). Soil carbon sequestration by three perennial legume pasture s is greater in deeper soil layers than in the surface soil.Biogeosciences , 13 (2), 527. https:// doi:10.5194/bg-13-527-2016
Guoju, X., Yanbin, H., Qiang, Z., Jing, W., & Ming, L. (2020). Impact of cultivation on soil organic carbon and carbon sequestration potential in semiarid regions of China. Soil Use and Management ,36 (1), 83-92. https://doi.org/10.1111/sum.12540
Halde, C., & Entz, M. H. (2016). Plant species and mulch application rate affected decomposition of cover crop mulches used in organic rotational no-till systems. Canadian Journal of Plant Science ,96 (1), 59-71. https://doi.org/10.1139/cjps-2015-0095
Hou, H., Wang, C., Ding, Z., Zhang, S., Yang, Y., Ma, J., & Li, J. (2018). Variation in the soil microbial community of reclaimed land over different reclamation periods. Sustainability , 10 (7), 2286. https://doi.org/10.3390/su10072286
Ibrahim, A., Abaidoo, R. C., Fatondji, D., & Opoku, A. (2015). Integrated use of fertilizer micro-dosing and Acacia tumidamulching increases millet yield and water use efficiency in Sahelian semi-arid environment. Nutrient Cycling in Agroecosystems ,103 (3), 375-388. https://doi.org/10.1007/s10705-015-9752-z
Jackson, M. L. (1958). Soil chemical analysis prentice Hall. Inc., Englewood Cliffs, NJ , 498 , 183-204.
Jilkova, V., Strakova, P., &Frouz, J. (2020). Foliage C: N ratio, stage of organic matter decomposition and interaction with soil affect microbial respiration and its response to C and N addition more than C: N changes during decomposition. Applied Soil Ecology , 152 , 103568. https://doi.org/10.1016/j.apsoil.2020.103568
Joniec, J. (2018). Enzymatic activity as an indicator of regeneration processes in degraded soil reclaimed with various types of waste.International Journal of Environmental Science and Technology ,15 (10), 2241-2252. https://doi.org/10.1007/s13762-017-1602-x
Kader, M. A., Senge, M., Mojid, M. A., & Ito, K. (2017). Recent advances in mulching materials and methods for modifying soil environment. Soil and Tillage Research , 168 , 155-166. https://doi.org/10.1016/j.still.2017.01.001
Keeney, D. R., & Nelson, D. W. (1983). Nitrogen—Inorganic forms. In AL Page et al.(ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI. p. 643–698. https://doi.org/10.2134/agronmonogr9.2.2ed.c33.
Lei, L., & McDonald, L. M. (2019). Soil moisture and temperature effects on nitrogen mineralization in a high tunnel farming system.Communications in Soil Science and Plant Analysis , 50 (17), 2140-2150. https://doi.org/10.1080/00103624.2019.1654503
Li, F., Sorensen, P., Li, X., & Olesen, J. E. (2020). Carbon and nitrogen mineralization differ between incorporated shoots and roots of legume versus non-legume based cover crops. Plant and Soil ,446 (1), 243-257. https://doi.org/10.1007/s11104-019-04358-6
Li, Z., Tian, D., Wang, B., Wang, J., Wang, S., Chen, H. Y., & Niu, S. (2019). Microbes drive global soil nitrogen mineralization and availability. Global Change Biology , 25 (3), 1078-1088. https://doi.org/10.1111/gcb.14557
Lima, M. T., Ribeiro, A. Í., Dias, H. C. T., Rosa, A. G., Pires, G. T., & Tonello, K. C. (2018). The dynamics of the substrate recovery of waste dumps in calcary mining under natural regeneration. Cerne ,24 (1), 18-26. https://doi.org/10.1590/01047760201824012476
Liu, W., Yu, Z., Zhu, Q., Zhou, X., & Peng, C. (2020). Assessment of biomass utilization potential of Caragana korshinskii and its effect on carbon sequestration on the Northern Shaanxi Loess Plateau, China. Land Degradation & Development , 31 (1), 53-64. https://doi.org/10.1002/ldr.3425
Luo, G., Rensing, C., Chen, H., Liu, M., Wang, M., Guo, S., & Shen, Q. (2018). Deciphering the associations between soil microbial diversity and ecosystem multifunctionality driven by long-term fertilization management. Functional Ecology , 32 (4), 1103-1116. https://doi.org/10.1111/1365-2435.13039
Maiti, S. K. (2012). Ecorestoration of the coalmine degraded lands . Springer Science & Business Media.
Maiti, S. K., & Maiti, D. (2015). Ecological restoration of waste dumps by topsoil blanketing, coir-matting and seeding with grass–legume mixture. Ecological Engineering , 77 , 74-84. https://doi.org/10.1016/j.ecoleng.2015.01.003
Marques, A. R., Vianna, C. R., Monteiro, M. L., Pires, B. O. S., de Carvalho Urashima, D., & Pontes, P. P. (2016). Utilizing coir geotextile with grass and legume on soil of Cerrado, Brazil: An alternative strategy in improving the input of nutrients in degraded pasture soil? Applied Soil Ecology , 107 , 290-297. https://doi.org/10.1016/j.apsoil.2016.06.002
Marzi, M., Shahbazi, K., Kharazi, N., & Rezaei, M. (2020). The influence of organic amendment source on carbon and nitrogen mineralization in different soils. Journal of Soil Science and Plant Nutrition , 20 (1), 177-191. https://doi.org/10.1007/s42729-019-00116-w
Munoz-Rojas, M., Erickson, T. E., Dixon, K. W., & Merritt, D. J. (2016). Soil quality indicators to assess functionality of restored soils in degraded semiarid ecosystems. Restoration Ecology ,24 , 43-52. https://doi.org/10.1111/rec.12368
Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3 Chemical methods , 5 , 961-1010.
Pramanik, P., Bandyopadhyay, K. K., Bhaduri, D., Bhattacharyya, R., & Aggarwal, P. (2015). Effect of mulch on soil thermal regimes-A review.International Journal of Agriculture, Environment and Biotechnology , 8 (3), 645-658. https://doi.org/10.5958/2230-732X.2015.00072.8
Prommer, J., Walker, T. W., Wanek, W., Braun, J., Zezula, D., Hu, Y., & Richter, A. (2020). Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity.Global Change Biology , 26 (2), 669-681. https://doi.org/10.1111/gcb.14777
Radicetti, E., Campiglia, E., Marucci, A., & Mancinelli, R. (2017) How winter cover crops and tillage intensities affect nitrogen availability in eggplant. Nutrient Cycling in Agroecosystems, 108 , 177–194. https://doi.org/10.1007/s10705-017-9849-7
Sekaran, U., Loya, J. R., Abagandura, G. O., Subramanian, S., Owens, V., & Kumar, S. (2020). Intercropping of kura clover (Trifoliumambiguum M. Bieb) with prairie cordgrass (Spartina pectinata link.) enhanced soil biochemical activities and microbial community structure. Applied Soil Ecology ,147 , 103427. https://doi.org/10.1016/j.apsoil.2019.103427
Semenov, V. M., Pautova, N. B., Lebedeva, T. N., Khromychkina, D. P., Semenova, N. A., & de Gerenyu, V. L. (2019). Plant residues decomposition and formation of active organic matter in the soil of the incubation experiments. Eurasian Soil Science , 52 (10), 1183-1194. https://doi.org/10.1134/S1064229319100119
Shang, Z. H., Cao, J. J., Guo, R. Y., Long, R. J., & Deng, B. (2014). The response of soil organic carbon and nitrogen 10 years after returning cultivated alpine steppe to grassland by abandonment or reseeding. Catena , 119 , 28-35. https://doi.org/10.1016/j.catena.2014.03.006
Shao, Q., Gu, W., Dai, Q. Y., Makoto, S., & Liu, Y. (2014). Effectiveness of geotextile mulches for slope restoration in semi-arid northern China. Catena , 116 , 1-9. https://doi.org/10.1016/j.catena.2013.12.006
Subbiah, B. V., & Asija, G. L. (1956). A rapid procedure for assessment of available nitrogen in soils. Current Science , 25, 259-260.
Talema, A., Poesen, J., Muys, B., Padro, R., Dibaba, H., & Diels, J. (2019). Survival and growth analysis of multipurpose trees, shrubs, and grasses used to rehabilitate badlands in the subhumid tropics.Land degradation & Development , 30 (4), 470-480. https://doi.org/10.1002/ldr.3239
Tian, J., Wei, K., Condron, L. M., Chen, Z., Xu, Z., Feng, J., & Chen, L. (2017). Effects of elevated nitrogen and precipitation on soil organic nitrogen fractions and nitrogen-mineralizing enzymes in semi-arid steppe and abandoned cropland. Plant and Soil ,417 (1-2), 217-229. https://doi.org/10.1007/s11104-017-3253-6
Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil biology and Biochemistry , 19 (6), 703-707.
Wang, J., Liu, H., Wu, X., Li, C., & Wang, X. (2017). Effects of different types of mulches and legumes for the restoration of urban abandoned land in semi-arid northern China. Ecological Engineering , 102 , 55-63. https://doi.org/10.1016/j.ecoleng.2017.02.001
Wang, G., Liu, S., Fang, Y., & Shangguan, Z. (2020). Adaptive changes in root morphological traits of Gramineae and Leguminosae seedlings in the ecological restoration of the semiarid region of northwest China.Land Degradation & Development, 1–13. https://doi.org/10.1002/ldr.3616
Wu, G. L., Liu, Y., Tian, F. P., & Shi, Z. H. (2017). Legumes functional group promotes soil organic carbon and nitrogen storage by increasing plant diversity. Land Degradation & Development ,28 (4), 1336-1344. https://doi.org/10.1002/ldr.2570
Wu, H., Lü, L., Zhang, Y., Xu, C., Yang, H., Zhou, W., … & Han, X. (2019). Sediment addition and legume cultivation result in sustainable, long‐term increases in ecosystem functions of sandy grasslands.Land Degradation & Development , 30 (14), 1667-1676. https://doi.org/10.1002/ldr.3348
Wu, X., Xu, H., Tuo, D., Wang, C., Fu, B., Lv, Y., & Liu, G. (2020). Land use change and stand age regulate soil respiration by influencing soil substrate supply and microbial community. Geoderma ,359 , 113991. https://doi.org/10.1016/j.geoderma.2019.113991
Yang, Y., Yang, J., Zhao, T., Huang, X., & Zhao, P. (2016). Ecological restoration of highway slope by covering with straw-mat and seeding with grass–legume mixture. Ecological Engineering , 90 , 68-76. https://doi.org/10.1016/j.ecoleng.2016.01.052
Yu, T., Lin, F., Liu, X., & Wang, X. (2020). Recovery Role in Soil Structural, Carbon and Nitrogen Properties of the Conversion of Vegetable Land to Alfalfa Land in Northwest China. Journal of Soil Science and Plant Nutrition , 1-12. https://doi.org/10.1007/s42729-020-00218-w
Yuan, Z. Q., Yu, K. L., Epstein, H., Fang, C., Li, J. T., Liu, Q. Q., & Li, F. M. (2016). Effects of legume species introduction on vegetation and soil nutrient development on abandoned croplands in a semi-arid environment on the Loess Plateau, China. Science of the Total Environment , 541 , 692-700. https://doi.org/10.1016/j.scitotenv.2015.09.108
Zhang, R., Huang, Q., Yan, T., Yang, J., Zheng, Y., Li, H., & Li, M. (2019). Effects of intercropping mulch on the content and composition of soil dissolved organic matter in apple orchard on the loess plateau.Journal of Environmental Management , 250 , 109531. https://doi.org/10.1016/j.jenvman.2019.109531
Zuber, S. M., &Villamil, M. B. (2016). Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biology and Biochemistry , 97 , 176-187. https://doi.org/10.1016/j.soilbio.2016.03.011