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The present work is related to solve the fractional generalized Korteweg-de Vries (gKdV)

equation in fractional time derivative form of order α. Some exact solutions of the fractional-order

gKdV equation is attained by employing the new powerful expansion approach by using the

beta-fractional derivative which is used to get many solitary wave solutions by changing the various

parameters. The obtained solutions include three classes of soliton wave solutions in terms of

hyperbolic function, trigonometric function, and rational function solutions. The obtained solutions

and the exact solutions are shown graphically, highlighting the effects of non-linearity. Many other

such types of nonlinear equations arising in fluid dynamics and nonlinear phenomena.
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I. INTRODUCTION

The differential equation of fractional order is the new form of classical integer order differential equations. Different

types of differential equations of both ordinary differential equations (ODEs) and partial differential equations (PDEs)

in the various fields of science like fluid, mechanics, biology etc, are expressed in fractional forms [1]. There is no

any particular method for accessing the exact type solutions of fractional PDEs but some approximate solutions

are determined by using the method Adomain decomposition approach, the homotopy perturbation approach and

the homotopy analysis approach etc. [2–4]. The analytical method and its various forms are well known approach

for determining solitons wave type solutions of the nonlinear PDEs. With the chronology, some investigators have

utilized the new analytical approach on fractional type nonlinear PDEs for obtaining the solitary solutions. The work

is related to the fractional order generalized Korteweg-de Vries (gKdV) equation [5], for this the fractional form of

gKdV equation [5] is taken as

uαt + F (u)ux + uxxx = 0, 0 ≤ α < 1, 0 < d < 4, F (u) = λud + µu2d, λ, µ ∈ R. (1)

Equation (1) is fractional form of classical generalized Korteweg-de Vries equation which exists by changing the Ist-

order time derivatives by fractional derivatives.

In the past two decades, the fractional calculus theory gained a great attention and popularity in the various fields

of science and engineering due to its demonstrated applications. These contributions to the fields of sciences and
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engineering are based on the mathematical analysis. It covers the widely known classical fields such as Abel’s integral

equation and viscoelasticity. Also, including the analysis of feedback amplifiers, fractional-order Chua-Hartley systems,

electrode-electrolyte interface models, fractional-order models of neurons, electric conductance of biological systems,

generalized voltage dividers, fitting of experimental data, capacitor theory and the fields of special functions [6–9].

Several robust methods have been used to solve the FDEs, the fractional differential equations and dynamic systems

containing fractional derivatives. Some of the most important methods are the Adomian’s decomposition method

[10–12], the exp-function method [13], the He’s the variational iteration method [14, 15], the fractional sub-equation

method [16], the first integral method [17], the homotopy analysis method [18], the (G’/G)-expansion method [19],

the homotopy perturbation method [20, 21], the spectral methods [22], the transform methods [23]. In [24], the

authors presented two methods, which are the exp(-φ(ξ))-expansion method and Kudryashov method. In [25], the

authors demonstrated three methods, which are csch function method, tanh-coth method and modified simple equation

method. In [26–29], the authors introduced the semi-inverse variational principle method, the extended Kudryashov’s

method, the modified simple equation method and the expanded trail equation method respectively. Moreover, the

fractional differential equations have been studied by powerful authors and introduced the applications in sciences

and engineering branches [30–32].

One of well-known equations is the ZK equation, first obtained as a description of weakly nonlinear ion-acoustic modes

in a strongly magnetized plasma, is of particular interest as it is the simplest equation that admits cylindrical and

spherical solitary wave solutions in addition to the planar KdV soliton solutions [33]. Another powerful analytical

method is called the Exp-function method (EFM), which was first presented by He [34]. The EFM has successfully

been applied to many situations. For example, He [34] solved the nonlinear wave equations via the EFM. Abdou [35]

solved generalized solitonary and periodic solutions for nonlinear partial differential equations by the EFM. For further

information refer to vigorous references therein ([35–40]). In the following years, this proposed method was improved

by many researchers. Yang developed general fractional derivatives along with theory, methods and applications, to

some nonlinear fractional differential equations [41]. Recently A new fractal nonlinear Burgers’ equation in which

arising in the acoustic signals propagation studied by Yang [42]. Also, Yang et al investigated fundamental solutions

of anomalous equation and implemented with the decay exponential kernel [43]. A new integral transform operator

for solving the heat-diffusion problem has been utilized by Yang [44]. In [45], Liu and co-workers probed the group

analysis to the time fractional nonlinear wave equation and found the many exact solutions. Moreover, Liu and

other collaborators worked on time-fractional nonlinear diffusion equation [46]. Same authors proposed the fractional

symmetry group method for time fractional nonlinear heat conduction equation which usually appears in mathematics

physics, integrable system, fluid mechanics and nonlinear areas [47].

The pattern of this article is summarized as: In Section-II, the detail of initial definitions is given, In Section-III is

utilized an introduction of the direct truncation method. Also, for getting the exact solutions of the gKdV equation

in section-IV. In section V, the numerical simulation and details of graph and some conclusions are given in the end

in section VI.
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II. INITIAL DEFINITIONS

Definition II.1 Definition of β-derivative: Suppose ϕ : [0; 1) → R, then the β derivative of ϕ of order α is defined

as

Dα
t (ϕ)(t) = lim

ε→0

ϕ

[
t+ ε

(
t+ 1

Γ(α)

)1−α
]
− ϕ(t)

ε
, α ∈ (0, 1], t > 0. (2)

The properties and new theorems will used as follow:

Theorem II.2 Suppose α ∈ (0, 1]; ϕ, ω be α-differentiable at a point t, therefore we will

1. Dα
t (aϕ(t) + bω(t)) = aDα

t (ϕ(t)) + bDα
t (ω(t)), for a, b ∈ R.

2. Dα
t (c) = 0, for c ∈ R.

3. Dα
t (ϕ(t)ω(t)) = ϕ(t)Dα

t (ω(t)) + ω(t)Dα
t (ϕ(t)).

4. Dα
t (ϕ(t)

ω(t) ) =
ϕ(t)Dαt (ω(t))−ω(t)Dαt (ϕ(t))

ω2(t) .

5. Dα
t ϕ(t) =

(
t+ 1

Γ(α)

)1−α
dϕ(t)
dt .

Theorem II.3 [48–50] Suppose ϕ : [0; 1) → R; be a function such that ϕ is differentiable and also α-differentiable.

Assume ω be a differentiable function defined in the range of ϕ. Therefore, we have

Dα
t (ϕoω)(t) =

(
t+

1

Γ(α)

)1−α

ω′(t)χ′(ω(t)), (3)

where prime denotes the classical derivatives with respect to t.

III. METHODOLOGY

In this section, we give a description for the direct truncation method and introduce it for partial differential

equation.

For a given partial differential equation

P (u, ux, uxx, ..., D
α
t u,D

α
xu,D

α
xxu, ...) = 0, 0 < α ≤ 1. (4)

Using a transformation as

u(x, t) = u(φ), η = kx+
l

α

(
t+

1

Γ(α)

)α
, (5)

where k and l are constants to be determined later, we can rewrite equation Eq. (4) in the following nonlinear ODE

Q(u, ku′, k2u′′, ..., lu′, ...) = 0, (6)

where the prime denotes derivative with respect to φ. If possible, integrate Eq. (6) term by term one or more times.

This yields constants of integration. For simplicity, the integration constants can be set to zero. Suppose g has the

following truncation form

g(φ) =

∑τ
j=0 ajξ(φ)j

ζ(φ)τ
, (7)
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in which ξ(φ) and ζ(φ) are introduced as below form

ξ(φ) = p1F (χ(φ)) + q1G(χ(φ)) + r1,

ζ(φ) = p2F (χ(φ)) + q2G(χ(φ)) + r2,

u(ξ) = g(φ) =

∑τ
j=0 aj (p1F (χ(φ)) + q1G(χ(φ)) + r1)

j

(p2F (χ(φ)) + q2G(χ(φ)) + r2)
τ , (8)

where aj , p1, q1, r1, p2, q2, r2 are constants to be determined, χ(φ) is given and F , G are functions determined by an

ordinary differential system, or F , G are functions given by direct ansatz such that their derivations are combinations

of F and G, and χ(φ) is determined by an ordinary differential equation

dχ(φ)

dφ
= H(χ(φ)) = LF (χ(φ)) +MG(χ(φ)) +N, (9)

in which the function H is also given by a direct ansatz according to the context, the exponent τ is determined by

utilizing homogeneous balance method in Eq. (4). The value τ is determined by equalizing the maximum order non-

linear term and the maximum order partial derivative term appearing in (6). If τ is the rational, then the appropriate

transformations can be applied to conquer these hurdles. Substituting (8), (9) into (7) leads to a polynomial in F (φ)

and G(φ), then set the coefficients of F i(φ)Gj(φ) and the constant term to be zero to get a system of algebraic equa-

tions on the unknown parameters in H together with the unknown numbers aj , p1, q1, r1, p2, q2, r2 for j = 0, 1, ..., τ ,

by solving the system one can get aj , p1, q1, r1, p2, q2, r2 and the unknown parameters in H, then solving Eq. (9) to

get χ(φ) and the solutions of Eq. (4) can be obtained.

IV. TRAVELING WAVE SOLUTION FRACTIONAL ORDER FORM OF GENERALIZED KDV

EQUATION

The given section deals with application of new powerful expansion technique by determining the traveling wave

form solutions of fractional order generalized KdV equation,

uαt + F (u)ux + uxxx = 0, F (u) = λud + µu2d, λ, µ 6= 0, (10)

applying aforementioned method. By using the fractional beta complex transform η = kx+ l
α

(
t+ 1

Γ(α)

)α
, Eq. (10)

is reduced to an ODE as

lu′ + (λud + µu2d)ku′ + k3u′′′ = 0. (11)

Integrating Eq. (11) once and setting the constant of integration equal to zero, results in

lu+
kλ

d+ 1
ud+1 +

kµ

d+ 1
u2d+1 + k3u′′ = 0. (12)

Balancing the u′′ and u2d+1 by employing the homogenous principle, we get

M + 2 = (2d+ 1)M, ⇒M =
1

d
. (13)

To get a closed form solution, we use the transformation

u(η) = v(η)
1
d . (14)
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Substituting (14) into Eq. (12), we get

lv2 +
kλ

d+ 1
v3 +

kµ

2d+ 1
v4 +

k3

d

(
1− d
d

v′2 + vv′′
)

= 0. (15)

Balancing the vv′′ and v4, we get

2M + 2 = 4M, ⇒M = 1. (16)

A. Case I:

Then the exact solution will be as

v(η) =
e2χ(φ)a1p1 + eχ(φ)a1q1 + a1r1 + a0

p2e2χ(φ) + q2eχ(φ) + r2
. (17)

Inserting (17) in to Eq. (15), we obtain(
d2(d + 1)(2d + 1)

(
p2e2χ(φ) + q2eχ(φ) + r2

)4
)−1 11∑

n=0

Cn exp(nχ (φ)) = 0, (18)

where Cn(0 ≤ n ≤ 11) are polynomial statements in terms of a0, a1, p1, p2, q1, q2, r1 and r2. Hence, solving the resulting

system Cn = 0(0 ≤ n ≤ 11) simultaneously, we acquire the below set of parameters of solutions

Set I:

L = 0, M = 0, N =
1

2

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
, k = k, l =

λ2 (2 d+ 1) k

µ (d3 + 5 d2 + 8 d+ 4)
, a0 = −r2λ (2 d+ 1)

(d+ 2)µ
,

(19)

a1 = 0, p1 = p1, p2 = p2, q1 = q1, q2 = 0, r1 = r1, r2 = r2.

We, therefore, gained the following generalized solitary solution

u1(φ) =

(
− r2λ (2 d+ 1)

(d+ 2)µ
(
p2e2χ(φ) + r2

)) 1
d

, χ (φ) =
1

2

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
(φ+ C), (20)

in which

φ = kx+
λ2 (2 d+ 1) k

µα (d3 + 5 d2 + 8 d+ 4)

(
t+

1

Γ(α)

)α
. (21)

Set II:

L = 0, M = 0, N =

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
, k = k, l =

λ2 (2 d+ 1) k

µ (d3 + 5 d2 + 8 d+ 4)
, a0 = −r2λ (2 d+ 1)

(d+ 2)µ
, (22)

a1 = 0, p1 = p1, p2 = 0, q1 = q1, q2 = q2, r1 = r1, r2 = r2.

We, therefore, gained the following generalized solitary solution

u2(φ) =

(
− r2λ (2 d+ 1)

(d+ 2)µ
(
q2eχ(φ) + r2

)) 1
d

, χ (φ) =

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
(φ+ C), (23)
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FIG. 1: The 3D plot of (20) at d = 0.2, µ = −1, p2 = 1.5, r2 = 2, λ = 2.2, k = 3 when (f1) α = 0.25, (f2) α = 0.5, (f3) α = 0.85,

and (f4) α = 0.99.

in which

φ = kx+
λ2 (2 d+ 1) k

µα (d3 + 5 d2 + 8 d+ 4)

(
t+

1

Γ(α)

)α
. (24)

Set III:

L = 0, M = M, N = N, k =

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2)N
, l =

λ3 (2 d+ 1)
√
−µ (d+ 1) (2 d+ 1)d

µ2 (d+ 1) (d3 + 5 d2 + 8 d+ 4) (d+ 2)N
, (25)

a0 = − (Mq2 −Np2)λ (2 d+ 1) r1

N (d+ 2)µ p1
, a1 =

(Mq2 −Np2)λ (2 d+ 1) r1

N (d+ 2)µ p1
, p1 = p1, p2 = p2, q1 = 0, q2 = q2, r1 = r1, r2 = 0.
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FIG. 2: The 3D plot of (26) at d = 0.2, µ = −1, p2 = 1.5, q2 = 2, λ = 2.2,M = −3, N = 2, k = 3 when (f1) α = 0.25, (f2)

α = 0.5, (f3) α = 0.85, and (f4) α = 0.99.

We, therefore, gained the following generalized solitary solution

u3(φ) =

(
(Mq2 −Np2)λ (2 d+ 1) eχ(φ)

N (d+ 2)µ
(
eχ(φ)p2 + q2

) ) 1
d

, χ (φ) = N(φ+ C) + ln

(
N

1−M exp(N(φ+ C))

)
, (26)

in which

φ =

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2)N
x+

λ3 (2 d+ 1)
√
−µ (d+ 1) (2 d+ 1)d

µ2α (d+ 1) (d3 + 5 d2 + 8 d+ 4) (d+ 2)N

(
t+

1

Γ(α)

)α
. (27)

Set IV:

L = 0, M = M, N =
1

2

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
, k = k, l =

λ2 (2 d+ 1) k

µ (d3 + 5 d2 + 8 d+ 4)
, r1 = r1, r2 = r2, (28)
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a0 =

(
4M2d3k2µ r2 + 20M2d2k2µ r2 + 32M2dk2µ r2 + 16M2k2µ r2 + 2 d3λ2p2 + d2λ2p2

)
r1

(d+ 2)µd2λ p1
, p1 = p1, p2 = p2, q1 = 0,

a1 = −4M2d3k2µ r2 + 20M2d2k2µ r2 + 32M2dk2µ r2 + 16M2k2µ r2 + 2 d3λ2p2 + d2λ2p2

(d+ 2)µd2λ p1
, q2 = 4

r2M (d+ 2) kµ (d+ 1)√
−µ (d+ 1) (2 d+ 1)λ d

.

We, therefore, gained the following generalized solitary solution

u4(φ) = −1

2

(
4M2k2µ r2 (d+ 1) (d+ 2)

2
+ d2λ2p2 (2 d+ 1)

)√
−µ (d+ 1) (2 d+ 1)e2χ(φ)

µ2 (d+ 1) d (d+ 2)

(
1/2

√
−µ (d+1)(2 d+1)λ d(p2e2χ(φ)+r2)

µ (d+1) + 2 r2Mkeχ(φ) (d+ 2)

) , (29)

in which

χ (φ) = N(φ+ C) + ln

(
N

1−M exp(N(φ+ C))

)
, φ = kx+

λ2 (2 d+ 1) k

αµ (d3 + 5 d2 + 8 d+ 4)

(
t+

1

Γ(α)

)α
. (30)

Set V:

L = 0, M = M, N = N, k = k, l = −N
2k3

d2
, a0 =

(
2Md2r2 −Nd2q2 + 6Mdr2 − 3Ndq2 + 4Mr2 − 2Nq2

)
Nk2r1

q1d2λ
,

(31)

a1 = −
(
2Md2r2 −Nd2q2 + 6Mdr2 − 3Ndq2 + 4Mr2 − 2Nq2

)
Nk2

q1d2λ
, p1 =

Mq1

N
, q1 = q1, q2 = q2, r1 = r1, r2 = r2,

p2 =
4Mk2µ r2 (d+ 1) (d+ 2)

2
(Mr2 −Nq2) + q2

2
(
N2d3k2µ+ 5N2d2k2µ+ 8N2dk2µ+ 4N2k2µ+ 2 d3λ2 + d2λ2

)
4d2λ2r2 (2 d+ 1)

,

We, therefore, gained the following generalized solitary solution

u5(φ) =
{
−
(

4 (d+ 2) (d+ 1) (2Mr2 −Nq2) k2λ (2 d+ 1) r2eχ(φ)
(
Meχ(φ) +N

))
(32)

/ e2χ(φ)
(
4M2d3k2µ r2

2 − 4MNd3k2µ q2r2 +N2d3k2µ q2
2 + 20M2d2k2µ r2

2 − 20MNd2k2µ q2r2 + 5N2d2k2µ q2
2+

32M2dk2µ r2
2 − 32MNdk2µ q2r2 + 8N2dk2µ q2

2 + 16M2k2µ r2
2 − 16MNk2µ q2r2 + 4N2k2µ q2

2 + 2 d3λ2q2
2 + d2λ2q2

2
)

+

4 q2eχ(φ)d2λ2r2 (2 d+ 1) + 4 d2λ2r2
2 (2 d+ 1)

} 1
d

,

in which

χ (φ) = N(φ+ C) + ln

(
N

1−M exp(N(φ+ C))

)
, φ = kx− N2k3

αd2

(
t+

1

Γ(α)

)α
. (33)

Set VI:

L = 0, M = − (2 d+ 1) dλ p1

q1k
√
−µ (d+ 1) (2 d+ 1) (d+ 2)

, N =

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
, k = k, l =

kλ2 (2 d+ 1)

(d+ 1)µ (d+ 2)
2 ,

(34)

a0 =
λ q2 (2 d+ 1) r1

µ q1 (d+ 2)
, a1 = −λ q2 (2 d+ 1)

µ q1 (d+ 2)
, p1 = p1, p2 = p2, q1 = q1, q2 = q2, r1 = r1, r2 = 0.
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We, therefore, gained the following generalized solitary solution

u6(φ) =

{
−
λ q2 (2 d+ 1)

(
eχ(φ)p1 + q1

)
µ q1 (d+ 2)

(
eχ(φ)p2 + q2

) } 1
d

, (35)

in which

χ (φ) = N(φ+ C) + ln

(
N

1−M exp(N(φ+ C))

)
, φ = kx+

kλ2 (2 d+ 1)

α (d+ 1)µ (d+ 2)
2

(
t+

1

Γ(α)

)α
. (36)

Set VII:

L = 0, M = M, N = N, k =

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2)N
, l =

λ3 (2 d+ 1)
√
−µ (d+ 1) (2 d+ 1)d

µ2 (d+ 1) (d3 + 5 d2 + 8 d+ 4) (d+ 2)N
, (37)

a0 = − (Mq1r2 +Np1r2 −Nq1q2)λ (2 d+ 1) r1

N (d+ 2)µ q1
2

, a1 =
(Mq1r2 +Np1r2 −Nq1q2)λ (2 d+ 1)

N (d+ 2)µ q1
2

,

p1 = p1, p2 = −p1 (p1r2 − q1q2)

q1
2

, q1 = q1, q2 = q2, r1 = r1, r2 = r2.

We, therefore, gained the following generalized solitary solution

u7(φ) =

{
− (Mq1r2 +Np1r2 −Nq1q2)λ (2 d+ 1) eχ(φ)(

eχ(φ)p1r2 − q2eχ(φ)q1 − q1r2

)
N (d+ 2)µ

} 1
d

, (38)

in which

χ (φ) = N(φ+ C) + ln

(
N

1−M exp(N(φ+ C))

)
, (39)

φ =

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2)N
x+

λ3 (2 d+ 1)
√
−µ (d+ 1) (2 d+ 1)d

αµ2 (d+ 1) (d3 + 5 d2 + 8 d+ 4) (d+ 2)N

(
t+

1

Γ(α)

)α
.

Set VIII:

L = 0, M = 0, N =

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
, k = k, l =

kλ2 (2 d+ 1)

(d+ 1)µ (d+ 2)
2 , (40)

a0 = −dµ a1r1 + 2 dλ r2 + 2µa1r1 + λ r2

(d+ 2)µ
, a1 = a1, p1 = 0, p2 = 0, q1 = 0, q2 = q2, r1 = r1, r2 = r2.

We, therefore, gained the following generalized solitary solution

u8(φ) =

{
− r2λ (2 d+ 1)

(d+ 2)µ
(
q2eχ(φ) + r2

)} 1
d

, (41)

in which

χ (φ) = N(φ+ C), φ = kx+
kλ2 (2 d+ 1)

α (d+ 1)µ (d+ 2)
2

(
t+

1

Γ(α)

)α
. (42)

Set IX:

L = 0, M = 0, N =

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
, k = k, l =

kλ2 (2 d+ 1)

(d+ 1)µ (d+ 2)
2 , (43)
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a0 = −r2λ (2 d+ 1)

(d+ 2)µ
, a1 = 0, p1 = p1, p2 = 0, q1 = q1, q2 = q2, r1 = r1, r2 = r2.

We, therefore, gained the following generalized solitary solution

u9(φ) =

{
a1q1eχ(φ)µd+ 2 a1q1eχ(φ)µ− 2 dλ r2 − λ r2

(d+ 2)µ r2

} 1
d

, (44)

in which

χ (φ) = N(φ+ C), φ = kx+
kλ2 (2 d+ 1)

α (d+ 1)µ (d+ 2)
2

(
t+

1

Γ(α)

)α
. (45)

Set X:

L = 0, M =

√
−µ (2 d2 + 3 d+ 1)a1q1d

(2 d2 + 3 d+ 1) r2k
, N =

dλ
(
2 d2 + 3 d+ 1

)
(d+ 2)

√
−µ (2 d2 + 3 d+ 1)k (d+ 1)

, k = k, l =
kλ2 (2 d+ 1)

(d+ 1)µ (d+ 2)
2 ,

(46)

a0 = −dµ a1r1 + 2 dλ r2 + 2µa1r1 + λ r2

(d+ 2)µ
, a1 = a1, p1 = 0, p2 = 0, q1 = q1, q2 = q2, r1 = r1, r2 = r2.

We, therefore, gained the following generalized solitary solution

u10(φ) =

{
a1q1eχ(φ)µd+ 2 a1q1eχ(φ)µ− 2 dλ r2 − λ r2

(d+ 2)µ
(
q2eχ(φ) + r2

) } 1
d

, (47)

in which

χ (φ) = N(φ+ C) + ln

(
N

1−M exp(N(φ+ C))

)
, φ = kx+

kλ2 (2 d+ 1)

α (d+ 1)µ (d+ 2)
2

(
t+

1

Γ(α)

)α
. (48)

Set XI:

L = 0, M = 0, N =

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
, k = k, l =

kλ2 (2 d+ 1)

(d+ 1)µ (d+ 2)
2 , (49)

a0 = −dµ a1r1 + 2 dλ r2 + 2µa1r1 + λ r2

(d+ 2)µ
, a1 = a1, p1 = 0, p2 = p2, q1 = q1,

q2 = −d
2µ2a1

2q1
2 + 4 dµ2a1

2q1
2 + 4 d2λ2p2r2 + 4µ2a1

2q1
2 + 4 dλ2p2r2 + λ2p2r2

µ (2 d2 + 5 d+ 2) a1q1λ
, r1 = r1, r2 = r2.

We, therefore, gained the following generalized solitary solution

u11(φ) =

{
λ q1a1 (2 d+ 1)

2 eχ(φ)dλ p2 − dµ a1q1 + eχ(φ)λ p2 − 2µa1q1

} 1
d

, (50)

in which

χ (φ) = N(φ+ C), φ = kx+
kλ2 (2 d+ 1)

α (d+ 1)µ (d+ 2)
2

(
t+

1

Γ(α)

)α
. (51)

Set XII:

L = 0, M = −1

4

q2dλ (2 d+ 1)

r2k
√
−µ (d+ 1) (2 d+ 1) (d+ 2)

, N =
1

2

√
−µ (d+ 1) (2 d+ 1)

µ (d+ 1)
, (52)
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FIG. 3: The 3D plot of (44) at d = 2, µ = −1, a1 = 1.5, q1 = 0.2, r2 = 2, λ = 2.2,M = −3, N = 2, k = 3 when (f1) α = 0.25,

(f2) α = 0.5, (f3) α = 0.85, and (f4) α = 0.99.

k = k, l =
kλ2 (2 d+ 1)

(d+ 1)µ (d+ 2)
2 , a0 = −dµ a1r1 + 2 dλ r2 + 2µa1r1 + λ r2

(d+ 2)µ
, a1 = a1,

p1 = −1

4

(2 d+ 1) q2
2λ

(d+ 2) a1r2µ
, p2 = p2, q1 = −q2λ (2 d+ 1)

(d+ 2) a1µ
, q2 = q2, r1 = r1, r2 = r2.

We, therefore, gained the following generalized solitary solution

u12(φ) =

{
−1

4

λ
(
2 q2

2e2χ(φ)d+ q2
2e2χ(φ) + 8 q2eχ(φ)r2d+ 4 q2eχ(φ)r2 + 8 dr2

2 + 4 r2
2
)(

p2e2χ(φ) + q2eχ(φ) + r2

)
(d+ 2) r2µ

} 1
d

, (53)
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in which

χ (φ) = N(φ+ C) + ln

(
N

1−M exp(N(φ+ C))

)
, φ = kx+

kλ2 (2 d+ 1)

α (d+ 1)µ (d+ 2)
2

(
t+

1

Γ(α)

)α
. (54)

B. Case II:

Then the exact solution will be as

v(η) =
sinh (χ (φ)) a1p1 + cosh (χ (φ)) a1q1 + a1r1 + a0

p2 sinh (χ (φ)) + q2 cosh (χ (φ)) + r2
. (55)

Inserting (55) in to Eq. (15), we obtain(
d2(d + 1)(2d + 1) (p2 sinh (χ (φ)) + q2 cosh (χ (φ)) + r2)

4
)−1 ∑

i+j=6

Cij sinhi(χ (φ)) coshj(χ (φ)) = 0, (56)

where Cij(i + j = 6, 0 ≤ i, j ≤ 6) are polynomial statements in terms of a0, a1, p1, p2, q1, q2, r1 and r2. Hence, solving

the resulting system Cij = 0(i + j = 6, 0 ≤ i, j ≤ 6) simultaneously, we acquire the below set of parameters of solutions

Set I:

L = 0, M = 0, N =
1

2

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
, k = k, l =

λ2 (2 d+ 1) k

µ (d3 + 5 d2 + 8 d+ 4)
, a0 = −r2λ (2 d+ 1)

(d+ 2)µ
,

(57)

a1 = 0, p1 = p1, p2 = q2, q1 = q1, q2 = q2, r1 = r1, r2 = r2.

We, therefore, gained the following generalized solitary solution

u1(φ) =

(
− λ (2 d+ 1) r2

µ (d+ 2) (q2 sinh (χ (φ)) + q2 cosh (χ (φ)) + r2)

) 1
d

, χ (φ) =
1

2

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
(φ+ C),

(58)

in which

φ = kx+
λ2 (2 d+ 1) k

µα (d3 + 5 d2 + 8 d+ 4)

(
t+

1

Γ(α)

)α
. (59)

Set II:

L = 0, M = 0, N =

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
, k = k, l =

λ2 (2 d+ 1) k

µ (d3 + 5 d2 + 8 d+ 4)
, a0 = −r2λ (2 d+ 1)

(d+ 2)µ
, (60)

a1 = 0, p1 = p1, p2 = −q2, q1 = q1, q2 = q2, r1 = r1, r2 = r2.

We, therefore, gained the following generalized solitary solution

u2(φ) =

(
λ (2 d+ 1) r2

µ (d+ 2) (q2 sinh (χ (φ))− q2 cosh (χ (φ))− r2)

) 1
d

, χ (φ) =

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
(φ+ C), (61)

in which

φ = kx+
λ2 (2 d+ 1) k

µα (d3 + 5 d2 + 8 d+ 4)

(
t+

1

Γ(α)

)α
. (62)

Set III:

L = 0, M = 0, N =
1

2

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
, k = k, l =

λ2 (2 d+ 1) k

µ (d3 + 5 d2 + 8 d+ 4)
, a0 =

1

2

λ (2 dp2 + 2 dq2 + p2 + q2) r1

q1 (d+ 2)µ
,

(63)
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FIG. 4: The 3D plot of (58) at d = 0.2, µ = −1, q2 = 1.5, r2 = 2, λ = 2.2,M = 3, N = 2, k = 3 when (f1) α = 0.25, (f2) α = 0.5,

(f3) α = 0.85, and (f4) α = 0.99.

a1 = −1

2

λ (2 dp2 + 2 dq2 + p2 + q2)

q1 (d+ 2)µ
, p1 = q1, p2 = p2, q1 = q1, q2 = q2, r1 = r1, r2 = 0.

We, therefore, gained the following generalized solitary solution

u3(φ) =

(
−1

2

λ (2 dp2 + 2 dq2 + p2 + q2) (sinh (χ (φ)) + cosh (χ (φ)))

µ (d+ 2) (p2 sinh (χ (φ)) + q2 cosh (χ (φ)))

) 1
d

, χ (φ) =
1

2

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
(φ+C),

(64)

in which

φ = kx+
λ2 (2 d+ 1) k

µα (d3 + 5 d2 + 8 d+ 4)

(
t+

1

Γ(α)

)α
. (65)
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FIG. 5: The 3D plot of (64) at d = 0.2, µ = −1, p2 = 1.5, q2 = 2, λ = 2.2,M = 3, N = 2, k = 3 when (f1) α = 0.25, (f2) α = 0.5,

(f3) α = 0.85, and (f4) α = 0.99.

Set IV:

L = 0, M = 0, N =
1

2

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
, k = k, l =

λ2 (2 d+ 1) k

µ (d3 + 5 d2 + 8 d+ 4)
, a0 =

1

2

λ (2 dp2 − 2 dq2 + p2 − q2) r1

q1 (d+ 2)µ
,

(66)

a1 = −1

2

λ (2 dp2 − 2 dq2 + p2 − q2)

q1 (d+ 2)µ
, p1 = −q1, p2 = p2, q1 = q1, q2 = q2, r1 = r1, r2 = 0.

We, therefore, gained the following generalized solitary solution

u4(φ) =

(
−1

2

λ (2 dp2 − 2 dq2 + p2 − q2) (sinh (χ (φ))− cosh (χ (φ)))

µ (d+ 2) (p2 sinh (χ (φ)) + q2 cosh (χ (φ)))

) 1
d

, χ (φ) =
1

2

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
(φ+C),

(67)
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in which

φ = kx+
λ2 (2 d+ 1) k

µα (d3 + 5 d2 + 8 d+ 4)

(
t+

1

Γ(α)

)α
. (68)

Set V:

L = 0, M = 0, N =
1

2

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
, k = k, l =

λ2 (2 d+ 1) k

µ (d3 + 5 d2 + 8 d+ 4)
, a0 = −1

2

q2λ (2 d+ 1) r1

µ p1 (d+ 2)
,

(69)

a1 =
1

2

q2λ (2 d+ 1)

µ p1 (d+ 2)
, p1 = p1, p2 = 0, q1 = −p1, q2 = q2, r1 = r1, r2 = 0.

We, therefore, gained the following generalized solitary solution

u5(φ) =

(
1

2

(2 d+ 1)λ (sinh (χ (φ))− cosh (χ (φ)))

µ (d+ 2) cosh (χ (φ))

) 1
d

, χ (φ) =
1

2

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
(φ+ C), (70)

in which

φ = kx+
λ2 (2 d+ 1) k

µα (d3 + 5 d2 + 8 d+ 4)

(
t+

1

Γ(α)

)α
. (71)

Set VI:

L = 0, M = 0, N =
1

2

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
, k = k, l =

λ2 (2 d+ 1) k

µ (d3 + 5 d2 + 8 d+ 4)
, a0 =

1

2

q2λ (2 d+ 1) r1

µ p1 (d+ 2)
,

(72)

a1 = −1

2

q2λ (2 d+ 1)

µ p1 (d+ 2)
, p1 = p1, p2 = 0, q1 = p1, q2 = q2, r1 = r1, r2 = 0.

We, therefore, gained the following generalized solitary solution

u6(φ) =

(
−1

2

(2 d+ 1)λ (sinh (χ (φ)) + cosh (χ (φ)))

µ (d+ 2) cosh (χ (φ))

) 1
d

, χ (φ) =
1

2

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
(φ+ C), (73)

in which

φ = kx+
λ2 (2 d+ 1) k

µα (d3 + 5 d2 + 8 d+ 4)

(
t+

1

Γ(α)

)α
. (74)

Set VII:

L = 0, M = 0, N =
1

2

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
, k = k, l =

λ2 (2 d+ 1) k

µ (d3 + 5 d2 + 8 d+ 4)
, a0 =

1

2

q2λ (2 d+ 1) r1

µ p1
,

(75)

a1 = −1

2

q2λ (2 d+ 1)

µ p1
, p1 = p1, p2 = (d+ 1)q2, q1 = p1, q2 = q2, r1 = r1, r2 = 0.

We, therefore, gained the following generalized solitary solution

u7(φ) =

(
−1

2

(2 d+ 1)λ (sinh (χ (φ)) + cosh (χ (φ)))

µ (sinh (χ (φ)) d+ sinh (χ (φ)) + cosh (χ (φ)))

) 1
d

, χ (φ) =
1

2

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
(φ+ C),

(76)

in which

φ = kx+
λ2 (2 d+ 1) k

µα (d3 + 5 d2 + 8 d+ 4)

(
t+

1

Γ(α)

)α
. (77)
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Set VIII:

L = 0, M = 0, N =
1

2

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
, k = k, l =

λ2 (2 d+ 1) k

µ (d3 + 5 d2 + 8 d+ 4)
, a0 = −1

2

q2λ (2 d+ 1) r1

µ p1
,

(78)

a1 =
1

2

q2λ (2 d+ 1)

µ p1
, p1 = p1, p2 = −(d+ 1)q2, q1 = −p1, q2 = q2, r1 = r1, r2 = 0.

We, therefore, gained the following generalized solitary solution

u8(φ) =

(
−1

2

(2 d+ 1)λ (sinh (χ (φ))− cosh (χ (φ)))

µ (sinh (χ (φ)) d+ sinh (χ (φ))− cosh (χ (φ)))

) 1
d

, χ (φ) =
1

2

√
−µ (d+ 1) (2 d+ 1)λ d

µ (d+ 1) (d+ 2) k
(φ+ C),

(79)

in which

φ = kx+
λ2 (2 d+ 1) k

µα (d3 + 5 d2 + 8 d+ 4)

(
t+

1

Γ(α)

)α
. (80)

V. GRAPHICAL REPRESENTATION

The graphical description of derived soliton and other solutions have been expressed in the mentioned figures by

allotting the different values of the parameters. The 3D plot for some solutions of the considered equation for four

fractional order cases α = 0.25, 0.5, 0.85, 0.99 have been shown. When the all obtained exact solutions for the fractional

generalized Korteweg-de Vries equation are examined, the exact solution (31) is similar to the solution of Sahadevan

and Bakkyaraj [51], the solution of Li, Guo, and Zhao [52] (47) and the solution of Akbulut and Taşcan [53] (73) in

the literature. The other obtained exact solutions that are not included in the literature, and it can be said that they

are new exact solutions obtained by the new version trial equation method. Also, two and three dimensional graphics

of the obtained solution functions are illustrated in Fig. 1-6 which demonstrate with suitable parametric choices.

VI. CONCLUSION

We used the direct truncation method to find the explicit solution of fractional generalized Korteweg-de Vries

equation, comparing with the known results in the literatures, we get some novel solitary wave solutions, including

bright, dark, kink and periodic solitons. Numerical simulation have been performed by using the Maple software. The

solution of every PDEs are always utilized for understanding the system and various phenomena described by it. The

new analytical expansion method is helpful to obtained the the solutions in the form of hyperbolic and ergometric

forms which are exact and helpful in understanding the fractional forms of it. Finally, a transformation is used to

draw a soliton solutions of Eq. (1) by the use of Maple software. So, this gives the efficient applications of new

analytical expansion for the fractional PDEs.
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