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Abstract

Echinococcosis, one of the most serious zoonotic diseases, has a severe impact on the
human health and economic development. This paper mainly investigates the effect of s-
tochastically environmental variability on transmission dynamics of echinococcosis. Firstly,
sufficient conditions of the extinction in the mean for the disease are obtained. In addition,
by constructing a suitable stochastic Lyapunov function, the existence of the unique ergodic
stationary distribution is established. Lastly, numerical simulations have been performed to
not only verify our analytical results but also display that noise intensities would affect the
dynamical behaviors of this model, (i) these noise intensities for three subgroups all have
significantly negative impact on the extinction time for IH(t), in particular, when the noise
intensity for the livestock σL increases, the extinction time for IH(t) decreases; (ii) these
noise intensities for three subgroups have the influence on the skewness and kurtosis of the
stationary distribution for IH(t), where the effect of the noise intensity for humans σH on
the alteration of the distribution shape for IH(t) is obvious, from skyscraping to pyknic and
gradually migrating towards left as σH increasing.

Keywords: stochastic echinococcosis model; stochastic Lyapunov function; extinction;
stationary distribution; noise intensity.

1. Introduction

Echinococcosis is also called the hydatid disease, which is a parasitic disease caused by
the larvas of Echinococcus infesting in human body. It has become a global problem in the
field of public health and animal husbandry with its wide epidemic range. Echinococcosis
(especially cystic echinococcosis) almost spreads all over every continent. The spreading
range in China is about 4200,000 square kilometers, which makes up 44% of the total area
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of China. The main endemic areas with high risk of infection of echinococcosis to both
animals and humans center on northern part of pastoral regions or farming-pastoral regions,
including Xinjiang, Ningxia, Tibet, Qinghai and Inner Mongolia et al. [1–3].

Two species of Echinococcus that cause human hydatid disease are Echinococcus granulo-
sus and Echinococcus multilocularis, where the Echinococcus granulosus is the most common.
The mature Echinococcus granulosus lay eggs in the small intestine of the definitive host (e.g.
dogs, wolves, and other canines et al). Their eggs are passed out with stool and released to
the environment. The intermediate host (e.g. sheep, goat, hog, cattle, horses et al) acciden-
tally contact and devour these eggs. After digestion, the larva becomes oncosphere as soon
as it emerges from behind its shell. Then the oncosphere develops into metacestode cysts in
the host’s organs, producing protoscolices which will develop into adult worms when they
are eaten by a definitive host [4]. A life cycle of Echinococcus granulosus is accomplished.
It is noted that humans are almost always dead-end intermediate hosts. The life cycle of
Echinococcus multilocularis is similar with granulosus.

There has been various mathematical models to study echinococcosis transmission (see [5–
16]) since these seminal work of Gemmell et al. [5–8]. For example, Torgerson [12] illustrated
some of the potential uses of such modelling techniques to gain insights into the epidemiology
of parasite transmission. In [13], a deterministic model which described the dog-livestock-
egg-human life-cycle of Echinococcus granulosus was proposed to study the transmission
dynamics of echinococcosis in Xinjiang, and it was shown that the dynamics of the model
is completely determined by the basic reproductive number. In [14], the baseline model
and intervention model were applied to study the transmission dynamics of echinococcosis
in Qinghai. Wang et al. [15] proposed a novel spreading model for echinococcosis with
distributed time delays and obtained a threshold type result that the disease dies out when
the basic reproductive number R0 < 1 and the disease persists if R0 > 1. Rong et al. in [16]
proposed a deterministic model distinguishing stray dogs from domestic dogs to explore the
special role of stray dogs and potential effects of disposing stray dogs for the eradication of
echinococcosis infection in Inner Mongolia.

Thanks to the insightful work in [15], we propose the following deterministic model
describing the dog-livestock-human life-cycle of Echinococcus granulosus

ṠD = A1 − β1SDIL − d1SD + δID,

İD = β1SDIL − (d1 + δ)ID,

ṠL = A2 − β2SLID − d2SL,

İL = β2SLID − d2IL,

ṠH = A3 − β3SHID − d3SH + γIH ,

ĖH = β3SHID − (d3 + ω)EH ,

İH = ωEH − (d3 + µ+ γ)IH .

(1.1)

For dogs, the definitive hosts, includes susceptible dogs (SD) and infectious dogs (ID). A1 is
the recruitment rate of dogs. 1/d1 is the average lifespan of dogs. δ denotes the recovery rate
of transition from infected to noninfected dogs, including natural recovery rate and recovery
due to anthelmintic treatment. β1SDIL describes the transmission of echinococcosis between
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susceptible dogs and infectious livestock after the ingestion of cyst-containing organs of the
infected livestock. For the livestock, the intermediate hosts, includes susceptible individuals
(SL) and infectious individuals (IL). A2 is the recruitment rate of the livestock. 1/d2 is the
average lifespan of livestock. β2SLID describes the transmission of echinococcosis to livestock
by the ingestion of Echinococcus eggs in the environment which are emitted by dogs. For
humans, the accidental intermediate hosts, includes susceptible individuals (SH), exposed
individuals (EH) and infectious individuals (IH). A3 is the recruitment rate of humans. 1/d3

is the average lifespan of humans. µ is the disease-related death rate for humans. β3SHID
describes the transmission of echinococcosis to humans by the ingestion of Echinococcus eggs
in the environment which are emitted by dogs. The incubation period of infected individuals
is 1/ω, and γ denotes the recovery rate. All parameters are positive. It’s not hard to verify
model (1.1) has the following property:

• Model (1.1) always has a unique disease-free equilibrium P0 = (A1

d1
, 0, A2

d2
, 0, A3

d3
, 0, 0)

and a unique endemic equilibrium if and only if the basic reproduction number

R0 ,
√

A1A2β1β2
d1(d1+δ)d22

> 1.

However, in fact, the spread mechanism of infectious diseases is probabilistic in nature.
In real world, on the development and propagation of an epidemic, environmental random
factors have a significant affect in different various degree. The variability and randomness
of environment are fed through the state of the epidemic [17–19]. The intrinsic fluctuation or
noise occurs in the time evolution of the number in each compartment for the transmission
of echinococcosis. For example, the livestock, as the intermediate hosts in the process of
echinococcosis transmission, has access to the Echinococcus eggs in the environment which
are emitted by dogs, therefore, the livestock is more affected by stochastic fluctuations of the
environment, (the temperature, humidity etc). On the other hand, deterministic models may
ignore the stochastic nature of the rare events that lead to initial resistance generation and
spread while the stochastic approach could capture the intrinsic fluctuations when the size
of population is small. Hence, in the epidemic dynamics, stochastically differential equation
models could be more appropriate way of modeling epidemics under various circumstances
[20–22].

In this paper, by incorporating the effect of environmental random fluctuations into
deterministic model (1.1), it is assumed that during the transmission of echinococcosis, the
mobility for subpopulations SD, ID, SL, IL, SH , EH and IH will fluctuate around some
average values due to continuous fluctuations in the environment and they are different due
to infection risks. In this case, di change to three random variable d̃i (i = 1, 2, 3). More
precisely, in a small time interval [t, t+ dt),

−d̃idt = −didt+ σ(Xi)dBi(t) for i=1,. . . ,7,

here (X1, . . . , X7) = (SD, ID, SL, IL, SH , EH , IH) and dBi(t) = Bi(t + dt) − Bi(t) are the
increments of standard Brownian motion Bi(t) for i = 1, . . . , 7. For simplicity, we adopt σi :=
σi(Xi) which are all real constants and known as the intensities of environmental fluctuation
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for subpopulations SD, ID, SL, IL, SH , EH and IH , respectively. Thus, in [t, t + dt), −d̃idt
is normally distributed with mean −didt and variance σ2

i dt. Hence, E(−d̃idt) = −didt and
V ar(−d̃idt) = σ2

i dt. Owing to V ar(−d̃idt) → 0 as dt → 0, this is a biologically reasonable
model. Therefore, we replace −didt in model (1.1) by −d̃idt = −didt + σidBi(t) to get the
following stochastic version corresponding to model (1.1)

dSD = [A1 − β1SDIL − d1SD + δID]dt+ σ1SDdB1(t),

dID = [β1SDIL − (d1 + δ)ID]dt+ σ2IDdB2(t),

dSL = [A2 − β2SLID − d2SL]dt+ σ3SLdB3(t),

dIL = [β2SLID − d2IL]dt+ σ4ILdB4(t),

dSH = [A3 − β3SHID − d3SH + γIH ]dt+ σ5SHdB5(t),

dEH = [β3SHID − (d3 + ω)EH ]dt+ σ6EHdB6(t),

dIH = [ωEH − (d3 + µ+ γ)IH ]dt+ σ7IHdB7(t),

(1.2)

where Bi(t) (i = 1, · · · , 7) are mutually independent standard Brownian motions with
Bi(0) = 0, and σ2

i denotes the intensities of Bi(t), respectively. Other parameters are the
same with model (1.1).

The main concern of this paper is how environmental fluctuations affect the transmission
dynamics of echinococcosis, and more specifically, the noise intensity of which population
(human, dog and livestock) has the greatest impact on the stochastic disease-free and endemic
dynamics? The rest of this paper is organized as follows. In the next section, some useful
lemmas are presented. In Section 3, we obtain sufficient conditions of the extinction in the
mean for the disease. Particularly, by the comparison theorem of stochastically differential
equations and the law of large numbers, the more precise conditions for the extinction of
the disease are given for a special case. In Section 4, the existence of the unique ergodic
stationary distribution is derived by constructing a suitable Lyapunov function. In Section 5,
we provide some numerical examples to show the effect of noise intensities on the dynamical
behaviors of the model. A brief discussion is given in Section 6.

2. Preliminaries

Denote Rn
+ = {x = (x1, x2, · · · , xn) : xi > 0, i = 1, 2, · · · , n}, and a ∧ b = min{a, b},

a ∨ b = max{a, b} for all a, b ∈ R+ = [0,+∞). Let f(t) be an integrable function on
R+, we denote 〈f〉 = 1

t

∫ t
0
f(s)ds. Through this paper, we let (Ω,F , {Ft}t≥0, P ) be a

complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions. And
we assume that model (1.2) is defined on (Ω,F , {Ft}t≥0, P ). From the biological back-
ground of model (1.2), we assume that the initial value for any solution of model (1.2)
X0 := (SD(0), ID(0), SL(0), IL(0), SH(0), EH(0), IH(0)) ∈ R7

+.
In the following, we introduce some useful lemmas which will be used in the proof of

the main results in this paper. Firstly, the following lemma reveals the existence of positive
solution for model (1.2).
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Lemma 2.1 For any initial value X0, the solution (SD(t), ID(t), SL(t), IL(t), SH(t),
EH(t), IH(t)) of model (1.2) uniquely exists and remains in R7

+ with probability one for any
t ≥ 0.

In fact, this lemma can be proved by using the following Lyapunov function

V (SD, ID, SL, IL, SH , EH , IH) = (SD −
d2

β1

− d2

β1

lnSD) + (ID − 1− ln ID) + (SL −
d1

β2 + β3

− d1

β2 + β3

lnSL) + (IL − 1− ln IL) + (SH −
d1

β2 + β3

− d1

β2 + β3

lnSH) + (EH − 1− lnEH) + (IH − 1− ln IH).

Hence we omit it here.
These following two lemmas will be helpful for us to investigate the extinction of the

disease for model (1.2), which can be proved by the similar methods given in [23]. Here we
omit it.

Lemma 2.2 For any initial valueX0, the solution (SD(t), ID(t), SL(t), IL(t), SH(t), EH(t),

IH(t)) of model (1.2) has the following property:

lim
t→∞

SD(t) + ID(t)

t
= 0, lim

t→∞

SL(t) + IL(t)

t
= 0, lim

t→∞

SH(t) + EH(t) + IH(t)

t
= 0, a.s.

Lemma 2.3 Let (SD(t), ID(t), SL(t), IL(t), SH(t), EH(t), IH(t)) be the solution of model
(1.2) with initial value X0, if d1 >

1
2
(σ2

1 ∧ σ2
2), then

lim
t→∞

∫ t
0
SD(r)dB1(r)

t
= 0, lim

t→∞

∫ t
0
ID(r)dB2(r)

t
= 0, a.s. (2.1)

if d2 >
1
2
(σ2

3 ∧ σ2
4), then

lim
t→∞

∫ t
0
SL(r)dB3(r)

t
= 0, lim

t→∞

∫ t
0
IL(r)dB4(r)

t
= 0, a.s. (2.2)

if d3 >
1
2
(σ2

5 ∧ σ2
6 ∧ σ2

7), then

lim
t→∞

∫ t
0
SH(r)dB5(r)

t
= 0, lim

t→∞

∫ t
0
EH(r)dB6(r)

t
= 0, lim

t→∞

∫ t
0
IH(r)dB7(r)

t
= 0, a.s.

(2.3)

3. Extinction and persistence of the disease

For convenience, we define the constant as follows

R̂0 =
2(A1β1d2 + A2β2d1)

d1d2[(d1 + δ +
σ2
2

2
) ∧ (d2 +

σ2
4

2
)]
.
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Firstly, we have the following result about the extinction and persistence of the disease.
Theorem 3.1 Assume that R̂0 < 1, and the conditions d1 > 1

2
(σ2

1 ∧ σ2
2), d2 >

1
2
(σ2

3 ∧ σ2
4) and d3 >

1
2
(σ2

5 ∧ σ2
6 ∧ σ2

7) hold, then for any initial value X0 ∈ R7
+, the solution

(SD(t), ID(t), SL(t), IL(t), SH(t), EH(t), IH(t)) of model (1.2) has the following property:

lim
t→∞
〈SD(t)〉 =

A1

d1

, lim
t→∞
〈SL(t)〉 =

A2

d2

, lim
t→∞
〈SH(t)〉 =

A3

d3

a.s.

and
lim
t→∞

ID(t) = 0, lim
t→∞

IL(t) = 0, lim
t→∞

EH(t) = 0, lim
t→∞

IH(t) = 0 a.s..

Proof. From model (1.2), one can separately obtain

d(SD(t) + ID(t)) = [A1 − d1(SD(t) + ID(t))]dt+ σ1SD(t)dB1(t) + σ2ID(t)dB2(t), (3.1)

d(SL(t) + IL(t)) = [A2 − d2(SL(t) + IL(t))]dt+ σ3SL(t)dB3(t) + σ4IL(t)dB4(t) (3.2)

and

d(SH(t) + EH(t) + IH(t)) = [A3 − d3(SH(t) + EH(t) + IH(t))]dt

+σ5SH(t)dB5(t) + σ6EH(t)dB6(t) + σ7IH(t)dB7(t).
(3.3)

Integrating (3.1) from 0 to t and then dividing by t on both sides, we have the following
formula by using lemma 2.2 and (2.1),

lim sup
t→∞

〈SD(t) + ID(t)〉 ≤ A1

d1

. (3.4)

Similarly, by lemma 2.2 and the formulas (2.2), (2.3), (3.2) and (3.3), we separately
obtain

lim sup
t→∞

〈SL(t) + IL(t)〉 ≤ A2

d2

, (3.5)

and

lim sup
t→∞

〈SH(t) + EH(t) + IH(t)〉 ≤ A3

d3

. (3.6)
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Furthermore, let U(t) = ID(t) + IL(t). Using Itô’s formula to lnU(t), we have

d(lnU) =
{β1SDIL + β2SLID

ID + IL
− (d1 + δ)ID + d2IL

ID + IL
− σ2

2I
2
D + σ2

4I
2
L

2(ID + IL)2

}
dt

+
σ2ID
ID + IL

dB2(t) +
σ4IL

ID + IL
dB4(t)

≤ (β1SD + β2SL)dt−
{(d1 + δ)ID + d2IL

ID + IL
+
σ2

2I
2
D + σ2

4I
2
L

2(ID + IL)2

}
dt

+
σ2ID
ID + IL

dB2(t) +
σ4IL

ID + IL
dB4(t)

≤ (β1SD + β2SL)dt− 1

(ID + IL)2

{
(d1 + δ +

σ2
2

2
)I2
D + (d2 +

σ2
4

2
)I2
L

}
dt

+
σ2ID
ID + IL

dB2(t) +
σ4IL

ID + IL
dB4(t)

≤ (β1SD + β2SL)dt− 1

(ID + IL)2
[(d1 + δ +

σ2
2

2
) ∧ (d2 +

σ2
4

2
)](I2

D + I2
L)dt

+
σ2ID
ID + IL

dB2(t) +
σ4IL

ID + IL
dB4(t)

≤ (β1SD + β2SL)dt−
(d1 + δ +

σ2
2

2
) ∧ (d2 +

σ2
4

2
)

2
dt+

σ2ID
ID + IL

dB2(t)

+
σ4IL

ID + IL
dB4(t).

Integrating the above inequality from 0 to t and then dividing by t on both sides, we
have

lnU(t)

t
− lnU(0)

t
≤ β1

t

∫ t

0

SD(s)ds+
β2

t

∫ t

0

SL(s)ds−
(d1 + δ +

σ2
2

2
) ∧ (d2 +

σ2
4

2
)

2

+
β1

t

∫ t

0

σ2ID(s)

ID(s) + IL(s)
dB2(s)ds+

β1

t

∫ t

0

σ4IL(s)

ID(s) + IL(s)
dB4(s)ds,

hence, by (3.4) and (3.5), we obtain

lim sup
t→∞

lnU(t)

t
≤ (

A1β1

d1

+
A2β2

d2

)−
(d1 + δ +

σ2
2

2
) ∧ (d2 +

σ2
4

2
)

2

=
(d1 + δ +

σ2
2

2
) ∧ (d2 +

σ2
4

2
)

2
(R̂0 − 1) a.s..

When R̂0 < 1, it can be obtained that limt→∞ U(t) = limt→∞(ID(t) + IL(t)) = 0 a.s.,
which is shown that

lim
t→∞

ID(t) = 0 and lim
t→∞

IL(t) = 0 a.s..

Therefore, it is easily obtained by model (1.2) that limt→∞EH(t) = 0 a.s., which leads
to limt→∞ IH(t) = 0. Then, we have by (3.4),(3.5) and (3.6)

lim
t→∞
〈SD(t)〉 =

A1

d1

, lim
t→∞
〈SL(t)〉 =

A2

d2

, lim
t→∞
〈SH(t)〉 =

A3

d3

a.s..
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This completes the proof.

Remark 3.1 Theorem 3.1 shows that the dynamics of disease-free situation for the
stochastic model (1.2), that is, if R̂0 < 1 and the certain conditions about the environmental
fluctuations are satisfied, ID(t), IL(t), EH(t) and IH(t) in model (1.2) goes to extinction with
probability one, respectively. In the same time, SD(t), SL(t) and SH(t) are weak persistence
in the mean with probability one, more precisely, they separately tend to their own steady
states.

Now, we will establish the following more precise results on the extinction of the disease
in a special case δ = γ = 0 for model (1.2).

For convenience, we define the matrix

Φ =

 0
A1β1

d1(d1 + δ)
A2β2

d2
2

0

 .

Obviously, by Theorem 1.4 in [24], there must be a left eigenvector (ω1, ω2) of matrix Φ
corresponding to the value R0, which is denoted as (ω1, ω2) = (A2β2

d22
, R0) i.e.,

(ω1, ω2)Φ = R0(ω1, ω2). (3.7)

Theorem 3.2 If δ = γ = 0, and conditions d1 >
σ2
1

2
and d2 >

σ2
3

2
hold, then for any

given initial value X0, the solution (SD(t), ID(t), SL(t), IL(t), SH(t), EH(t), IH(t)) of model
(1.2) obeys

lim sup
t→∞

1

t
ln
( ω1

d1 + δ
ID +

ω2

d2

IL

)
≤ m,

where

m = min{d1 + δ, d2}(R0 − 1)I{R0≤1} + max{d1 + δ, d2}(R0 − 1)I{R0>1}

+R0[σ1d2(2d1 − σ2
1)−

1
2 + σ3(d1 + δ)(2d2 − σ2

3)−
1
2 ]− 1

2
(σ−2

2 + σ−2
4 )−1.

In particular, if m < 0, then

lim
t→∞

ID(t) = 0, lim
t→∞

IL(t) = 0 and lim
t→∞

IH(t) = 0, a.s..

Namely, ID(t), IL(t) and IH(t) go to extinction with probability one.

Proof. By lemma 2.1, from the first equation of model (1.2), it is obvious that if δ = 0 we
obtain

dSD ≤ (A1 − d1SD)dt+ σ1SDdB1(t),

and from the third equation of model (1.2) we get

dSL ≤ (A2 − d2SL)dt+ σ3SLdB3(t).
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Considering the following auxiliary systems

dX = (A1 − d1X)dt+ σ1XdB1(t) (3.8)

and
dY = (A2 − d2Y )dt+ σ3Y dB3(t), (3.9)

with the initial values X(0) = SD(0) and Y (0) = SL(0), respectively. It is easy to check by
Theorem 1.16 in [25] that Eqs. (3.8) and (3.9) separately have a stationary solution with
the densities π1(x) and π2(y) . It then follows that

lim
t→∞

1

t

∫ t

0

X(s)ds =

∫ ∞
0

xπ1(x)dx a.s.

and

lim
t→∞

1

t

∫ t

0

Y (s)ds =

∫ ∞
0

yπ2(y)dy a.s..

Let X(t) and Y (t) be the solutions of systems (3.8) and (3.9) with the initial values
X(0) = SD(0) and Y (0) = SL(0), respectively. By the comparison theorem of stochastically
differential equations [27], we obtain separately

SD(t) ≤ X(t) for all t ≥ 0, a.s. (3.10)

and
SL(t) ≤ Y (t) for all t ≥ 0, a.s.. (3.11)

So, we obtain ∫ ∞
0

(x− A1

d1

)2π1(x)dx =
A2

1σ
2
1

d2
1(2d1 − σ2

1)
.

Similarly, we can obtain∫ ∞
0

(y − A2

d2

)2π2(y)dy =
A2

2σ
2
3

d2
2(2d2 − σ2

3)
.

Define a C2-function V : R2
+ → R+0 by

V (ID, IL) =
ω1

d1 + δ
ID +

ω2

d2

IL,

where (ω1, ω2) = (A2β2
d22
, R0) is the left eigenvector of Φ corresponding the value R0.

By using Itô formula, we obtain

d(lnV ) = L(lnV )dt+
1

V
(
ω1σ2

d1 + δ
IDdB2(t) +

ω2σ4

d2

ILdB4(t)), (3.12)
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where
L(lnV ) =

ω1

V (d1 + δ)
(βSDIL − (d1 + δ)ID) +

ω2

V d2

(β2SLID − d2IL)

− ω1σ
2
2I

2
D

2V 2(d1 + δ)
− ω2σ

2
4I

2
L

2V 2d2

.

Note that

V 2 = (
ω1

d1 + δ
ID +

ω2

d2

IL)2 = (
ω1

d1 + δ
σ2ID ·

1

σ2

+
ω2

d2

σ4IL ·
1

σ4

)2

≤ (
ω2

1σ
2
2

(d1 + δ)2
I2
D +

ω2
2σ

2
4

d2
2

I2
L)(σ−2

2 + σ−2
4 )−1.

(3.13)

Then

L(lnV ) ≤ [
ω1

V (d1 + δ)
(β1SDIL − (d1 + δ)ID) +

ω2

V d2

(β2SLID − d2IL)]− 1

2
(σ−2

2 + σ−2
4 )−1

=
ω1β1IL
V (d1 + δ)

(SD −
A1

d1

) +
ω2β2ID
V d2

(SL −
A2

d2

)− ω1ID
V
− ω2IL

V

+
ω1β1ILA1

V d1(d1 + δ)
+
ω2β2IDA2

V d2
2

− 1

2
(σ−2

2 + σ−2
4 )−1

=
ω1β1IL
V (d1 + δ)

(SD −
A1

d1

) +
ω2β2ID
V d2

(SL −
A2

d2

) +
1

V
[
ω1

d1 + δ
(
β1ILA1

d1

− (d1 + δ)ID)

+
ω2

d2

(
β2IDA2

d2

− d2IL)]− 1

2
(σ−2

2 + σ−2
4 )−1

≤ ω1β1IL
V (d1 + δ)

|SD −
A1

d1

|+ ω2β2ID
V d2

|SL −
A2

d2

|+ 1

V
[(ω1, ω2)(Φ(ID, IL)T − (ID, IL)T )]

−1

2
(σ−2

2 + σ−2
4 )−1

=
ω1β1IL
V (d1 + δ)

|SD −
A1

d1

|+ ω2β2ID
V d2

|SL −
A2

d2

|+ 1

V
(R0 − 1)(ω1ID + ω2IL)

−1

2
(σ−2

2 + σ−2
4 )−1

≤ min{d1 + δ, d2}(R0 − 1)I{R0≤1} + max{d1 + δ, d2}(R0 − 1)I{R0>1}

+
ω1β1IL
V (d1 + δ)

|SD −
A1

d1

|+ ω2β2ID
V d2

|SL −
A2

d2

| − 1

2
(σ−2

2 + σ−2
4 )−1.

By (3.10), (3.11) and (3.12), we have

d(lnV ) ≤ [min{d1 + δ, d2}(R0 − 1)I{R0≤1} + max{d1 + δ, d2}(R0 − 1)I{R0>1}

+
ω1β1IL
V (d1 + δ)

|X(t)− A1

d1

|+ ω2β2ID
V d2

|Y (t)− A2

d2

| − 1

2
(σ−2

2 + σ−2
4 )−1]dt

+
ω1σ2ID
V (d1 + δ)

dB2(t) +
ω2σ4IL
V d2

dB4(t).
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Integrating the above inequality from 0 to t and then dividing t on both sides leads to

lnV

t
≤ lnV (0)

t
+ min{d1 + δ, d2}(R0 − 1)I{R0≤1} + max{d1 + δ, d2}(R0 − 1)I{R0>1}

+
ω1β1

(d1 + δ)t

∫ t

0

|X(s)− A1

d1

|IL(s)

V (s)
ds+

ω2β2

d2t

∫ t

0

|Y (s)− A2

d2

|ID(s)

V (s)
ds− 1

2
(σ−2

2 + σ−2
4 )−1

+
1

t

∫ t

0

ω1σ2ID(s)

V (s)(d1 + δ)
dB2(s) +

1

t

∫ t

0

ω2σ4IL(s)

V (s)d2

dB4(s).

Now, we denote M1(t) =
∫ t

0
ω1σ2ID(s)
V (s)(d1+δ)

dB2(s) and M2(t) =
∫ t

0
ω2σ4IL(s)
V (s)d2

dB4(s) are two

local martingales whose quadratic variations are 〈M1,M1〉t = σ2
2

∫ t
0
( ω1ID(s)
V (s)(d1+δ)

)2ds ≤ σ2
2t and

〈M2,M2〉t = σ2
4

∫ t
0
(ω2IL(s)
V (s)d2

)2ds ≤ σ2
4t, respectively. Applying the strong law of large numbers

for martingale [26] yields

lim
t→∞

Mi(t)

t
= 0 a.s., i = 1, 2. (3.14)

Then, we have

lnV

t
≤ lnV (0)

t
+ min{d1 + δ, d2}(R0 − 1)I{R0≤1} + max{d1 + δ, d2}(R0 − 1)I{R0>1}

+
ω1β1

(d1 + δ)t

∫ t

0

|X(s)− A1

d1

|IL(s)

V (s)
ds+

ω2β2

d2t

∫ t

0

|Y (s)− A2

d2

|ID(s)

V (s)
ds− 1

2
(σ−2

2 + σ−2
4 )−1

+
M1(t)

t
+
M2(t)

t
.

(3.15)
In addition, since X(t) is ergodic and

∫∞
0
xπ1(x)dx <∞, we have

lim
t→∞

1

t

∫ ∞
0

|X(s)− A1

d1

|ds =

∫ ∞
0

|x− A1

d1

|π1(x)dx

≤ (

∫ ∞
0

(x− A1

d1

)2π1(x)dx)
1
2 =

A1σ1

d1(2d1 − σ2
1)

1
2

.
(3.16)

Similarly,

lim
t→∞

1

t

∫ ∞
0

|Y (s)− A2

d2

|ds ≤ A2σ3

d2(2d2 − σ2
3)

1
2

. (3.17)

Taking the superior limit on both sides in (3.15) and combining with (3.14), (3.16) and

11



(3.17), we obtain

lim sup
t→∞

lnV

t
≤ min{d1 + δ, d2}(R0 − 1)I{R0≤1} + max{d1 + δ, d2}(R0 − 1)I{R0>1}

+ lim sup
t→∞

ω1β1d2

ω2(d1 + δ)t

∫ t

0

|X(s)− A1

d1

|ds

+ lim sup
t→∞

ω2β2(d1 + δ)

ω1d2t

∫ t

0

|Y (s)− A2

d2

|ds− 1

2
(σ−2

2 + σ−2
4 )−1

≤ min{d1 + δ, d2}(R0 − 1)I{R0≤1} + max{d1 + δ, d2}(R0 − 1)I{R0>1}

+R0[σ1d2(2d1 − σ2
1)−

1
2 + σ3(d1 + δ)(2d2 − σ2

3)−
1
2 ]− 1

2
(σ−2

2 + σ−2
4 )−1

= m,
(3.18)

which is the required statement. If m < 0, then it is concluded that

lim sup
t→∞

ln ID(t)

t
< 0 and lim sup

t→∞

ln IL(t)

t
< 0 a.s..

Hence, there exists a constant ς > 0 such that

lim sup
t→∞

ln ID(t)

t
< −ς.

In other words, for an arbitrary small constant 0 < ξ < ς
2
, there exist T1 = T1(ω) and a set

Ωξ such that P (Ωξ) ≥ 1 − ξ and ln ID ≤ − ς
2
t for t ≥ T1 and ω ∈ Ωξ, and hence ID ≤ e−

ς
2
t.

It means that
lim sup
t→∞

ID(t) = 0 a.s.

which combines with the positivity of the solution shows

lim
t→∞

ID(t) = 0 a.s. (3.19)

Similarly, one can obtain limt→∞ IL(t) = 0 a.s.. And from (3.19) and the sixth equation
of model (1.2), one can easily see that limt→∞EH(t) = 0 a.s. and thus limt→∞ IH(t) = 0 a.s.
from the last equation of model (1.2). This finishes the proof.

Remark 3.2 Theorem 3.2 discusses the case that only ID(t), IL(t) and IH(t) go to
extinction almost surely when m < 0. Therefore, a natural question arises: in this situation,
what will be the limiting magnitude of the susceptible compartments SD(t), SL(t) and SH(t)?

In fact, by Theorem 3.2, it can be further obtained that the distributions of SD(t) and
SL(t) weakly converge to the measures which have separately the densities given by

π1(x) = Q1σ
−2
1 x

−2− 2d1
σ21 e

− 2A1
σ21x for all x ∈ (0,∞)

12



and

π2(y) = Q2σ
−2
3 y

−2− 2d2
σ23 e

− 2A2
σ23y for all y ∈ (0,∞),

where Q1 = σ2
1(2A1

σ2
1

)
1+

2d1
σ21 Γ−1(1 + 2d1

σ2
1

) and Q2 = σ2
3(2A2

σ2
3

)
1+

2d2
σ23 Γ−1(1 + 2d2

σ2
3

) are two constants

satisfying
∫∞

0
π1(x)dx = 1 and

∫∞
0
π2(y)dy = 1, respectively.

Furthermore, when m < 0, by (3.19) one can obtain that for any small constant κ > 0
there exist T2 = T2(ω) and a set Ωκ such that P (Ωκ) > 1− κ and β3SHID ≤ κSH for t ≥ T2

and ω ∈ Ωκ. Hence,

dSH ≥ (A3 − κSH − d3SH)dt+ σ5SHdB5(t). (3.20)

On the other hand, when γ = 0, one has

dSH ≤ [A3 − d3SH ]dt+ σ5SHdB5(t), (3.21)

Consider the following stochastically differential equation

dũ(t) = (A3 − d3ũ(t))dt+ σ5ũ(t)dB5(t). (3.22)

It is easy to check that Eq. (3.22) has a stationary solution û(t) which has the density

π3(z) = Q3σ
−2
5 z

−2− 2d3
σ25 e

− 2A3
σ25z where Q3 = σ2

5(2A3

σ2
5

)
1+

2d3
σ25 Γ−1(1 + 2d3

σ2
5

). From the ergodic

theorem [25], it follows that

lim
t→∞

1

t

∫ t

0

û(s)ds =

∫ +∞

0

zπ3(z)dz a.s. (3.23)

By direct calculation, one can obtain from (3.22)∫ +∞

0

zπ3(z)dz = E(û(t)) =
A3

d3

a.s.

From (3.20), (3.21), (3.23) and the comparison theorem for stochastic differential equation
[27] and let κ→ 0, one can finally obtain that the distribution of the process SH(t) weakly
converges to the measure with the density π3(z).

4. Stationary distribution and ergodicity

For the sake of understanding of stochastic endemic dynamics of model (1.2), we now
focus in the existence of stationary distribution.

To do this, we define

R̃0 =

√
A1A2β1β2

(d1 +
σ2
1

2
)(d1 + δ +

σ2
2

2
)(d2 +

σ2
3

2
)(d2 +

σ2
4

2
)
.

Theorem 4.1 Let (SD, ID, SL, IL, SH , EH , IH) be a solution of model (1.2) with any

initial value X0. If R̃0 > 1 and (d1 ∧ d2 ∧ d3) > 1
2
(σ2

1 ∨σ2
2 ∨σ2

3 ∨σ2
4 ∨σ2

5 ∨σ2
6 ∨σ2

7), then there
exists a unique stationary solution of model (1.2) and it is ergodic.
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Proof. In order to prove Theorem 4.1, it is sufficient to show the following two conditions:
(H1) For any bounded domain Z ⊂ R7

+, there exists a positive constant ∆ such that
7∑

i,j=1

aij(x)ξiξj ≥ ∆|ξ|2 for all x ∈ Z̄ and ξ ∈ R7
+. (For more details see [28] and [29]).

(H2) There exist a neighborhood U and a nonnegative C2-function V such that LV is
negative for any ξ ∈ R7

+ \ U . (For more details see [26] and [30]).
Firstly, we are going to show the condition (H1) is satisfied. In fact, the diffusion matrix

of model (1.2) is given by

A =



σ2
1S

2
D 0 0 0 0 0 0

0 σ2
2I

2
D 0 0 0 0 0

0 0 σ2
3S

2
L 0 0 0 0

0 0 0 σ2
4I

2
L 0 0 0

0 0 0 0 σ2
5S

2
H 0 0

0 0 0 0 0 σ2
6E

2
H 0

0 0 0 0 0 0 σ2
7I

2
H


.

Let Z be any bounded domain in R7
+, then there exists a positive constant

∆ = min
(SD,ID,SL,IL,SH ,EH ,IH)∈Z̄⊂R7

+

{σ2
1S

2
D, σ

2
2I

2
D, σ

2
3S

2
L, σ

2
4I

2
L, σ

2
5S

2
H , σ

2
6E

2
H , σ

2
7I

2
H}

such that∑7
i,j=1 aij(SD, ID, SL, IL, SH , EH , IH)ξiξj

= σ2
1S

2
Dξ

2
1 + σ2

2I
2
Dξ

2
2 + σ2

3S
2
Lξ

2
3 + σ2

4I
2
Lξ

2
4 + σ2

5S
2
Hξ

2
5 + σ2

6E
2
Hξ

2
6 + σ2

7I
2
Hξ

2
7 ≥ ∆|ξ|2

for all (SD, ID, SL, IL, SH , EH , IH) ∈ Z̄, ξ ∈ R7
+. This shows condition (H1) holds.

Next, we show that the validity of condition (H2). By the condition (d1 ∧ d2 ∧ d3) >
1
2
(σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4 ∨ σ2

5 ∨ σ2
6 ∨ σ2

7), we can choose a sufficiently small constant θ > 0 such
that

ρ , (d1 ∧ d2 ∧ d3)− θ + 1

2
(σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4 ∨ σ2

5 ∨ σ2
6 ∨ σ2

7) > 0.

Define a C2-function V̄ : R7
+ → R as follows

V̄(SD, ID, SL, IL, SH , EH , IH) = MV1 + V2 + V3,

where

V1(SD, ID, SL, IL) = − lnSD − p1 ln ID − p2 lnSL − p3 ln IL +
β1IL
d2

,

V2(S, V, E) = − lnSD − ln ID − lnSL − lnSH − lnEH − ln IH +
β1IL
d2

,

V3(SD, ID, SL, IL, SH , EH , IH) =
1

θ + 2
(SD + ID + SL + IL + SH + EH + IH)θ+2,
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here

p1 =
d1 +

σ2
1

2

d1 + δ +
σ2
2

2

, p2 =
d1 +

σ2
1

2

d2 +
σ2
3

2

, p3 =
d1 +

σ2
1

2

d2 +
σ2
4

2

,

and M > 0 is a constant satisfying the following condition

−4M(d1 +
σ2

1

2
)(

√
R̃0 − 1) +G ≤ −2

where

G = sup
SL∈R+

{2
(β1β2

d2

)2
S2
L + 2d1 + d2 + 3d3 + δ + ω + µ+ γ +D

−ρ
2
Sθ+2
L +

1

2
(σ2

1 + σ2
2 + σ2

3 + σ2
5 + σ2

6 + σ2
7) <∞

and
D = sup

x∈R7
+

{(A1 + A2 + A3)(SD + ID + SL + IL + SH + EH + IH)θ+1

−ρ
2

(SD + ID + SL + IL + SH + EH + IH)θ+2} <∞,

with x = (SD, ID, SL, IL, SH , EH , IH).
It is obvious that

lim inf
k→+∞

(SD,ID,SL,IL,SH ,EH ,IH)∈R7
+\Uk

V̄(SD, ID, SL, IL, SH , EH , IH) = +∞,

where Uk = ( 1
k
, k)×( 1

k
, k)×( 1

k
, k)×( 1

k
, k)×( 1

k
, k)×( 1

k
, k)×( 1

k
, k). Obviously, V̄(SD, ID, SL, IL,

SH , EH , IH) is a continuous function, then V̄(SD, ID, SL, IL, SH , EH , IH) must have a mini-
mum point (S̄D, ĪD, S̄L, ĪL, S̄H , ĒH , ĪH) ∈ R7

+.
Therefore, we construct a nonnegative C2-function U : R7 → R+ in the following form

V(SD, ID, SL, IL, SH , EH , IH) = V̄(SD, ID, SL, IL, SH , EH , IH)− V̄(S̄D, ĪD, S̄L, ĪL, S̄H , ĒH , ĪH).

Hence, V(SD, ID, SL, IL, SH , EH , IH) is a nonnegative C2-function.
Therefore, we can separately obtain by Itô formula

L(V1) = −A1

SD
− p1β1SDIL

ID
− p2A2

SL
− p3β2SLID

IL
+ p1(d1 + δ +

σ2
2

2
)

+p2(d2 +
σ2

3

2
) + p3(d2 +

σ2
4

2
) + d1 +

σ2
1

2
+
β1β2SLID

d2

− δID
SD

+ p2β2ID

≤ −4 4
√
A1A2β1β2p1p2p3 + p1(d1 + δ +

σ2
2

2
) + p2(d2 +

σ2
3

2
)

+p3(d2 +
σ2

4

2
) + d1 +

σ2
1

2
+
β1β2SLID

d2

+ p2β2ID

= −4(d1 +
σ2

1

2
)(

√
R̃0 − 1) + p2β2ID +

β1β2SLID
d2

,

15



L(V2) = −A1

SD
− β1SDIL

ID
− A2

SL
− A3

SH
− β3SHID

EH
− ωEH

IH
− δID
SD
− γIH

SH
+
β1β2SLID

d2

+(β2 + β3)ID + 2d1 + d2 + 3d3 + δ + ω + µ+ γ +
1

2
(σ2

1 + σ2
2 + σ2

3 + σ2
5 + σ2

6 + σ2
7)

≤ −A1

SD
− β1SDIL

ID
− A2

SL
− A3

SH
− β3SHID

EH
− ωEH

IH
+ (

β1β2

d2

)2S2
L +

1

4
I2
D

+(β2 + β3)ID + 2d1 + d2 + 3d3 + δ + ω + µ+ γ +
1

2
(σ2

1 + σ2
2 + σ2

3 + σ2
5 + σ2

6 + σ2
7).

and

L(V3) = (SD + ID + SL + IL + SH + EH + IH)θ+1[A1 + A2 + A3

−d1(SD + ID)− d2(SL + IL)− d3(SH + EH + IH)− µIH ]

+
θ + 1

2
(SD + ID + SL + IL + SH + EH + IH)θ(σ2

1S
2
D + σ2

2I
2
D

+σ2
3S

2
L + σ2

4I
2
D + σ2

5S
2
H + σ2

6I
2
H + σ2

7E
2
H)

≤ (SD + ID + SL + IL + SH + EH + IH)θ+1[A1 + A2 + A3 − (d1 ∧ d2 ∧ d3)

×(SD + ID + SL + IL + SH + EH + IH)] +
θ + 1

2
(SD + ID + SL + IL

+SH + EH + IH)θ+2(σ2
1 ∨ σ2

2 ∨ σ2
3 ∨ σ2

4 ∨ σ2
5 ∨ σ2

6 ∨ σ2
7)

= (A1 + A2 + A3)(SD + ID + SL + IL + SH + EH + IH)θ+1

−ρ(SD + ID + SL + IL + SH + EH + IH)θ+2

≤ D − ρ

2
(SD + ID + SL + IL + SH + EH + IH)θ+2

≤ D − ρ

2
(Sθ+2

D + Iθ+2
D + Sθ+2

L + Iθ+2
L + Sθ+2

H + Eθ+2
H + Iθ+2

H )

Therefore, one can obtain

LV ≤ −4M(d1 +
σ2

1

2
)(

√
R̃0 − 1)− A1

SD
− β1SDIL

ID
− A2

SL
− A3

SH
− β3SHID

EH

−ωEH
IH

+
Mβ1β2SLID

d2

+
(β1β2

d2

)2
S2
L +

1

4
I2
D + (Mp2β2 + β2 + β3)ID

−ρ
2

(Sθ+2
D + Iθ+2

D + Sθ+2
L + Iθ+2

L + Sθ+2
H + Eθ+2

H + Iθ+2
H ) + 2d1 + d2

+3d3 + δ + ω + µ+ γ +D +
1

2
(σ2

1 + σ2
2 + σ2

3 + σ2
5 + σ2

6 + σ2
7)

≤ −4M(d1 +
σ2

1

2
)(

√
R̃0 − 1)− A1

SD
− β1SDIL

ID
− A2

SL
− A3

SH
− β3SHID

EH

−ωEH
IH

+ 2
(β1β2

d2

)2
S2
L +

M2 + 1

4
I2
D + (Mp2β2 + β2 + β3)ID

−ρ
2

(Sθ+2
D + Iθ+2

D + Sθ+2
L + Iθ+2

L + Sθ+2
H + Eθ+2

H + Iθ+2
H ) + 2d1 + d2

+3d3 + δ + ω + µ+ γ +D +
1

2
(σ2

1 + σ2
2 + σ2

3 + σ2
5 + σ2

6 + σ2
7)
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Define a bounded closed set

Uε =
{

(SD, ID, SL, IL, SH , EH , IH) ∈ R7
+ : ε ≤ SD ≤

1

ε
, ε3 ≤ ID ≤

1

ε3
, ε ≤ SL ≤

1

ε
,

ε ≤ IL ≤
1

ε
, ε ≤ SH ≤

1

ε
, ε5 ≤ EH ≤

1

ε5
, ε6 ≤ IH ≤

1

ε6

}
,

where 0 < ε < 1 is a sufficiently small constant such that the following conditions hold

1

ε
≥ (1 + F ) max{ 1

A1

,
1

A2

,
1

A3

,
1

β1

,
1

β3

,
1

ω
}, (4.1)

M(p2β2 + β2 + β3)ε3 +
M2 + 1

4
ε6 ≤ 1, (4.2)

− ρ

4εθ+2
+ F ≤ −1, (4.3)

where

F = sup
(SL,ID)∈R2

+

{
2
(β1β2

d2

)2
S2
L +

M2 + 1

4
I2
D + (Mp2β2 + β2 + β3)ID

−ρ
2

(Sθ+2
L + Iθ+2

D ) + 2d1 + d2 + 3d3 + δ + ω + µ+ γ +D

+
1

4
(σ2

1 + σ2
2 + σ2

3 + σ2
5 + σ2

6 + σ2
7)
}
< +∞.

For the sake of convenience, we divide UC
ε , R7

+ \ Uε into fourteen domains,

U1 ={(SD, ID, SL, IL, SH , EH , IH) ∈ R7
+ : 0 < SD < ε},

U2 ={(SD, ID, SL, IL, SH , EH , IH) ∈ R7
+ : 0 < ID < ε3},

U3 ={(SD, ID, SL, IL, SH , EH , IH) ∈ R7
+ : SD >

1

ε
},

U4 ={(SD, ID, SL, IL, SH , EH , IH) ∈ R7
+ : ID >

1

ε3
},

U5 ={(SD, ID, SL, IL, SH , EH , IH) ∈ R7
+ : 0 < SL < ε},

U6 ={(SD, ID, SL, IL, SH , EH , IH) ∈ R7
+ : 0 < IL < ε, SD > ε, ID > ε3},

U7 ={(SD, ID, SL, IL, SH , EH , IH) ∈ R7
+ : SL >

1

ε
},

U8 ={(SD, ID, SL, IL, SH , EH , IH) ∈ R7
+ : IL >

1

ε
},

U9 ={(SD, ID, SL, IL, SH , EH , IH) ∈ R7
+ : 0 < SH < ε},

U10 ={(SD, ID, SL, IL, SH , EH , IH) ∈ R7
+ : 0 < EH < ε5, SH > ε, ID > ε3},

U11 ={(SD, ID, SL, IL, SH , EH , IH) ∈ R7
+ : 0 < IH < ε6, EH > ε5},

U12 ={(SD, ID, SL, IL, SH , EH , IH) ∈ R7
+ : SH >

1

ε
},
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U13 ={(SD, ID, SL, IL, SH , EH , IH) ∈ R7
+ : EH >

1

ε5
},

U14 ={(SD, ID, SL, IL, SH , EH , IH) ∈ R7
+ : IH >

1

ε6
}.

Clearly, UC
ε = U1 ∪ U2 ∪ · · · ∪ U14. Next, we will show that

LV (SD, ID, SL, IL, SH , EH , IH) ≤ −1

on UC
ε , which is equivalent to show it on the above fourteen domains.

When (SD, ID, SL, IL, SH , EH , IH) ∈ U1, one can see that

LV ≤ −A1

SD
+ F ≤ −A1

ε
+ F.

By virtue of the condition (4.1), it can be obtained that LV ≤ −1 on U1.
When (SD, ID, SL, IL, SH , EH , IH) ∈ U2, one can see that

LV ≤ −4M(d1 +
σ2

1

2
)(

√
R̃0 − 1) + 2

(β1β2

d2

)2
S2
L +

M2 + 1

4
I2
D

+(Mp2β2 + β2 + β3)ID −
ρ

2
Sθ+2
L + 2d1 + d2 + 3d3 + δ

+ω + µ+ γ +D +
1

2
(σ2

1 + σ2
2 + σ2

3 + σ2
5 + σ2

6 + σ2
7)

≤ −4M(d1 +
σ2

1

2
)(

√
R̃0 − 1) + (Mp2β2 + β2 + β3)ε3 +

M2 + 1

4
ε6 +G

≤ −2 +
M2 + 1

4
ε6 + (Mp2β2 + β2 + β3)ε3.

By the condition (4.2), we can get LV ≤ −1 on U2.
When (SD, ID, SL, IL, SH , EH , IH) ∈ U3, it yields

LV ≤ −ρ
4
Sθ+2
D + F ≤ −ρ

4

1

εθ+2
+ F.

In view of the condition (4.3), we have LV ≤ −1 on U3.
When (SD, ID, SL, IL, SH , EH , IH) ∈ U4, it yields

LV ≤ −1

4
Iθ+2
D + F ≤ −ρ

4

1

ε3(θ+2)
+ F,

which together with the condition (4.3), we can conclude that LV ≤ −1 on U4.
when (SD, ID, SL, IL, SH , EH , IH) ∈ U5, we can derive

LV ≤ −A2

SL
+ F ≤ −A2

ε
+ F.

According to the condition (4.1), we can deduce that LV ≤ −1 on U5.
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When (SD, ID, SL, IL, SH , EH , IH) ∈ U6, it yields

LV ≤ −β1SDIL
ID

+ F ≤ −β1

ε
+ F,

which follows from the condition (4.1) that LV ≤ −1 on U6.
When (SD, ID, SL, IL, SH , EH , IH) ∈ U7, we have

LV ≤ −ρ
4
Sθ+2
L + F ≤ −ρ

4

1

εθ+2
+ F.

By the condition (4.3), we can conclude that LV ≤ −1 on U7.
When (SD, ID, SL, IL, SH , EH , IH) ∈ U8, one can derive that

LV ≤ −ρ
4
Iθ+2
L + F ≤ −ρ

4

1

ε3(θ+2)
+ F.

Combing with the condition (4.3), we can conclude that LV ≤ −1 on U8.
When (SD, ID, SL, IL, SH , EH , IH) ∈ U9, we obtain

LV ≤ −A3

SH
+ F ≤ −A3

ε
+ F.

In view of the condition (4.1), we have LV ≤ −1 on U9.
When (SD, ID, SL, IL, SH , EH , IH) ∈ U10, we derive

LV ≤ −β3SHID
EH

+ F ≤ −β3

ε
+ F,

which together with the condition (4.1), we have that LV ≤ −1 on U10.
When (SD, ID, SL, IL, SH , EH , IH) ∈ U11, we get

LV ≤ −ωEH
IH

+ F ≤ −ω
ε

+ F.

It follows from the condition (4.1) that LV ≤ −1 on U11.
When (SD, ID, SL, IL, SH , EH , IH) ∈ U12, we can derive

LV ≤ −ρ
4
Sθ+2
H + F ≤ 1

εθ+2
+ F.

By the condition (4.3), we can obtain that LV ≤ −1 on U12.
When (SD, ID, SL, IL, SH , EH , IH) ∈ U13, we derive

LV ≤ −ρ
4
Eθ+2
H ≤ −ρ

4

1

ε5(θ+2)
+ F,

which follows from the condition (4.3) that LV ≤ −1 on U13.
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When (SD, ID, SL, IL, SH , EH , IH) ∈ U14, it yields

LV ≤ −ρ
4
Iθ+2
H + F ≤ −ρ

4

1

ε6(θ+2)
+ F.

According to the condition (4.3), one can conclude that LV ≤ −1 on U14.
Hence, one finally drive

LV(SD, ID, SL, IL, SH , EH , IH) ≤ −1 for all (SD, ID, SL, IL, SH , EH , IH) ∈ UC
ε ,

which shows that (H2) is satisfied. Summarising the above discussion, one can obtain that
there is a stationary distribution for model (1.2) and it is ergodic. This completes the
proof.

Remark 4.1 From the process of proving Theorem 4.1, it is found that constructing a
suitably stochastic Lyapunov function to prove the existence of the stationary distribution
seems to be intricate, however, this method has an advantage in being more applicable for
higher-dimensionally stochastic system and the permitting conditions are a little weaker. It is
worth noting that when model (1.2) degenerated into the corresponding deterministic model

(1.1) if σi = 0 (i = 1, 2, . . . , 7), R̃0 in Theorem 4.1 is consistent with the basic reproduction
number R0 of the deterministic model (1.1).

5. Numerical simulations

In this section, by utilizing Milsteins higher-order method in [31], we make simulations
for model (1.2) to verify our analytical results and explore the effect of stochastically envi-
ronmental variability on transmission dynamics of echinococcosis. Hereon, we mainly study
which population is more affected by stochastic fluctuations of the environment (namely,
which population is more susceptible to environmental fluctuations). So, for convenience,
we assume that the noise intensities for each subgroup of a same population is same. For
example, the noise intensities for subgroups SD and ID is same, with no loss of generality,
we denote it by σD (that is σ1 = σ2 , σD). Similarly, it is assumed that the noise intensities
for the livestock is same and denoted by σL, and the noise intensities for humans is same
and denoted by σH .

5.1. Effect of environmental noises on the extinction for model (1.2)

Firstly, we consider the extinction of model (1.2). In fact, if the subgroups ID and IL
tend to extinguish, it can be finally derived from model (1.2) that IH goes to extinction. On
the other hand, if the practical data is considered, people’s major concern is the extinction
for IH . Therefore, we only pay attention to the extinction for IH . Because model (1.2) is
the one of a continuous time and continuous state space, the quantities for each population
are not equal to zero, and we assume that 100, 000 individuals are deemed to be 1 unit
population approximately in the numerical experiments. In other words, if the value of IH
is less than 0.00001, then IH can be deemed to become extinct [32].
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Example 5.1 Adopting A1 = 0.51, A2 = 0.32, A3 = 1.85, d1 = 0.7, d2 = 0.5, d3 = 0.4,
β1 = 0.14, β2 = 0.21, β3 = 0.8, µ = 0.12, γ = 0.63, ω = 0.45, δ = 0.8, σ1 = σ2 , σD = 0.32,
σ3 = σ4 , σL = 0.35, σ5 = σ6 = σ7 , σH = 0.29. By calculating, it can be obtained that
R̂0 ≈ 0.8424, d1 − 1

2
σ2
D ≈ 0.6488, d2 − 1

2
σ2
L ≈ 0.4388 and d3 − 1

2
σ2
H ≈ 0.3580, which means

that the conditions of Theorem 3.1 are satisfied. Thus, by Theorem 3.1, SD(t), SL(t) and
SH(t) separately tend to its steady states in the mean with probability one, and the others
finally go to extinction with probability one (see Fig. 1).
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Fig. 1: The evolution of a single path of the solution for model (1.2) with initial values SD(0) = 10,
ID(0) = 3, SL(0) = 2, IL(0) = 0.3, SH(0) = 15, EH(0) = 0.16, IH(0) = 0.5.

Example 5.2 To further explore the effect of the noises intensities σD, σL and σH on
the extinction for IH(t) in model (1.2), we mainly focus on the stochastic extinction time for
IH(t). We fix the other parameter values from Example 5.1, except for σD, σL and σH . By
using the Latin hypercube method [33] to generate 1,000 random samples, we perform the
sensitivity analysis, as illustrated in Fig. 2 and Table 1, which indicate that PRCC values
[34] of the extinction time for IH(t) with respect to three noise intensities. Therefore, we can
find that these noise intensities have significantly negative impact for the extinction time of
IH(t), moreover, the absolute value of the PRCC for σL is largest, which is suggested that
σL is more sensitive than the others for the extinction of IH(t).

In the following, we discuss the influence of noise intensity σL on the extinction time of
IH(t).

Example 5.3 We fix σD = 0.32 and σH = 0.29, the other parameter values taking as
Example 5.1. With changing σL from 0.35 to 0.9324, we repeat 1,000 simulations and calcu-
late the extinction time for IH(t) with different values of σL. The corresponding simulation
results are shown in Fig. 3, which give us graphically depicting groups of numerical data
through their statistical feature. It is easily seen that the extinction time for IH(t) decreases
as σL increases.

21



Noise intensity
Extinction time for IH(t)
PRCC p value

σD −0.3285 < 0.001
σL −0.9839 < 0.001
σH −0.8176 < 0.001
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Fig. 2: The partial rank correlation coefficient (PRCC) of the stochastic extinction time for IH(t) in model
(1.2) with respect to σD, σL and σH . * denotes the value of PRCC which is not zero significantly, where the
significance level is 0.05.

5.2. Effect of environmental noises on the distribution for model (1.2)

In Theorem 4.1, the existence of the unique ergodic stationary distribution is proved.
Firstly, we provide the numerical simulation to support the theoretical result presented in
Theorem 4.1. Next, we further explore the influence of different noise intensities on the
stationary distribution for model (1.2).

Example 5.4 Adopting A1 = 1.61, A2 = 2.42, A3 = 0.85, d1 = 0.67, d2 = 0.45,
d3 = 0.34, β1 = 0.314, β2 = 0.81, β3 = 1.8, µ = 0.12, γ = 0.73, ω = 0.2, δ = 0.29, σ1 = 0.432,
σ2 = 0.43, σ3 = 0.3, σ4 = 0.15, σ5 = 0.29, σ6 = 0.39 and σ7 = 0.49. By calculating, it can
be obtained that R̃0 ≈ 2.3244 and (d1 ∧ d2 ∧ d3)− 1

2
(σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4 ∨ σ2

5 ∨ σ2
6 ∨ σ2

7) ≈ 0.22,
which are satisfied with the conditions of Theorem 4.1. Thus, by Theorem 4.1, there exists
the unique ergodic stationary distribution for model (1.2). Based on the 1,000 sample paths,
after iterating 10,000 times, 20,000 times and 30,000 times, respectively, we obtain three
groups of density functions of the solution for model (1.2) with initial value SD(0) = 15,
ID(0) = 0.3, SL(0) = 4.2, IL(0) = 1.3, SH(0) = 3.2, EH(0) = 0.86, IH(0) = 2.5, (see
Fig. 4.) In addition, based on the 1,000 sample paths, with different initial values (value 1:
SD(0) = 5, ID(0) = 3, SL(0) = 0.2, IL(0) = 0.3, SH(0) = 4.2, EH(0) = 4.16, IH(0) = 7.5;
value 2: SD(0) = 15, ID(0) = 0.3, SL(0) = 4.2, IL(0) = 1.3, SH(0) = 3.2, EH(0) = 0.86,
IH(0) = 2.5; value 3: SD(0) = 0.5, ID(0) = 1.28, SL(0) = 2.7, IL(0) = 0.64, SH(0) = 1.82,
EH(0) = 2.3, IH(0) = 0.9;), respectively, we obtain three groups of density functions of the
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Fig. 3: The extinction time for IH(t) of model (1.2) with different values of σL. (a) The probability density.
(b) The histogram. (c) The box.
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solution for model (1.2) after iterating 30,000 times, (see Fig. 5.) The two figures implied
that no matter how many times we iterate and wherever the initial value start from, the
density functions of the solution for model (1.2) seperately converge to the same functions,
which indicates that there is a ergodic stationary distribution for model (1.2).

Furthermore, in order to investigate the effect of noise intensities on the stationary dis-
tribution of model (1.2), we only consider the change of noise intensities for three subgroups
(dogs, the livestock and humans), for the sake of simplicity, (i.e., we fix σ1 = σ2 , σD,
σ3 = σ4 = σ5 , σL and σ6 = σ7 , σH). More precisely, we only analysis the influence of the
noise intensities σD, σL and σH on the distribution of IH(t) due to the importance of IH(t).
We use the skewness and kurtosis to describe the shape for the distribution of IH(t) by the
software R, where the skewness is a measure of the asymmetry of the probability distribu-
tion of the a real-valued random variable about its mean, and the kurtosis is a measure of
the ”tailedness” of the probability distribution of a real-valued random variable. We choose
A1 = 0.61, A2 = 1.42, A3 = 1.8, d1 = 0.15, d2 = 0.27, d3 = 0.34, β1 = 0.1514, β2 = 0.81,
β3 = 0.8, µ = 0.52, γ = 0.26, ω = 0.42 and δ = 0.49.

Example 5.5 Firstly, we fix σL = 0.15, σH = 0.19 and σD from 0.02 to 0.52 by step-size
0.0357, it is easy to be verified the conditions of Theorem 4.1 are satisfied. By repeating
1,0000 simulations at time t = 100, we obtain 15 groups 10,000-dimensional data, numerical
solution of IH(t) for model (1.6), which can be used to study the distributions of IH(t).
Fig. 6 (a) displays the skewness of the distribution IH(t) is positive all along, whereas the
kurtosis is always negative with the different values of σD. This means that right data of
the distribution for IH(t) is more scattered and the extreme data in bilateral sides is less,
(the corresponding numerical simulations are given in Fig. 6 (b).) In short, the change of
the shape for the distribution IH(t) is inconspicuous as σD increases, (see Fig. 6 (c)).

Example 5.6 In addition, we fix σD = 0.432, σH = 0.19 and σL from 0.05 to 0.4589 by
step-size 0.0292, it is easy to be verified the conditions of Theorem 4.1 are satisfied. Similar
as the example 5.5, we repeat 1,0000 simulations at time t = 100 and obtain the skewness
and kurtosis functions of IH(t). From Fig. 7 (a), it is demonstrated that by changing σL
from small to big, the skewness remains positive and early increases then appears to the
decreasing trend in the main. The kurtosis changes sign from negative to positive and early
increases then it is basically decreasing with the rise of σL. Fig. 7 (b) also reveals that
the right data of the distribution for IH(t) is more scattered. With the increasing of σL,
the shape of the distribution IH(t) becomes slowly shorter and more left-skewed, (see the
simulation results (b) and (c) of Fig.7).

Example 5.7 Lastly, we fix σD = 0.432, σL = 0.15 and σH from 0.09 to 0.5233 by
step-size 0.031, it is easy to be verified the conditions of Theorem 4.1 are satisfied. Similar
as the example 5.5, we repeat 1,0000 simulations at time t = 100 and obtain the skewness
and kurtosis functions of IH(t), which are both positive and decrease along with the rise
of σH from the beginning and then become flat. (See Fig. 8 (a)). As shown in numerical
simulations of Fig. 8 (b)-(c), the shape of the distribution of IH(t) changes from skyscraping
to pyknic and gradually migrates towards left as the noise intensity σH for humans increases.
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Fig. 4: The density functions of the solution for model (1.2) after iterating different times with initial value
SD(0) = 15, ID(0) = 0.3, SL(0) = 4.2, IL(0) = 1.3, SH(0) = 3.2, EH(0) = 0.86, IH(0) = 2.5.
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Fig. 5: The density functions of the solution for model (1.2) after iterating 30,000 times with different initial
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Fig. 6: Effect of the noise intensity σD on the distribution of IH(t), where σL = 0.15 and σH = 0.19. (a)
The skewness and kurtosis for the distribution of IH(t) with respect to σD. (b) The density functions of
IH(t) with different σD. (c) The relation between the distribution of IH(t) and σD.
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Fig. 7: Effect of the noise intensity σL on the distribution of IH(t), where σD = 0.432 and σH = 0.19. (a)
The skewness and kurtosis for the distribution of IH(t) with respect to σL. (b) The density functions of
IH(t) with different σL. (c) The relation between the distribution of IH(t) and σL.
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Fig. 8: Effect of the noise intensity σH on the distribution of IH(t), where σD = 0.432 and σL = 0.15. (a)
The skewness and kurtosis for the distribution of IH(t) with respect to σH . (b) The density functions of
IH(t) with different σH . (c) The relation between the distribution of IH(t) and σH .
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6. Discussion

Considering many environmental fluctuations in the process of echinococcosis transmis-
sion (for instance, the change of season, temperature and humidity etc), in the paper, we
propose the stochastic echinococcosis model incorporating environmental white noises to
understand the effects of environmental driving forces on the stochastic disease-free and en-
demic dynamics. Sufficient conditions for the extinction of the disease and the existence of
the unique ergodic stationary distribution are obtained. It is worth to notice that we could
not obtain the threshold type result, that is, R̂0 in Theorem 3.1 and R̃0 in Theorem 4.1 are
unable to unite as one. This is an interesting topic deserving further consideration.

Epidemiologically, one of the highlights of this paper is to illustrate that stochastically
environmental variability has a certain influence on dynamical behaviors of echinococcosis
transmission by means of numerical simulations, as shown in the following. (i) in the respect
of extinction: these noise intensities for three subgroups all have significantly negative impact
on the extinction time for IH(t) of model (1.2), in particular, when the noise intensity σL
for the livestock increases, the extinction time for IH(t) decreases; (ii)in the respect of
stationary distribution: these noise intensities for three subgroups have the influence on
the shape of the stationary distribution for IH(t) of model (1.2), through the describing of
the skewness and kurtosis, where the effect of the noise intensity for humans σH on the
alteration of the distribution shape for IH(t) is obvious, from skyscraping to pyknic and
gradually migrating towards left as σH increasing. Certainly, although these conclusions
are validated without basing on realistic parameters of echinococcosis transmission, it could
still offer some help to understand the impaction of environmental noises on transmission
dynamics of echinococcosis.
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