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Abstract. This paper is concerned with multi-term fractional differential equations. With the

help of the theory of fractional resolvent families, we establish the existence of mild solutions to
a multi-term fractional differential equation.

1. Introduction

In the last two decades, differential equations involving fractional derivatives, have been used
in many mathematical models to describe a wide variety of phenomena, including problems in
viscoelasticity, signal and image processing, engineering, economics, epidemiology and among oth-
ers, and the study of this kind of equations has been a topic of interest in recent years. See
[10, 16, 19, 26, 36, 40] and the references therein.

In this paper, we consider the following multi-term fractional differential equations

(1.1) ∂αu(t) = Au(t) + ∂α−βf(t, u(t)), t ∈ R,

and

(1.2) ∂α
t u(t) = Au(t) + ∂α−β

t f(t, u(t)), t ∈ [0, T ],

where A is a closed linear operator defined in a Banach space X, 1 < α, β < 2, T > 0, and f is a
suitable continuous function. Here, for γ > 0 the derivatives ∂γu and ∂γ

t u, denote the Weyl and
Caputo fractional derivatives, respectively.

Although the definition of the fractional derivatives in the sense of Weyl (defined on R) and
Caputo (defined on [0,∞)) are different, we notice that the mild solution to equations (1.1) and
(1.2) can be written in terms of the same resolvent family. In fact, if A is the generator of the
fractional resolvent family {Sα,1(t)}t≥0 (see its definition in Section 2) then the mild solutions to
Equations (1.1) and (1.2) are defined, respectively, by

u(t) =

∫ t

−∞
Sα,β(t− s)f(s, u(s))ds, t ∈ R,

and

u(t) = Sα,1(t)x+ Sα,2(t)y +

∫ t

0

Sα,β(t− s)f(s, u(s))ds, t > 0,

where x = u(0) and y = u′(0) are the initial conditions in equation (1.2), and the families
{Sα,β(t)}t≥0, and {Sα,2(t)}t≥0, are given respectively by

Sα,β(t) = (gβ−1 ∗ Sα,1)(t), and Sα,2(t) = (g1 ∗ Sα,1)(t).

Here, the ∗ denotes the usual finite convolution and for γ > 0 the function gγ is defined by
gγ(t) := tγ−1/Γ(γ), where Γ(·) is the Gamma function. The fractional resolvent family {Sα,1(t)}t≥0
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is defined by

Sα,1(t) :=
1

2πi

∫
Γ

eλtλα−1(λα −A)−1dλ, t ≥ 0,

where Γ is a suitable complex path where the resolvent operator (λα − A)−1 is well defined. By
the uniqueness of the Laplace transform it is easy to see that

Sα,2(t) =
1

2πi

∫
Γ

eλtλα−2(λα −A)−1dλ and Sα,β(t) =
1

2πi

∫
Γ

eλtλα−β(λα −A)−1dλ,

for all t ≥ 0. The existence of mild solutions to equation (1.1) in case β = 1 has been widely studied
in the last years, see for instance [5, 13, 14, 25] and references therein. In these mentioned papers,
the operator A is assumed to be an ω-sectorial operator of angle θ (see definition in Section 2). In
this case, A generates a resolvent family {Eα(t)}t≥0 (see [12, 29]) which satisfies

∥Eα(t)∥ ≤ C

1 + |ω|tα
, for all t ≥ 0,

where C is a positive constant depending only on α and θ. This decay of {Eα(t)}t≥0 provides
also some tools to obtain many and interesting consequences in the study of qualitative properties
of solutions to fractional (and integral) differential (and difference) equations. See for instance
[5, 8, 9, 30, 32, 39] and the references therein for further details. We notice that, by the uniqueness
of the Laplace transform, the resolvent families {Eα(t)}t≥0 and {Sα,1(t)}t≥0 are the same for
1 < α < 2.

On the other hand, the existence of mild solutions to fractional differential equations with
nonlocal conditions has been studied by several authors in the last years. The concept of nonlocal
initial condition was introduced by L. Byszewski [7] to extend the study of classical initial value
problems. This notion results more suitable to describe more precisely several phenomena in
applied sciences, because it considers additional information in the initial data. More concretely,
the nonlocal conditions have the form u(0)+g(u) = u0 instead u(0) = u0, where g is an appropriate
function that represents the additional information in the system and provides a better description
of the initial state of the system than the classical initial value problem. The theory of nonlocal
Cauchy problems has been developed rapidly and has been studied widely in the last years, see for
instance [1, 4, 20, 33, 37, 38] and the references therein for more details.

There exists a wide recent literature on the existence of mild solutions to fractional differential
equations with nonlocal initial conditions. More specifically, the problem

(1.3)

{
∂α
t u(t) = Au(t) + f(t, u(t)), t ∈ [0, T ]

u(0) + g(u) = u0,

where T > 0, A is a closed linear operator defined in a Banach space X, 0 < α ≤ 1, u0 ∈ X, f
is a suitable semilinear continuous function has been studied extensively in recent years. See for
instance [2, 3, 11, 27, 31, 35]. Since the fractional derivative ∂α

t for α = 1 is the usual derivative
d
dt , the case α = 1 in (1.3) corresponds precisely to the semilinear Cauchy problem introduced
in the seminal paper [7] and the theory of C0-semigroups of linear operators is the main tool to
obtain the existence of solutions in this case. Similarly, for α > 0 the theory of fractional resolvent
families represents one of the main tools to study the existence of mild solutions to (1.3). Indeed,
if 0 < α ≤ 1 and A generates a resolvent family {Sα,α(t)}t≥0, then the mild solution to (1.3) is
given by

(1.4) u(t) = Sα,1(u0 − g(u)) +

∫ t

0

Sα,α(t− s)f(s, u(s))ds

where Sα,1(t) := (g1−α ∗ Sα,α)(t), see for instance [31]. We notice that the variation of constant
formula (1.4) coincides with the case α = 1 introduced in [7, Section 3]. Similarly, for 1 < α < 2
and β = 1 or β = α, the equation (1.2) subject to the nonlocal conditions u(0) + g(u) = u0,
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and u′(0) + h(u) = u1, where g, h : C(I,X) → C(I,X) are continuous and u0, u1 belong to X,
(I := [0, T ]) has been considered by several authors in the last years. See for instance [3, 23] for
the case β = 1 and [33, 34] in case β = α.

In this paper, our concern is the study of existence of mild solutions to the fractional differential
equations (1.1) and (1.2). Here, we assume certain conditions on the operator A and on the
parameters α and β in order to ensure that A is the generator of a fractional resolvent family
{Sα,β(t)}t≥0.

More specifically, in equation (1.1) we consider the Weyl fractional derivative, because it is
defined for functions on R. More precisely, we show that if the function f in (1.1) is an almost
periodic or an almost automorphic (among others) vector-valued function, then the equation (1.1)
has a unique almost periodic or almost automorphic function mild solution, respectively, which is
given in terms of {Sα,β(t)}t≥0.

On the other hand, in equation (1.2) the derivative is taken in the sense of Caputo, because it
is defined on the positive real axis [0,∞). Under the the nonlocal conditions u(0)+ g(u) = u0, and
u′(0) + h(u) = u1 we prove that (1.2) has at least one mild solution. Here, the properties of the
fractional resolvent family {Sα,β(t)}t≥0 are again an important tool to obtain the result.

This paper is organized as follows. The Section 2 gives the preliminaries on fractional calculus,
sectorial operators, fractional resolvent families and some subspaces of bounded and continuous
functions. Section 3 is devoted to the existence of mild solutions to (1.1). Finally, in Section 4 is
studied the existence of mild solutions to the nonlocal problem (1.2).

2. Preliminaries

For a Banach space (X, ∥ · ∥), the space of all bounded and linear operators form X into X is
denoted by B(X). If A is a closed linear operator defined on X we denote by ρ(A) the resolvent
set of A and R(λ,A) = (λ − A)−1 its resolvent operator, which is defined for all λ ∈ ρ(A). For
1 ≤ p < ∞, Lp(R+, X) denotes the space of all Bochner measurable functions g : R+ → X such
that

∥g∥p :=

(∫ ∞

0

∥g(t)∥pdt
)1/p

< ∞.

We recall that a strongly continuous family {S(t)}t≥0 ⊂ B(X) is said to be exponentially
bounded if there exist two constants M > 0 and w ∈ R such that ∥S(t)∥ ≤ Mewt for all t > 0.

A closed and densely defined operator A, defined on a Banach space (X, ∥ · ∥), is said to be
ω-sectorial of angle ϕ, if there exist ϕ ∈ [0, π/2) and ω ∈ R such that its resolvent exists in the
sector ω+Σϕ :=

{
ω + λ : λ ∈ C, | arg(λ)| < π

2 + ϕ
}
\{ω} and ∥R(λ,A)∥ ≤ M

|λ−ω| for all λ ∈ ω+Σϕ.

See [17] and [18] for further details.
Now, we review some results on fractional calculus. We recall that for γ > 0, the function gγ

is defined by gγ(t) =
tγ−1

Γ(γ) for all t ≥ 0. For γ > 0, ⌈γ⌉ denotes the smallest integer greater than

or equal to γ, and [γ] denotes the integer part of γ. As usual, the finite convolution of f and g is

defined by (f ∗ g)(t) =
∫ t

0
f(t− s)g(s)ds.

Definition 2.1. Let α > 0 and n = ⌈α⌉. The Caputo fractional derivative of order α of a function
u : [0,∞) → X is defined by

∂α
t u(t) :=

∫ t

0

gn−α(t− s)u(n)(s)ds.

Definition 2.2. Let α > 0 and n = [α]+1. The Weyl fractional derivative of order α of a function
u : R → X is defined by

∂αu(t) :=
dn

dtn
∂−(n−α)u(t),
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where for γ > 0, ∂−γu(t) :=
∫ t

−∞ gγ(t− s)u(s)ds for all t ∈ R.

It is a well known fact that if α ∈ N, then ∂n
t = ∂n = dn

dtn , that is, the Caputo and Weyl
fractional derivatives coincide with the usual derivative if α ∈ N. Moreover, if α, β ∈ R, then
∂α∂βu = ∂β∂αu = ∂α+βu. See [26] for more details on fractional differential calculus.

Now, we recall the resolvent families of operators generated by an operator A.

Definition 2.3. Let A be closed linear operator with domain D(A), defined on a Banach space X,
1 ≤ α ≤ 2 and 0 < β ≤ 2. We say that A is the generator of an (α, β)-resolvent family, if there
exists ν ≥ 0 and a strongly continuous and exponentially bounded function Sα,β : [0,∞) → B(X)
such that {λα : Reλ > ν} ⊂ ρ(A), and for all x ∈ X,

λα−β (λα −A)
−1

x =

∫ ∞

0

e−λtSα,β(t)xdt, Reλ > ν.

In this case, {Sα,β(t)}t≥0 is called the (α, β)-resolvent family generated by A.

If we compare Definition 2.3 with the notion of (a, k)-regularized families introduced in [22],
then we notice that t 7→ Sα,β(t), is a (gα, gβ)-regularized family. Moreover, the family {Sα,β(t)}t≥0

is well known in some cases. For example, S1,1(t) is a C0-semigroup, S2,1(t), corresponds to a
cosine family and S2,2(t) is a sine family. In the scalar case, that is, when A = ϱI, where ϱ ∈ C
and I denotes the identity operator, then by the uniqueness of the Laplace transform, Sα,β(t)
corresponds to the function tβ−1Eα,β(ϱt

α), where for z ∈ C the generalized Mittag-Leffler function

is defined by Eα,β(z) =
∑∞

k=0
zk

Γ(αk+β) .

We have also the following result. Its proof follows similarly as in [21, Proposition 3.7].

Proposition 2.4. Let 1 ≤ α, β ≤ 2. Let Sα,β(t) be the (α, β)-resolvent family generated by A.
Then:

(1) Sα,β(t)x ∈ D(A) and Sα,β(t)Ax = ASα,β(t)x for all x ∈ D(A) and t ≥ 0.
(2) If x ∈ D(A) and t ≥ 0, then

Sα,β(t)x = gβ(t)x+

∫ t

0

gα(t− s)ASα,β(s)xds(2.1)

(3) If x ∈ X, t ≥ 0, then
∫ t

0
gα(t − s)Sα,β(s)xds ∈ D(A) and Sα,β(t)x = gβ(t)x + A

∫ t

0
gα(t −

s)Sα,β(s)xds.

In particular, Sα,β(0) = gβ(0)I.

The next result gives sufficient conditions on α, β and A to obtain generators of (α, β)-resolvent
families.

Theorem 2.5. [29] Let 1 < α < 2 and β ≥ 1 such that α−β+1 > 0. Assume that A is ω-sectorial

of angle (α−1)π
2 , where ω < 0. Then A generates an exponentially bounded (α, β)-resolvent family.

Theorem 2.6. [29] Let 1 < α < 2 and β ≥ 1 such that α−β+1 > 0. Assume that A is ω-sectorial

of angle (α−1)
2 π, where ω < 0. Then, there exists a constant C > 0, depending only on α and β,

such that

∥Sα,β(t)∥ ≤ Ctβ−1

1 + |ω|tα
, for all t > 0.(2.2)

Finally, we recall some spaces of functions. For a given Banach space (X, ∥ · ∥), let BC(X) :=
{f : R → X : ∥f∥∞ := supt∈R ∥f(t)∥ < ∞} be the Banach space of all bounded and continuous
functions. For T > 0 fixed, PT (X) denotes the space of all vector-valued periodic functions, that
is, PT (X) := {f ∈ BC(X) : f(t+ T ) = f(t), for all t ∈ R}. We denote by AP (X) to the space of
all almost periodic functions (in the sense of Bohr), which consists of all f ∈ BC(X) such that for



MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS 5

every ε > 0 there exists l > 0 such that for every subinterval of R of length l contains at least one
point τ such that ∥f(t+ τ)− f(t)∥∞ ≤ ε. A function f ∈ BC(X) is said to be almost automorphic
if for every sequence of real numbers (s′n)n∈N there exists a subsequence (sn)n∈N ⊂ (s′n)n∈N such
that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

f(t) = lim
n→∞

g(t− sn), for each t ∈ R.

We denote by AA(X) the Banach space of all almost automorphic functions.
On the other hand, the space of compact almost automorphic functions is the space of all

functions f ∈ BC(X) such that for all sequence (s′n)n∈N of real numbers there exists a subsequence
(sn)n∈N ⊂ (s′n)n∈N such that g(t) := limn→∞ f(t+sn) and f(t) = limn→∞ g(t−sn) uniformly over
compact subsets of R.

We notice that PT (X), AP (X), AA(X) and AAc(X) are Banach spaces under the norm || · ||∞
and

PT (X) ⊂ AP (X) ⊂ AA(X) ⊂ AAc(X) ⊂ BC(X).

We notice that all these inclusions are proper. Now we consider the set C0(X) := {f ∈ BC(X) :
lim|t|→∞ ||f(t)|| = 0}, and define the space of asymptotically periodic functions as APT (X) :=
PT (X)⊕ C0(X). Analogously, we define the space of asymptotically almost periodic functions,

AAP (X) := AP (X)⊕ C0(X),

the space of asymptotically compact almost automorphic functions,

AAAc(X) := AAc(X)⊕ C0(X),

and the space of asymptotically almost automorphic functions,

AAA(X) := AA(X)⊕ C0(X).

We have the following natural proper inclusions

APT (X) ⊂ AAP (X) ⊂ AAAc(X) ⊂ AAA(X) ⊂ BC(X).

For more details on this function spaces, we refer to reader to [24, 28].
Throughout, we will use the notation N (X) to denote any of the function spaces APT (X),

AAP (X), AAAc(X) and AAA(X) defined above. Finally, we define the set N (R ×X;X) which
consists of all functions f : R×X → X such that f(·, x) ∈ N (X) uniformly for each x ∈ K, where
K is any bounded subset of X. Moreover, we have the following result.

Theorem 2.7. [24] Let {S(t)}t≥0 ⊂ B(X) be a strongly continuous and uniformly 1-integrable
family, that is

∫∞
0

∥S(t)∥dt < ∞. If f ∈ N (X), then the function u : R → X defined by

u(t) :=

∫ t

−∞
S(t− s)f(s)ds,

belongs to N (X).

3. Bounded mild solutions to Equation (1.1)

Let 1 < α < 2 and β ≥ 1. In this section, we first consider the linear version of the equation
(1.1), that is,

(3.3) ∂αu(t) = Au(t) + ∂α−βf(t), t ∈ R.
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Definition 3.8. A function u ∈ C(R, X) is called a mild solution to equation (3.3) if the function
s 7→ Sα,β(t− s)f(s) is integrable on (−∞, t) for each t ∈ R and

(3.4) u(t) =

∫ t

−∞
Sα,β(t− s)f(s)ds, t ∈ R.

We notice that (3.3) can be considered as the limiting equation of the following integro-differential
equation with singular kernels

(3.5)

 v′(t) =

∫ t

0

(t− s)α−2

Γ(α− 1)
Av(s) +

(t− s)β−2

Γ(β − 1)
f(s)ds, t ≥ 0

v(0) = v0, v0 ∈ X,

in the sense that the mild solution to equation (3.5) converges to the mild solution of (3.3) as

t → ∞. In fact, if ω < 0 and A is an ω-sectorial operator of angle θ = (α−1)
2 π, then taking Laplace

transform in (3.5) we obtain

λv̂(λ)− v(0) = Av̂(λ) +
1

λβ−1
f̂(λ), Reλ > 0,

which is equivalent to

(λα −A)v̂(λ) = λα−1v(0) + λα−β f̂(λ), Reλ > 0.

Therefore the solution of problem (3.5) can be written as

v(t) = Sα,1(t)v0 +

∫ t

0

Sα,β(t− s)f(s)ds, t ≥ 0,(3.6)

where {Sα,β(t)}t≥0 is the family of operators given by

Sα,β(t) := (gβ−1 ∗ Sα,1)(t).

On the other hand, by [29, Corollary 3.9] the function t 7→ Sα,β(t) is uniformly 1-integrable and
therefore if f is a bounded continuous function (for example, f belongs to N (X)), then the mild
solution to equation (1.1) is given by

u(t) =

∫ t

−∞
Sα,β(t− s)f(s)ds.

Since

v(t)− u(t) = Sα,1(t)v0 −
∫ ∞

t

Sα,β(s)f(t− s)ds,

we conclude by [29, Corollary 3.8], that v(t)− u(t) → 0 as t → ∞.
Let 1 < α < 2, β ≥ 1 such that α−β+1 > 0, ω < 0 and assume that A is an ω-sectorial operator

of angle θ = (α−1)
2 π. By Theorem 2.5, the operator A generates a resolvent family {Sα,β(t)}t≥0.

Take a bounded and continuous function f : R → X, (for example, we can take f ∈ N (X)). Define
the function ϕ(t) by

(3.7) ϕ(t) :=

∫ t

−∞
Sα,β(t− s)f(s)ds, t ∈ R.

By Theorem 2.6 we have ||ϕ||∞ ≤ ||Sα,β ||1 ||f ||∞. If f(t) ∈ D(A) for all t ∈ R, then ϕ(t) ∈ D(A)
for all t ∈ R (see [6, Proposition 1.1.7]). Assume that ∂αϕ exists. The Proposition 2.4 and Fubini’s
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theorem imply that

∂αϕ(t) =
dn

dtn

∫ t

−∞
gn−α(t− s)ϕ(s)ds

=
dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞
Sα,β(s− r)f(r)drds

=
dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞

[
gβ(s− r)f(r) + (gα ∗ASα,β)(s− r)f(r)

]
drds

=
dn

dtn

∫ t

−∞
gn−α(t− s)∂−βf(s)ds+

dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞

∫ s−r

0

gα(s− r − v)ASα,β(v)f(r)dvdrds

= ∂α−βf(t) +
dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞

∫ s

r

gα(s− w)ASα,β(w − r)f(r)dwdrds

= ∂α−βf(t) +
dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞

∫ w

−∞
gα(s− w)ASα,β(w − r)f(r)drdwds

= ∂α−βf(t) +
dn

dtn

∫ t

−∞
gn−α(t− s)

∫ s

−∞
gα(s− w)Aϕ(w)dwds

= ∂α−βf(t) +Aϕ(t),

for all t ∈ R. This means that, ϕ is a (strong) solution to Equation (3.3). We recall that a function
u ∈ C(R, X) is called a strong solution of (3.3) on R if u ∈ C(R, D(A)), the fractional derivative
of u, ∂αu, exists and (3.3) holds for all t ∈ R. If merely u(t) belongs to X instead of the D(A),
then u is a mild solution to the equation (3.3) according to Definition 3.8. As consequence of the
above computation we have the following result.

Theorem 3.9. Let 1 < α < 2, 1 ≤ β ≤ α and ω < 0. Assume that A is an ω-sectorial operator of

angle θ = (α−1)
2 π. Then for each f ∈ N (X) there is a unique mild solution u ∈ N (X) of equation

(3.3) which is given by

u(t) =

∫ t

−∞
Sα,β(t− s)f(s)ds, t ∈ R.

Proof. By Theorem 2.5, the operator A generates a resolvent family {Sα,β(t)}t≥0 and by [29,
Corollary 3.9] the function t 7→ Sα,β(t) is uniformly 1-integrable. By Theorem 2.7 the function

u(t) =
∫ t

−∞ Sα,β(t− s)f(s)ds belongs to N (X) and it is the mild solution to (3.3). �

Next, we consider the semilinear equation (1.1).

Definition 3.10. A function u ∈ C(R, X) is called a mild solution to equation (1.1) if the function
s 7→ Sα,β(t− s)f(s, u(s)) is integrable on (−∞, t) for each t ∈ R and

(3.8) u(t) =

∫ t

−∞
Sα,β(t− s)f(s, u(s))ds, t ∈ R.

Theorem 3.11. Let 1 < α < 2, 1 ≤ β < α, ω < 0 and A is an ω-sectorial operator of angle

θ = (α−1)
2 π. If f ∈ N (R×X,X) satisfies

(3.9) ∥f(t, u)− f(t, v)∥ ≤ L∥u− v∥, for all t ∈ R, and u, v ∈ X,
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where L < α
C |ω|β/αB

(
β
α , 1−

β
α

)−1

, and C is the constant given in Theorem 2.6, and B(·, ·)
denotes the Beta function, then the equation (1.1) has a unique mild solution u ∈ N (X).

Proof. Define the operator F : N (X) → N (X) by

(3.10) (Fϕ)(t) :=

∫ t

−∞
Sα,β(t− s)f(s, ϕ(s)) ds, t ∈ R.

By [29, Corollary 3.9] we have

(3.11)

∫ ∞

0

∥Sα,β(t)∥dt ≤
C

α
|ω|−β/αB

(
β

α
, 1− β

α

)
< ∞,

and [24, Theorems 3.3 and 4.1], F is well defined, that is, Fϕ ∈ N (X) for all ϕ ∈ N (X). For
ϕ1, ϕ2 ∈ N (X) and t ∈ R, by (3.11), we have:

∥(Fϕ1)(t)− (Fϕ2)(t)∥ ≤
∫ t

−∞
∥Sα,β(t− s)[f(s, ϕ1(s))− f(s, ϕ2(s))]∥ds

≤
∫ t

−∞
L∥Sα,β(t− s)∥ · ∥ϕ1(s)− ϕ2(s)∥ds

≤ L∥ϕ1 − ϕ2∥∞
∫ ∞

0

∥Sα,β(r)∥dr

≤ LC

α
|ω|−β/αB

(
β

α
, 1− β

α

)
∥ϕ1 − ϕ2∥∞.

This proves that F is a contraction, so by the Banach fixed point theorem there exists a unique
u ∈ N (X) such that Fu = u. �

Theorem 3.12. Let 1 < α < 2, 1 ≤ β < α, ω < 0 and A is an ω-sectorial operator of angle

θ = (α−1)
2 π. If f ∈ N (R×X,X) satisfies

∥f(t, u)− f(t, v)∥ ≤ L(t)∥u− v∥, for all t ∈ R, and u, v ∈ X,

where L(·) ∈ L1(R,R+), then the equation (1.1) admits a unique mild solution u ∈ N (X).

Proof. It easily follows by Theorem 2.6 that ∥Sα,β(t)∥ ≤ C̃ := max

{
C,

C

|ω|

}
. Define the operator

F as (3.10). For u, v ∈ N (X) and t ∈ R, we have

||(Fu)(t)− (Fv)(t)|| ≤
∫ t

−∞
||Sα,β(t− s)[f(s, u(s))− f(s, v(s))]||ds

≤ C̃∥u− v∥∞
∫ ∞

0

L(t− ξ)dξ

= C̃∥u− v∥∞
∫ t

−∞
L(s)ds.

Generally, we have

∥(Fnu)(t)− (Fnv)(t)∥ ≤ ∥u− v∥∞
(C̃)n

(n− 1)!

(∫ t

−∞
L(s)

(∫ s

−∞
L(ξ)dξ

)n−1

ds

)

≤ ∥u− v∥∞
(C̃)n

n!

(∫ t

−∞
L(s)ds

)n

≤ ∥u− v∥∞
(∥L∥1C̃)n

n!
.
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Since
(∥L∥1C̃)n

n!
< 1 for sufficiently large n, by the contraction principle F admits a unique fixed

point u ∈ N (X). �

4. Mild solutions to Equation (1.2) with nonlocal conditioins

Assume that A is an ω-sectorial operator of angle θ = (α−1)
2 π. By Theorem 2.5 the operator A

generates a resolvent family {Sα,β(t)}t≥0. If h : C(I,X) → C(I,X) is a continuous function and
u1 ∈ X, then it is well known that the mild solution to problem

(4.12)

 ∂α
t u(t) = Au(t) + ∂α−β

t f(t, u(t)), 0 ≤ t ≤ T
u(0) = 0,
u′(0) + h(u) = u1,

is given by means of the variation-of-constant formula

u(t) = Sα,2(t)[u1 − h(u)] +

∫ t

0

Sα,β(t− s)f(s, u(s))ds, t ∈ [0, T ].

We assume the following

• H1. The function f satisfies the Carathéodory condition, that is f(·, u) is strongly mea-
surable for each u ∈ X and f(t, ·) is continuous for each t ∈ I := [0, T ].

• H2. There exists a continuous function µ : I → R+ such that

∥f(t, u)∥ ≤ µ(t)∥u∥, ∀ t ∈ I, u ∈ C(I,X).

• H3. The function h : C(I,X) → C(I,X) is continuous and there exists Lh > 0 such that

∥h(u)− h(v)∥ < Lh∥u− v∥, ∀u, v ∈ C(I,X).

• H4. The set K = {Sα,β(t− s)f(s, u(s)) : u ∈ C(I,X), 0 ≤ s ≤ t} is relatively compact for
each t ∈ I.

Proposition 4.13. Let 1 < α < 2 and 1 < β ≤ 2 such that α− β + 1 > 0. If A is an ω-sectorial

operator of angle θ = (α−1)
2 π, where ω < 0, then the function t 7→ Sα,β(t) is continuous in B(X)

for all t > 0.

Proof. It proof follows similarly to [31, Proposition 11]. We omit the details. �

We recall the following results.

Lemma 4.14 (Mazur’s Theorem). If K is a compact subset of a Banach space X, then its convex

closure conv(K) is compact.

Lemma 4.15 (Leray-Schauder Alternative Theorem). Let C be a convex subset of a Banach space
X. Suppose that 0 ∈ C. If F : C → C is a completely continuous map, then either F has a fixed
point, or the set {x ∈ C : x = λF (x), 0 < λ < 1} is unbounded.

Lemma 4.16 (Krasnoselskii Theorem). Let C be a closed convex and nonempty subset of a Banach
space X. Let Q1 and Q2 be two operators such that

i) If u, v ∈ C, then Q1u+Q2v ∈ C.
ii) Q1 is a mapping contraction.
iii) Q2 is compact and continuous.

Then, there exists z ∈ C such that z = Q1z +Q2z.

We have the following existence theorem.
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Theorem 4.17. Let 1 < α < 2 and 1 < β < 2 such that α − β + 1 > 0. Assume that A is an

ω-sectorial operator of angle θ = (α−1)
2 π, where ω < 0. Under assumptions H1-H4, the problem

(4.12) has at least one mild solution.

Proof. By Theorem 2.5, the operatorA generates a resolvent family {Sα,1(t)}t≥0. By the uniqueness
of the Laplace transform we have Sα,2(t) = (g1 ∗ Sα,1)(t) and Sα,β(t) = (gβ−1 ∗ Sα,1)(t) for all
t ≥ 0. Moreover, by Theorem 2.6 there exists a constant M > 0 such that ∥Sα,2(t)∥ ≤ M and
∥Sα,β(t)∥ ≤ M for all t ≥ 0. Now, we define the operator Γ : C(I,X) → C(I,X) by

(Γu)(t) := Sα,2(t)[u1 − h(u)] +

∫ t

0

Sα,β(t− s)f(s, u(s))ds, t ∈ [0, T ].

Let Br := {u ∈ C(I,X) : ∥u∥ ≤ r}, where r > 0. We shall prove that Γ has at least one fixed point
by the Leray-Schauder fixed point theorem. We will consider several steps in the proof.

Step 1. The operator Γ sends bounded sets of C(I,X) into bounded sets of C(I,X). In fact,
take u ∈ Br and G := supu∈Br

∥h(u)∥. Then

∥Γu(t)∥ ≤ ∥Sα,2(t)∥(∥u1∥+ ∥h(u)∥) +
∫ t

0

∥Sα,β(t− s)∥∥f(s, u(s))∥ds

≤ M(∥u1∥+G) +M

∫ t

0

µ(s)∥u(s)∥ds

≤ M(∥u1∥+G) +Mr

∫ t

0

µ(s)ds

≤ M(∥u1∥+G) +Mr∥µ∥∞T := R.

Therefore ΓBr ⊂ BR.
Step 2. Γ is a continuous operator.
Let un, u ∈ Br such that un → u in C(I,X). Then we have

∥Γun(t)− Γu(t)∥ ≤ ∥Sα,2(t)∥(∥h(un)− h(u)∥) +
∫ t

0

∥Sα,β(t− s)∥∥f(s, un(s))− f(s, u(s))∥ds

≤ MLh∥un − u∥+M

∫ t

0

∥f(s, un(s))− f(s, u(s))∥ds

≤ MLh∥un − u∥+M

∫ t

0

µ(s)(∥un(s)∥+ ∥u(s)∥)ds

≤ MLh∥un − u∥+ 2rM

∫ t

0

µ(s)ds.

We notice that the function s 7→ µ(s) is integrable on I. By the Lebesgue’s Dominated Convergence

Theorem,
∫ t

0
∥f(s, un(s)) − f(s, u(s))∥ds → 0 as n → ∞. Since un → u we obtain that Γ is

continuous in C(I,X).
Step 3 The operator Γ sends bounded sets of C(I,X) into equicontinuous sets of C(I,X).
In fact, let u ∈ Br, with r > 0 and take t1, t2 ∈ I with t2 < t1. Then we have

∥Γu(t1)− Γu(t2)∥ ≤ ∥(Sα,2(t1)− Sα,2(t2))(u1 − h(u))∥+
∫ t1

t2

∥Sα,β(t1 − s)f(s, u(s))∥ds

+

∫ t2

0

∥(Sα,β(t1 − s)− Sα,β(t2 − s))f(s, u(s))∥ds

:= I1 + I2 + I3.

Observe that
I1 ≤ ∥(Sα,2(t1)− Sα,2(t2))∥∥(u1 − h(u))∥.
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Using the norm continuity of t 7→ Sα,2(t) (see Proposition 4.13) we obtain that limt1→t2 I1 = 0.
On the other hand,

I2 ≤ M

∫ t1

t2

µ(s)∥u(s)∥ds ≤ rM∥µ∥∞(t1 − t2),

and therefore limt1→t2 I2 = 0. Finally, for I3 we have

I3 ≤
∫ t2

0

∥Sα,β(t1 − s)− Sα,β(t2 − s)∥∥f(s, u(s))∥ds

≤
∫ t2

0

∥Sα,β(t1 − s)− Sα,β(t2 − s)∥µ(s)∥u(s)∥ds

≤ r

∫ t2

0

∥Sα,β(t1 − s)− Sα,β(t2 − s)∥µ(s)ds.

Since

∥Sα,β(t1 − ·)− Sα,β(t2 − ·)∥µ(·) ≤ 2Mµ(·) ∈ L1(I,R),
and Sα,β(t1 − s) − Sα,β(t2 − s) → 0 in B(X), as t1 → t2 (see Proposition 4.13) we obtain by the
Lebesgue’s dominated convergence theorem that limt1→t2 I3 = 0. The proof of the claim is finished.

Step 4. The function Γ maps Br into relatively compact sets in X.
The hypothesis and Lemma 4.14 imply that conv(K) is compact. Moreover, for u ∈ Br, by the

Mean-Value Theorem for the Bochner integral (see [15, Corollary 8, p. 48]), we get

Γ(u(t)) ∈ t conv(K),

for all t ∈ [0, T ]. Thus the set {Γu(t);u ∈ Br} is compact in X for every t ∈ [0, T ].
We conclude from Steps 1,2, 3 and 4, that Γ is continuous and compact by the Arzela-Ascoli’s

theorem, which means that the function Γ is completely continuous.
Step 5. The set Ω := {u ∈ Br : u = λΓu, 0 < λ < 1} is bounded. In fact, since 0 ∈ Ω we

obtain that Ω ̸= ∅. For u ∈ Ω we have

∥u(t)∥ ≤ λ[M(∥u1∥+ ∥h(u)∥) +M

∫ t

0

∥f(s, u(s)∥ds]

≤ λ[M(∥u1∥+G) +M

∫ t

0

µ(s)∥u(s)∥ds]

≤ [M(∥u1∥+G) +Mr∥µ∥∞T ],

for all t ∈ [0, T ], which means that Ω is a bounded set.
Therefore, by Lemma 4.15 we conclude that Γ has a fixed point, and the proof of the Theorem

is finished. �

Now, we consider the problem

(4.13)

 ∂α
t u(t) = Au(t) + ∂α−β

t f(t, u(t)), 0 ≤ t ≤ T
u(0) + g(u) = u0,
u′(0) + h(u) = u1,

where g, h : C(I,X) → C(I,X) are continuous and u0, u1 ∈ X. By (2.2) in Theorem 2.6, there
exists a constant M > 0 such that

(4.14) ∥Sα,1(t)∥ ≤ M

1 + |ω|tα
, ∥Sα,2(t)∥ ≤ Mt

1 + |ω|tα
, ∥Sα,β(t)∥ ≤ Mtβ−1

1 + |ω|tα
, t ≥ 0.

Thus

(4.15) ∥Sα,1(t)∥ ≤ M, ∥Sα,2(t)∥ ≤ MT, ∥Sα,β(t)∥ ≤ MT β−1, t ∈ [0, T ].
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Under the same assumptions H1-H3 and

• H3’. The function g : C(I,X) → C(I,X) is continuous and there exists Lg > 0 such that

∥g(u)− g(v)∥ < Lg∥u− v∥, ∀u, v ∈ C(I,X).

we have the following result.

Theorem 4.18. Let 1 < α < 2 and 1 < β < 2 such that α − β + 1 > 0. Assume that A is

an ω-sectorial operator of angle θ = (α−1)
2 π, where ω < 0. Suppose that M∥µ∥∞T β < 1 and

M(Lg + TLh) < 1, where M is the constant in (4.15). Assume that (λα −A)−1 is compact for all

λ > ν1/α, where ν is a positive constant. Under assumptions H1-H3 and H3’, the problem (4.13)
has at least one mild solution.

Proof. By Theorem 2.5, the operator A generates the resolvent family {Sα,1(t)}t≥0, and Sα,2(t) =
(g1 ∗Sα,1)(t) and Sα,β(t) = (gβ−1 ∗Sα,1)(t) for all t ≥ 0. Then, the mild solution to problem (4.13)
is given by

u(t) = Sα,1(t)[u0 − g(u)] + Sα,2(t)[u1 − h(u)] +

∫ t

0

Sα,β(t− s)f(s, u(s))ds, t ∈ [0, T ].

Let Br := {u ∈ C(I,X) : ∥u∥ ≤ r}, where

r :=
M(∥u0∥+ ∥g(u)∥) +MT (∥u1∥+ ∥h(u)∥)

1−M∥µ∥∞T β
.

On Br we define the operators Γ1,Γ2 by

(Γ1u)(t) : = Sα,1(t)[u0 − g(u)] + Sα,2(t)(u1 − h(u)) t ∈ [0, T ]

(Γ2u)(t) : =

∫ t

0

Sα,β(t− s)f(s, u(s))ds, t ∈ [0, T ],

where u ∈ Br. We claim that Γ := Γ1 + Γ2 has at least one fixed. To prove this, we will consider
several steps.

Step 1. We claim that if u, v ∈ Br, then Γ1u+ Γ2v ∈ Br. In fact,

∥(Γ1u)(t) + (Γ2v)(t)∥ ≤

≤ ∥Sα,1(t)∥ ∥u0 − g(u)∥+ ∥Sα,2(t)∥ ∥u1 − h(u)∥+
∫ t

0

∥Sα,β(t− s)∥ ∥f(s, v(s))∥ds

≤ M(∥u0∥+ ∥g(u)∥) +MT (∥u1∥+ ∥h(u)∥) +M

∫ t

0

(t− s)β−1µ(s)∥v(s)∥ds

≤ M(∥u0∥+ ∥g(u)∥) +MT (∥u1∥+ ∥h(u)∥) +MT β∥µ∥∞r = r.

Thus Γ1u+ Γ2v ∈ Br for all u, v ∈ Br.
Step 2. Γ1 is a contraction on Br. In fact, if u, v ∈ Br, then

∥Γ1u(t)− Γ1v(t)∥ ≤ ∥Sα,1(t)∥ ∥g(u)− g(v)∥+ ∥Sα,2(t)∥ ∥h(u)− h(v)∥ ≤ (MLg +MTLh)∥u− v∥
Since M(Lg + TLh) < 1, we get that Γ1 is a contraction.

Step 3. Γ2 is completely continuous.
Firstly, we prove that Γ2 is a continuous operator on Br. Let un, u ∈ Br such that un → u in

Br. We notice that by (4.14)

∥Γ2un(t)− Γ2u(t)∥ ≤
∫ t

0

∥Sα,β(t− s)∥∥f(s, un(s))− f(s, u(s))∥ds ≤ 2MrT β

∫ t

0

µ(s)ds.

Moreover, the function s 7→ µ(s) is integrable on [0, T ]. The Lebesgue’s Dominated Convergence

Theorem implies that
∫ t

0
∥f(s, un(s))− f(s, u(s))∥ds → 0 as n → ∞. Since un → u we obtain that

Γ2 is continuous in Br.
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Now, we prove that {Γ2u : u ∈ Br} is a relatively compact set. In fact, by the Ascoli-
Arzela theorem we only need to prove that the family {Γ2u : u ∈ Br} is uniformly bounded
and equicontinuous, and the set {Γ2u(t) : u ∈ Br} is relatively compact in X for each t ∈ [0, T ].
For each u ∈ Br we have ∥Γ2u∥ ≤ MT βr∥µ∥∞, which implies that {Γ2u : u ∈ Br} is uniformly
bounded.

Next, we prove the equicontinuity. For u ∈ Br and 0 ≤ t2 < t1 ≤ T we have

∥Γ2u(t1)− Γ2u(t2)∥ ≤
∫ t1

t2

∥Sα,β(t1 − s)f(s, u(s))∥ds

+

∫ t2

0

∥ (Sα,β(t1 − s)− Sα,β(t2 − s)) f(s, u(s))∥ds =: I1 + I2.

Observe that for I1, by (4.14) we have I1 ≤ MT β
∫ t1
t2

µ(s)∥u(s)∥ds ≤ MT βr∥µ∥∞(t1 − t2), and

thus limt1→t2 I1 = 0. On the other hand, for I2 we have

I2 ≤
∫ t2

0

∥Sα,β(t1 − s)− Sα,β(t2 − s)∥∥f(s, u(s))∥ds ≤ r

∫ t2

0

µ(s)∥Sα,β(t1 − s)− Sα,β(t2 − s)∥ds.

By (4.15) we have µ(·)∥Sα,β(t1−·)−Sα,β(t2−·)∥ ≤ 2T β−1Mµ(·) ∈ L1([0, T ],R), and by Proposition
4.13 the function t 7→ Sα,β(t) is norm continuous. This implies that if t1 → t2, then Sα,β)(t1 −
s) − Sα,β)(t2 − s) → 0 in B(X). By the Lebesgue’s dominated convergence theorem we conclude
that limt1→t2 I2 = 0. Therefore, {Γ2u : u ∈ Br} is an equicontinuous family.

Finally, we prove that H(t) := {Γ2u(t) : u ∈ Br} is relatively compact in X for each t ∈ [0, T ].
Clearly, H(0) is relatively compact in X. Now, we take t > 0. For 0 < ε < t we define on Br the
operator

(Γε
2u)(t) : =

∫ t−ε

0

Sα,β(t− s)f(s, u(s))ds.

By [31, Theorem 14] we have that Sα,β(t) is a compact operator for all t > 0. Thus Kε :=
{Sα,β(t − s)f(s, u(s)) : u ∈ Br, 0 ≤ s ≤ t − ε} is a compact set for all ε > 0. By Lemma

4.14, conv(Kε) is also a compact set. The Mean-Value Theorem for the Bochner integrals (see

[15, Corollary 8, p. 48]), implies that (Γε
2u)(t) ∈ tconv(Kε), for all t ∈ [0, T ]. Therefore, the set

Hε(t) := {(Γε
2u)(t) : u ∈ Br} is relatively compact in X for all ε > 0. Since

∥(Γ2u)(t)− (Γε
2u)(t)∥ ≤

∫ t

t−ε

∥Sα,β(t− s)f(s, u(s))∥ds ≤ MT β−1r

∫ t

t−ε

µ(s)ds

and the function s 7→ µ(s) belongs to L1([t − ε, t],R+) we conclude by the Lebesgue dominated
convergence Theorem that limε→0 ∥(Γ2u)(t)− (Γε

2u)(t)∥ = 0. Therefore the set {Γ2u(t) : u ∈ Br}
is relatively compact in X for each t ∈ (0, T ]. The Ascoli-Arzela theorem implies that the set
{Γ2u : u ∈ Br} is relatively compact. We conclude that Γ2 is a completely continuous operator.
By Lemma 4.16 we have that Γ = Γ1 + Γ2 has a fixed point on Br, and therefore the problem
(4.13) has a mild solution. �
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