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Abstract

In this manuscript we show a new approach into analyzing the local
stability of equilibrium points of non-linear Caputo fractional planar
systems. It is shown that the equilibrium points of such systems can
exhibit an unstable focus or stable focus under suitable conditions.
Further, it is shown that for α close to 1, global stability can be con-
cluded, under suitable conditions, and without the use of a Lyapunov
function. Lastly, our results are applied to a redator prey model with
group defense, in which we show that it had equilibrium points that
undergo an unstable focus and a stable focus.

1 Introduction

Fractional Differential Equations (FDE) have been growing in popu-
larity in the field of applied mathematics, in particular in the field of
mathematical modeling, see [2, 5, 6, 9–12, 17]. The primary modeling
approach in the references is via Dynamical Systems with α ∈ (0, 1),
where α is the order of the derivative. Such models are particu-
larly popular in modeling disease spread of Predator-Prey interac-
tions (ecosystems), see [3,7,20,21]. Traditionally, the authors in those
papers are interested in determining the qualitative behavior of the
system near its equilibria points, by employing the classical theory of
local stability analysis or bifurcation theory. Similarly, for the frac-
tional case, authors attempt to do the same.

However, due to the complexity of the fractional derivative, the re-
sults obtained are not always as strong as the classical. non-fractional,
case. That is to say, for the classical case the local stability theory is
well developed and it is easy to justify the qualitative behavior of a
system near its equilibria point, as well as provide a complete charac-
terization of the solutions. However, for the fractional case this is not
the case.

In this paper we show that the stability and qualitative behaviour
of equilibria points of a Caputo Fractional Planar System (CFPS) un-
dergo the same qualitative behavior,under suitable conditions, as the
classical case for α close to 1. This extends, the well known result, to
the Caputo Fractional Planar Systems, where [19] has a similar result.
Our method of proof is different, by using an asymptotic expansion
of the Mittag-Leffler function, as provided in [4]. Also, our result dif-
fers from that in [19], as illustrated in Theorem 3.2 and example 3.1.
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We show these new results by making use of some results obtained
in [4,16]. In particular, first we show that the there exists some neigh-
borhood of the equilibrium point of (CFPS) such that the stability,
and characterization of the equilibrium point behave the same as the
classical case for α close to 1, see Theorem 3.1. This result is new.
Secondly, we show that there exists a range for α ∈ (0, 1), whre α need
not be arbitrarily close to 1, such that, under suitable conditions, a
equilibrium point can undergo an unstable or stable focus, Lemma 3.3
and Theorem 3.2, respectively. The conclusion is then summarized
in Theorem 3.3. Moreover, the foregoing results allow us to provide
a way of concluding global stability for CFPS where α is close to 1,
without the need to use a Lyapunov function, see Lemma 3.5. The
approach that is taken in this paper is also different then that taken
in [19] and it provides insight into how to approach more complex
problems in this area.

We use Theorem 3.3 to improve the result obtained in [17], Theo-
rem 5.5 and Theorem 5.6. Specifically, we show that the equilibrium
point (u1∗, u2∗) obtained in [17] undergo an unstable and stable spiral
under suitable conditions. Previously, the local stability of (u1∗, u2∗)
is classified only as asymptotically stable or unstable.

Numerical results are provided using the Matlab function fde12
solver, see [18].

2 Preliminaries

Definition 2.1. [1, p. 13] Let α ≥ 0. The operator Jαa , defined on
L1[a, b] by

Jαa f(t) =
1

Γ (α)

∫ t

a
(t− x)α−1f(x)dx (2.1)

for a ≤ t ≤ b, is called the Riemann-Liouville fractional integral oper-
ator of order α. Here and in what follows Γ (·) is the Gamma function.

Remark 2.1. For α = 0, we set J0
a := I, the identity operator.

Definition 2.2. Let 0 < α < 1. Then, we define the Caputo fractional
differential operator cDα

a as

cDα
a f(t) := J1−α

a f ′(t) (2.2)

whenever f, f ′ ∈ L1[a, b].
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Definition 2.3. Let α > 0, β > 0. The function Eα, defined by

Eα,β(z) =

∞∑
j=0

zj

Γ (αj + β)
, (2.3)

whenever the series converges is called the two parameter Mittag-
Leffler function with parameters α and β.

Lemma 2.1. [4, p. 32] If 0 < α < 1, β ∈ C and µ ∈ R such that

α
π

2
< µ < απ,

then for a arbitrary integer p ≥ 1 the following expansion holds:

Eα(z) =
1

α
z(1−β)/αez

1/α−
p∑

k=1

z−k

Γ(β − αk)
+O

(
|z|−1−p

)
|z| → ∞, |arg(z)| ≤ µ

(2.4)
or

Eα(z) = −
p∑

k=1

z−k

Γ(β − αk)
+O

(
|z|−1−p

)
|z| → ∞. µ ≤ |arg(z)| ≤ π

(2.5)

Remark 2.2. Note, that the terms

p∑
k=1

z−k

Γ(β − αk)
+O

(
|z|−1−p

)
become arbitrary small as |z| → ∞. Fix β = 1, then

Eα(z) =
1

α
ez

1/α |z| → ∞, |arg(z)| ≤ µ

3 Local Stability Theory of Planar Frac-

tional System

In this section we provide the stability theory that we will use in the
paper for Planar Fractional Systems. Specifically, we build on the the
classical theory and extend the results to the fractional case.{

cDα
0 x(t) = f(x, y),

cDα
0 y(t) = g(x, y)

(3.1)
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subject to the initial condition:

(x(0), y(0)) = (x0, y0)

where f, g ∈ C1(R2). Recall that (x, y) is said to be a solution of
(3.1) if x, y ∈ AC(R+) and satisfy the above initial value problem. A
solution (x, y) is said to be positive if x, y ∈ P where

P = {x ∈ C1(R+) : x(t) ≥ 0 for t ∈ R+}.
Since, f, g ∈ C1(R2), it is well known that for any (x0, y0) ∈ R2

the initial value problem (3.1) has a unique solution.
We denote by A(x, y) the Jacobian matrix of f and g at (x, y),

that is,

A(x, y) =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
(3.2)

and by |A(x, y)| and tr(A(x, y)) the determinant and trace of A(x, y),
respectively.

Definition 3.1. A point (x∗, y∗) ∈ R2 is called an equilibrium point
of (3.1) if f(x∗, y∗) = 0, and g(x∗, y∗).

Below we define the linearized system of (3.1) about the equilib-
rium point (x∗, y∗).

Definition 3.2. Let A be the matrix defined in (3.2) is evaluated at
the equilibrium point (x∗, y∗). Then,

cDα
0X = A∗X, (3.3)

where X = (x, y)T , is the linearization of system (3.1) at the equi-
librium point (x∗, y∗).

The following Lemma is a special case (n = 2) of Lemma 3.2 in [17].

Lemma 3.1. [17] Let (x∗, y∗) be an equilibrium point of (3.1) and
A be defined as in (3.2). Let λ1 and λ2 be the eigenvalues of A. Then,
the following assertions hold.

(1) The equilibrium point (x∗, y∗) is locally asymptotically stable if
and only if |arg(λ1,2)| > απ

2 .
(2) The equilibrium point (x∗, y∗) is stable if and only if |arg(λ1,2)| ≥

απ
2 and the eigenvalues with |arg(λ1,2)| = απ

2 have the same geometric
multiplicity and algebraic multiplicity.

(3) The equilibrium point (x∗, y∗) is unstable if and only if |arg(λ1)| <
απ
2 .
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Lemma 3.2. [16][Theorem 3] If the origin O is a hyperbolic equilib-
rium point of (3.1), then vector field (f(x, y), g(x, y)) is topologically
equivalent with its linearization vector field given by the linear system
cDα

0X = AX in the neighborhood of the origin O.

Theorem 3.1. Consider the Caputo planar system{
cDα

ax(t) = f(x(t)),

x(t0) = x0,
(3.4)

where α ∈ (0, 1). Let f ∈ C1(E), where E ⊂ R. Let xe be an
equilibrium point of (3.4). Define by

Nδ0(xe) := {x : |x− xe| < δ0},

and

Nδ1(xe) := {x : |x− xe| < δ1},

for some δ0 > 0 and δ1 > 0. Then, Nδ0 and Nδ1 are two neighbor-
hoods about the equilibrium point xe. Further, let xα and x1 represents
the solutions to (3.4) with α ∈ (0, 1) and α = 1, respectively. Then,
for

xα ∈ Nδ0(xe) and x1 ∈ Nδ1(xe),

lim
α→1

xα(t) = x1(t) for t ∈ [t0,∞) for every t0 ≥ 0.

Proof. By Lemma 3.2 we have that the local behavior of the nonlinear
system (3.4) near a hyperbolic equilibrium point xe is qualitatively
determined by the behavior of the linear system

cDα
0 x(t) = Ax,

where A is a 2×2 matrix such that A = Df(xe), near the equilibrium
point xe. The linear function Ax = Df(xe)x is called the linear part
of f at xe.

Since, we are considering the linearization near an equilibrium
point xe, then we assume that our system has attained the equilibrium
state. In particular, we will consider system (3.4) for t ≥ t0 for any
t0 ≥ 0.
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Let λ1 and λ2 be the two eigenvalue of A. Furthermore, suppose
that λ1 6= λ2. Then, the solution can be represented by the form

xα(t) = c1u
(1)Eα,1(λ1t

α) + c2u
(2)Eα,1(λ2t

α),

where c1, c2 ∈ R and u(1) and u(2) are the eigenvectors of λ1 and λ2,
respectively.

Consider,

lim
α→1

xα(t) = lim
α→1

(
c1u

(1)Eα,1(λ1t
α) + c2u

(2)Eα,1(λ2t
α)

)
= c1u

(1) lim
α→1

Eα,1(λ1t
α) + c2u

(2) lim
α→1

Eα,1(λ2t
α)

= c1u
(1)eλ1t + c2u

(2)eλ2t = x1(t)

The case for λ1 = λ2 follows in a similar manner.

Remark 3.1. Lemma (3.1) has an important implication that has
not received much attention from previous authors in the past. In
particular, it shows that the stability and just as important the char-
acterization of the stability of the solutions near the equilibrium point,
for α ∈ (1− ε, 1) for some ε > 0, behave the same as the classical case.
Therefore, the classical theory can be applied to study the stability of
the Caputo system for α ∈ (1− ε, 1).

Lemma 3.3. Let α ∈ (0, 1). Suppose that the matrix A defined in
(3.2) has the following eigenvalues: λ1 = a + ib and λ2 = a− ib with
a > 0 and b 6= 0. Then, the general solution X of

cDα
0X(t) = AX, (3.5)

where X = (x, y)T , has the following form

X(t) = c1u1[
1

α
et
αa/α(cos(btα) + isin(btα))1/α] (3.6)

+ c2u2[
1

α
et
αa/α(cos(btα)− isin(btα))1/α]

as t→∞ and |arg(λ1,2)| ≤ απ
2 .

Where, c1 and c2 are arbitrary constants and u1 and u2 are eigen-
vectors corresponding to λ1 and λ2, respectively.
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Proof. (1) Let λ1 = a+ib for a, b ∈ R, since a > 0, then if |arg(λ1,2)| ≤
απ
2 , together with (2.5), we have Eα(λ1t

α) = (1/α)e(λ1t
α)1/α as t→∞.

Also, we have

(1/α)e(λ1t
α)1/α = (1/α)e((a+ib)t

α)1/α = (1/α)e(at
α+ibtα)1/α

= (1/α)

[
eat

α

(
cos btα + i sin btα

)](1/α)
= (1/α)ea

1
α t

(
cos btα + i sin btα

)(1/α)

.

Thus,

Eα(λ1t
α) = (1/α)e(λ1t

α)1/α = (1/α)ea
1
α t

(
cos btα+i sin btα

)(1/α)

as t→∞.

Similarly, it can be show that for λ = λ2 = a− ib, that

Eα(λ1t
α) = (1/α)e(λ1t

α)1/α = (1/α)ea
1
α t

(
cos btα−i sin btα

)(1/α)

as t→∞.

Since, λ1 and λ2 are distinct eigenvalues, the general solution takes
the form

y(t) = c1u1Eα(λ1t
α) + c2u2Eα(λ2t

α) (3.7)

and,

X(t) = c1u1[
1

α
et
αa/α(cos(btα) + isin(btα))1/α]

+ c2u2[
1

α
et
αa/α(cos(btα)− isin(btα))1/α].

It is shown in [2] that expression (3.7) can be expressed as a real
valued solution, thus the foregoing solution can be expressed as a real
valued solution.

as t→∞ and |arg(λ1,2)| ≤ απ
2 .

Remark 3.2. Lemma 3.3 is new. It shows that the solution of a Ca-
puto Fractional linear system behaves as a spiral (focus) under suitable
conditions. However, the solutions need not maintain their spiral be-
haviour if |arg(λ1,2)| > απ

2 . We illustrate later that this eventually is
the case.
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Theorem 3.2. Let α ∈ (0, 1). Let λ1 and λ2 be eigenvalues of the
matrix A defined in (3.2) and suppose that λ1 = a+ib and λ2 = a−ib,
with a > 0 and b 6= 0. If |Arg(λ1)| < απ

2 , then the following holds

1. If α ∈ (α∗, 1), then the origin is an unstable focus.

2. There exists an ε0, such that for some ε0 > 0, the origin is a
stable focus whenever α ∈ (α∗−ε0, α∗) and Asymptotically stable
whenever α ∈ (0, α∗ − ε0]

Proof. Note, that α∗ = 2
π |Arg(λ1,2)| ∈ (0, 1) if and only if |arg(λ1,2)| <

π
2 and since, a > 0 then this condition is satisfied.

(1) By condition (1) we have that |A| > 0, a = tr(A) > 0 and
b = tr2(A) − 4|A| 6= 0. Then, it is well known that the origin is
an unstable focus of (3.5) with α = 1. Consider, α ∈ (0, 1). Since,
α ∈ (α∗, 1), then |arg(λ1,2)| < απ

2 .
By application of Lemma 3.3 we have that the solution X of (3.5)

can be expressed as

X(t) = c1u1[
1

α
et
αa/α(cos(btα)+isin(btα))1/α]+c2u2[

1

α
et
αa/α(cos(btα)−isin(btα))1/α]

(3.8)
as t→∞.

Thus the characterization of the solution is a spiral, and by ap-
plying Lemma 3.1 we obtain the behavior of the stability. The result
follows.

(2) Since, 0 < α < α∗, then |arg(λ1,2)| > απ
2 . Thus, the solution

X need not maintain the spiral behavior, as given by (3.6). How-
ever,taking the following limit: α→ α∗ of the above yields,

lim
α→α∗

Xα(t) = Xα∗(t).

Hence, there exists ε0 > 0 such that for α ∈ (α∗−ε0, α∗), Xα can be
made arbitrarily close to Xα∗− . Thus, the characteristic of the solution
will be preserved. Moreover, since α ∈ (α∗− ε0, α∗) by Lemma 3.1 we
have that the stability is interchanged. That is to say, it is now stable.
For α ∈ (0, α∗− ε0], the solutions need not preserve the characteristic
of a stable focus, and thus we can only conclude, by Lemma 3.1, that
it is asymptotically stable, and result (2) follows.
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The following Theorem follows from Lemma 3.1 and Theorem
3.2, where the conditions are expressed in terms of tr(A(x∗, y∗)) and
|A(x∗, y∗)|.

Theorem 3.3. Let α ∈ (0, 1). If (x∗, y∗) is a equilibrium point of
(3.1), then the following assertions hold.

(i) If |A(x∗, y∗)| < 0, then (x∗, y∗) is unstable. (3.1).

(ii) Let δ > 0. If |A(x∗, y∗)| > 0, tr(A(x∗, y∗)) > 0 and (tr(A(x∗, y∗)))2−
4|A(x∗, y∗)| ≥ 0, then (x∗, y∗) is unstable.

(iii) If the conditions of Theorem 3.2 hold, and |A(x∗, y∗)| > 0, tr(A(x∗, y∗)) >
0 and (tr(A(x∗, y∗)))2 − 4|A(x∗, y∗)| < 0, then (x∗, y∗) is an un-
stable focus of (3.1) for α ∈ (α∗, 1); stable focus of (3.1) for
α ∈ (α∗ − δ, α∗]; Locally Asymptotically stable if α ∈ (0, α − δ)
where α∗ = (2/π)|arg(λ1)|.

(iv) If |A(x∗, y∗)| > 0, tr(A(x∗, y∗)) < 0, then (x∗, y∗) is Locally
Asymptotically stable.

Remark 3.3. We note that result (iii) of Theorem 3.3 is not the same
as that provided in [19] Theorem 4 (f) and (g). In fact, in [19], the
matrix A is not the same as the one defined in (3.2). Furthermore,
Theorem 3.3 (iii) guarantees that the equilibrium point (x∗, y∗) is
only a stable focus for α in some left neighborhood of α∗, provided
that the eigenvalues are complex conjugates with a strictly positive
real part. As opposed to Theorem 4 (g) in [19], which implies that an
equilibrium point is a stable focus for α ∈ (0, α∗), provided that the
eigenvalues are complex conjugates.

Our method of proof is also different, in this paper we use asymp-
totic expansion of the Mittag-Leffler function, as shown in 2.1, to
prove our result. Below we provide an example illustrating the result
obtained in Theorem 3.3 and show the importance that α ∈ (0, 1) has
in determining the qualitative behavior of an equilibrium point.

Example 3.1. Consider the following Caputo Fractional linear sys-
tem

cDα
0X(t) = AX, (3.9)

where

A =

(
1 −2
2 0

)
.
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Then, clearly A has two eigenvalues that are complex conjugates
with the real part begin strictly positive, specifically

λ1 = 0.5000 + 1.9365i λ2 = 0.5000− 1.9365i.

Furthemore, it can be shown that α∗ = 0.8391.
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Figure 1: The origin is an unstable focus for of (3.9) with initial conditions
(x0, y0) = (0.15, 0.4) and α = 0.849.
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Figure 2: The origin is a stable focus for of (3.9) with initial conditions
(x0, y0) = (0.15, 0.4) and α = 0.829.

Figure 3: The origin is locally asymptotically stable for (3.9) with initial
conditions (x0, y0) = (0.1, 0.04), (x0, y0) = (0.2, 0.2), and α = 0.5. It can be
seen that the spiral behavior is no longer present
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Below we state a result that is used in the classical theory.

Lemma 3.4. Let α = 1. Assume that each positive solution of (3.1)
with (x0, y0) ∈ R2

+ is contained in a bounded closed subset B of R2.
Assume that B contains only one equilibrium (x∗, y∗) of (3.1) and
(x∗, y∗) belongs to the boundary of B. Then each positive solution of
(3.1) converges to (x∗, y∗).

As an consequence of Theorem 3.1 we obtain the following result,
an extension of the above Lemma 3.4 to the fractional case.

Lemma 3.5. Assume that each positive solution of (3.1) with (x0, y0) ∈
R2
+ is contained in a bounded closed subset B of R2. Assume that B

contains only one equilibrium (x∗, y∗) of (3.1) and (x∗, y∗) belongs
to the boundary of B. Then, there exists a δ0 > 0 such that for
α ∈ (α − δ0, 1) we have that each positive solution of (3.1) converges
to (x∗, y∗).

Remark 3.4. Lemma 3.5 is new. It shows that Lemma 3.4 can be
extended to the fractional case for Caputo fractional planar systems
for some range of α ∈ (0, 1). This allows one to conclude global sta-
bility without the use of Luyapunov function, which is the most used
approach for concluding global stability in such systems.

4 Application and Numerical Simula-

tion

In this section we illustrate, via numerical simulation, the results
obtained in section 2 by applying Theorem 3.3 (iii) to a fractional
predator-prey model with group defense, see [17]. Further, we improve
the result stated in Theorem 5.5 and Theorem 5.6 in [17], pertaining
to the model below.

cDθ
0u1(t) = γ1

[
1− u1(t)

k

]
u1(t)− γ2u1(t)σu2(t)− ρ1ρ2u1(t)

ρ2ρ3+ρ4u1(t)
:= f(u1, u2),

cDθ
0u2(t) = −γ3u2(t) + γ2γ4u1(t)

σu2(t) := g(u1, u2),

(4.1)
where u1(t), and u2(t) represent the prey and predator densities

at time t, respectively. γ1 represents the logistic growth rate, γ2 is the
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search efficiency of predator for prey, γ3 is the mortality rate of preda-
tor, γ4 is the biomass conversion coefficient, k represents the carrying
capacity of the environment, and σ denotes the aggregation efficiency,
ρ1, ρ2 denote the catch-ability parameter, the effort applied to harvest
the prey species, respectively, ρ3 and ρ4 denote the appropriate real
constants. For biological purposes, all of the parameters are assumed
to be positive.

Let

u1∗ :=

[
γ3

γ2γ3kσ

] 1
σ

and u2∗ := u1−σ1∗

[
1− u1∗ − ρ1ρ2

γ1(ρ2ρ3+u1∗ρ4k)

]
.

It is shown in Theorem (5.1) of [17] that the equilibrium point
(u1∗, u2∗) is positive if (1− u1∗)γ1(ρ2ρ3 + u1∗ρ4k) > ρ1ρ2.

The notation and Lemmas below were obtained in [17], as Theorem
5.5 and Theorem 5.6, respectively.

Notation.

a11 := γ1 − 2γ1u1∗
k − γ2σuσ−11∗ u2∗ −

ρ1ρ22ρ3
(ρ2ρ3+ρ4u1∗)2

− γ2uσ1∗,
a12 := γ2u

σ
1∗,

a21 := σγ2γ4u
σ−1
1∗ u2∗,

a22 := −γ3 + γ2γ4u1∗,

α := a11 + a22,

β := a11a22 − a12a21.

Lemma 4.1. If one of the following inequalities is satisfied: (a) α ≤ 0

or (b) α > 0, α2−4β < 0 and

√
α2−4β
α > tan θπ

2 . Then, the equilibrium
point (u1∗, u2∗) is locally asymptotically stable.

Lemma 4.2. If one of the following inequalities is satisfied: (a) α > 0,

α2 − 4β ≥ 0 or (b) α > 0, α2 − 4β < 0 and

√
α2−4β
α < tan θπ

2 . Then,
the equilibrium point (u1∗, u2∗) is unstable.

By applying Theorem 3.3 (iii) we improve the result given in
Lemma 4.1 and Lemma 4.2. Below we state the result.

Theorem 4.1. Suppose that α > 0 and α2−4β < 0, then the following
assertions hold

1. If θ ∈ (θ∗, 1), then the equilibrium point (u1∗, u2∗) is an unstable
focus.
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2. There exists a δ0 > 0 such that (u1∗, u2∗) is a stable focus when-
ever θ ∈ (θ∗ − δ0, θ∗], and locally asymptotically stable whenever
θ ∈ (0, θ∗ − δ0).

Proof. Suppose that α > 0 and α2−4β < 0, then, as shown in [17], we
have that tr(A(u1∗, u2∗)) > 0 and tr(A(u1∗, u2∗))

2−4 det(A(u1∗, u2∗)) <
0. By application of Theorem 3.3, the result follows.

Remark 4.1. Theorem 4.1 improves the result stated in Theorem
5.5 and Theorem 5.6 in [17]. specifically, it shows that the equilib-
rium point (u1∗, u2∗) can be an unstable or stable focus under suitable
conditions. This provides a more complete understanding of the dy-
namical behavior of (4.1).

Below we provide numerical simulation for Theorem 4.1. This is
done by considering the linearized part of (4.1) at the equilibrium
point (u1∗, u2∗), where the linearized part is defined in (3.3), where
A∗ is evaluated at the equilibrium point (u1∗, u2∗).

Figure 4: The trajectories of the linear part of system (4.1)
with θ = 0.93, γ = 2, γ2 = 3, γ3 = 0.2, γ4 = 6/9, ρ1 = 0.29, ρ2 = 0, ρ3 = 1.2,
ρ4 = 0.5, s1 = 0.255 and k = 500/499. The equilibrium point (0, 0) is an
unstable focus. The initial conditions used here are (u10, u20) = (0.15, 0.4).
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Figure 5: The trajectories of the linear part of system (4.1)
vs time, with θ = 0.93, γ = 2, γ2 = 3, γ3 = 0.2, γ4 = 6/9, ρ1 = 0.29, ρ2 = 0,
ρ3 = 1.2, ρ4 = 0.5, s1 = 0.255 and k = 500/499. The equilibrium point
(0, 0) is an unstable focus. The initial conditions used here are (u10, u20) =
(0.15, 0.4).
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Figure 6: The trajectories of the linear part of system (4.1)
with θ = 0.83, γ = 2, γ2 = 3, γ3 = 0.2, γ4 = 6/9, ρ1 = 0.29, ρ2 = 0, ρ3 = 1.2,
ρ4 = 0.5, s1 = 0.255 and k = 500/499. The equilibrium point (0, 0) is a stable
focus. The initial conditions used here are (u10, u20) = (0.15, 0.4).
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Figure 7: The trajectories of the linear part of system (4.1)
vs time, with θ = 0.65, γ = 2, γ2 = 3, γ3 = 0.2, γ4 = 6/9, ρ1 = 0.29, ρ2 = 0,
ρ3 = 1.2, ρ4 = 0.5, s1 = 0.255 and k = 500/499. The equilibrium point
(0, 0) is Locally Asymptotically Stable. The initial conditions used here are
(u10, u20) = (0.15, 0.4).
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Remark 4.2. It should be noted that similar figures, such as Figure 6
can be found in [17]. However, the equilibrium point is classified only
as locally asymptotically stable. Theorem 4.1 shows that it can be
classified as a stable focus, and figure 6 supports this. Furthermore,
the above figures clearly illustrate Theorem 3.3 as it is applied to
system (4.1) via Theorem 4.1.

Conclusion
This manuscript concerns itself with the local stability theory and

qualitative behavior of the equilibria points of Caputo Fractional Pla-
nar Systems. In particular, it shows how the well established result of
the classical planar systems (regular ODE) can be extended to study
the stability of Caputo Fractional Planar Systems (CFPS) near its
equilibria points, see Theorem 3.1, which shows that the local stabil-
ity theory of the classical planar system can be employed to determine
the local stability of equilibria points of CFPS for α ∈ (α − ε, 1) for
some ε > 0. Moreover, Theorem 3.2 shows that under suitable condi-
tions, the equilibrium point of CFPS can be an unstable focus for a
specific range of α. Consequently, improving Lemma 3.1. The method
of proof here is different then the one given in [19] and our result
shows that if α is small enough, then the spiral behavior need not be
preserved, and we do not have stable focus. This is not mentioned
in [19]. Lastly, by employing Theorem 3.3, we provide a more com-
plete picture on the local stability of the equilibrium point (u1∗, u2∗)
found [17]. Essentially, improving on Theorem 5.5 and Theorem 5.6
in [17]. Also, using LEmma 3.5 we can show that, under suitable con-
ditions, an equilibrium point of (3.1) is globally asymptotically stable
without the need to use a Lyapunov function, which in some cases
could be difficult to determine. Thus, we have shown that Lemma 3.4
could be applied to the CFPS for some α close to 1.

We remark, that these results and our method of proof only apply
to hyperbolic equilibrium points. The case for non-hyperbolic equilib-
rium points is much more difficult and is part of the future work.
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