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The paper deals with the analysis of stable thermo-solutal dendritic growth in the
presence of intense convection. The n-fold symmetry of crystalline anisotropy as well
as the two- and three-dimensional growth geometries are considered. The steady-
state analytical solutions are found with allowance for the convective-type heat and
mass exchange boundary conditions at the dendritic surface. A linear morphologi-
cal stability analysis determining the marginal wavenumber is carried out. The new
stability criterion is derived from the solvability theory and stability analysis. This
selection criterion takes place in the regions of small undercooling. To describe a
broader undercooling diapason, the obtained selection criterion, which describes the
case of intense convection, is stitched together with the previously known selec-
tion criterion for the conductive-type boundary conditions. It is demonstrated that
the stitched selection criterion well describes a broad diapason of experimental
undercoolings.
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1 INTRODUCTION

Dendritic crystals are frequently encountered growth structures in phase transformations from metastable melts and
solutions.1−10 The growth velocity of dendrites, their shape, and the characteristic size of their tips are determined by the pro-
cesses of heat and mass transfer at the interphase boundaries, as well as by the anisotropy of surface energy.11−13 Since the heat
andmass transfer completely controls the undercooling (supersaturation) of the liquid created between the surface of the growing
dendrite and far from it, the velocity and diameter of the dendritic tips are defined by undercooling of the melt (supersaturation
of the solution). Let us especially note that the tip velocity and tip diameter as functions of the undercooling (supersaturation)
require determining two equations representing the undercooling (supersaturation) balance condition and the so-called selec-
tion criterion.6,14,15 Such a criterion gives the temperature (solute concentration) distribution in the dendritic tip region, which
is in close proximity to the well-known parabolic (paraboloidal) distributions found for the first time by Ivantsov and Horvey-
Cahn.16−19 It is significant to highlight that the selection criterion was derived in a series of previous papers in the case of
conductive heat and mass transfer mechanism at the dendritic surface20−28 accounting for the effects of forced flows, binary
systems, attachment kinetics of atoms, and rapid solidification.
An important point is that the convective type of heat and mass transfer boundary conditions at the growing dendritic surfaces

drastically changes the crystallization scenario in the presence of intense convection in liquid. This, for example, occurs in the
presence of oceanic (turbulent) flows under the growing dendritic ice cover.29,30 If this is really the case, we need to determine
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FIGURE 1 A scheme of growing dendritic crystal in an intense convective (turbulent) flow.

the selection criterion for the convective boundary conditions by analogy with the frequently met crystallization scenario with
conductive boundary conditions. To do this, we use the solvability theory developed by Pelcé and Bensimon.31 To find the
marginal mode of the wave-number and substitute it into the solvability condition,31 we develop the morphological stability
theory for convective boundary conditions, which enables to derive this wave-number. Since the convective criterion works in
the vicinity of dendritic tip region, we then sew together the convective and conductive selection criteria to find a single one
working in a wide diapason of the melt undercooling.

2 THE CRYSTAL GROWTHMODEL AND ITS STATIONARY SOLUTION

Let us describe the model of thermo-solutal dendritic growth in the case of intense convection in liquid. The convective heat
and mass transport equations in the solid and liquid phases take the form

)Tl
)t

+ (w ⋅ () Tl = DT∇2Tl,
)Ts
)t

= DT∇2Ts, (1)

)Cl
)t

+ (w ⋅ ()Cl = DC∇2Cl, (2)
where w is the fluid velocity, Tl and Ts are the temperatures in the liquid and solid phases, DT is the thermal diffusivity, DC is
the diffusion coefficient, Cl is the solute concentration in liquid, t is the time variable, and subscripts s and l designate the solid
and liquid phases.
If the fluid field near the crystal surface is substantial, the dendrite growth depends on convective heat and mass (or turbulent)

fluxes in liquid (figure 1 illustrates an isolated dendrite growing in a convective flow). Taking this into account let us write out
the boundary conditions on the crystal surface as29,30,32−34

TQ
DT

v ⋅ n = ∇Ts ⋅ n +
�ℎ�lclu∗
ks

(

Ti − T∞
)

, (3)

(

1 − k0
)

Civ ⋅ n = �mu∗
(

Ci − Cl∞
)

. (4)
Here v ⋅ n is the normal growth velocity, TQ represents the hypercooling, �ℎ and �m are the convective (turbulent) coefficients
for heat and mass, ks is the coefficient of thermal conductivity in the solid phase, cl is the heat capacity of the liquid phase,
Ti and Ci are the temperature and concentration at the interface of the dendrite, T∞ and Cl∞ are the temperature and solute
concentration far from the denrite interface, k0 is the segregation coefficient, and u∗ is the friction velocity. This velocity is
defined by the shear stress �s and the liquid phase density �l as u∗ =

√

�s∕�l.35 Let us especially note that �ℎ∕�m =
(

DT ∕DC
)n̄,

where 2∕3 < n̄ < 4∕5.36−38
The Gibbs-Thomson equation at the solid-liquid boundary reads as

Ti = T0 − mCi − TQd(�) − �̃(�)v ⋅ n, (5)
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where T0 is the phase transition temperature at the planar interface of a single-component melt, and m is the liquidus slope.
The solid-liquid interface curvature is given by

 =

⎧

⎪

⎨

⎪

⎩

1∕R, two − dimensional space (2D case),

(R1 + R2)∕(R1R2), three − dimensional space (3D case),
(6)

where R is the dendrite tip radius in 2D, R1 and R2 are the main radii of curvature for dendritic tip in 3D.
The capillary length d(�) and the function of anisotropic kinetics �̃(�) are described by

d(�) = d0
{

1 − �d cos
[

n
(

� − �d
)]}

, (7)

�̃(�) = �0TQ
{

1 − �� cos
[

n
(

� − ��
)]}

, (8)
where d0 and �0 are the capillary and kinetic constants, �d ≪ 1 is the stiffness which depends on "c (small anisotropy parameter
of surface energy), �� ≪ 1 is the kinetic anisotropy parameter, �d and �� are the angles between the growth directions and
minimal functions d(�) and �̃(�), n is the order of crystalline symmetry. Note that equations (7) and (8) were averaged over the
polar angle.39
Further the equations (1) and (2) can be integrated in the parabolic/paraboloidal coordinates � and � (2D case) or �, � and '

(3D case), which are connected with the Cartesian coordinates x, y and z as

x = �
√

��, z =
�(� − �)

2
(2D),

x = �
√

�� cos', y = �
√

�� sin', z =
�(� − �)

2
(3D),

(9)

where � represents the dendritic tip diameter, ' is the polar angle lying in the plane that is perpendicular to the incoming flow,
and � = 1 determines the solid/liquid surface of a dendrite.
Taking the boundary conditions (3) and (4) into consideration, one can obtain the temperature and solute concentration in the

liquid phase dependent only on the distance � from a dendrite

Tl(�) = Ti + (T∞ − Ti)
IT (�)
IT (∞)

, Cl(�) = Ci + (Cl∞ − Ci)
IC (�)
IC (∞)

, (10)

IT (�) =

�

∫
1

exp
(

−Pg�′
)

�′(j−1)∕2
d�′, IC (�) =

�

∫
1

exp
(

−PC�′
)

�′(j−1)∕2
d�′,

Ti = T∞ +
TQV ks

�ℎ�lclu∗DT
, Ci =

�mu∗Cl∞
�mu∗ − (1 − k0)V

(11)

with j = 2 (2D case) and j = 3 (3D case). Here Pg = �V ∕(2DT ) and PC = �V ∕(2DC ) stand for the growth Péclet numbers
determined for the temperature and concentration fields (V is the steady-state velocity of dendritic growth).
Next section is devoted to the behavior of morphological perturbations concerning these quasistationary solutions.

3 LINEAR STABILITY ANALYSIS AND SOLVABILITY INTEGRAL

Linear stability analysis determines a response of dendritic surface near the tip region to small perturbations in the case of
convective heat and mass transfer. In this instance, the main idea of the analysis is to find the marginal mode (between instability
and stability) from the critical value of the wave number k = km by analogy with the previously developed theory.4,6,21
Let us introduce the special coordinate system (xc , yc), which is connected with the crystal surface, and xc and yc designate

the tangent and normal axes to the crystal surface. Also, note that the origin of this frame of reference is at the dendritic surface
and � represents the angle between the surface normal and growth axis. So, the small perturbations of temperature and solute
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concentration fields following from (1) and (2) satisfy the equations
)T ′l,s
)t

+ ū
)T ′l,s
)xc

+ v̄
)T ′l,s
)yc

+ v′
dT̄l,s
dyc

= DT∇2T ′l,s,

)C ′l
)t

+ ū
)C ′l
)xc

+ v̄
)C ′l
)yc

+ v′
dC̄l
dyc

= DC∇2C ′l ,
(12)

where ū = −V sin � and v̄ = −V cos �.
The morphological perturbations for the temperature fields T ′l and T

′
s in the liquid and solid phases, the solute concentration

C ′l and the crystal surface �
′ can be written out as

T ′l (xc , yc , t) = (Tl0 + Tl1yc + Tl2y
2
c )E(xc , yc , t), T ′s (xc , yc , t) = (Ts0 + Ts1yc + Ts2y

2
c )E(xc , yc , t),

C ′l (xc , yc , t) = (Cl0 + Cl1yc + Cl2y
2
c )E(xc , yc , t), �′(xc , yc , t) = CE(xc , yc , t),

(13)

where E(xc , yc , t) = exp
(

!t + ikxc − �kyc
)

, )�′∕)t = −v′, Tl�, Ts�, C� and C stand for the corresponding amplitudes, k and !
are the wavenumber and frequency of perturbations (� = 0, 1, 2); i is the imaginary unit, and � = 1 or −1 (its sign coincides with
the sign of real part of k as disturbances cannot be diverging).
Combining expressions (12) and (13), we arrive at the following amplitudes

Tl,s2 =
!C
4DT

dT̄l,s
dyc

, Tl,s1 =
3!C
4�kDT

dT̄l,s
dyc

−
[! + V k (� cos � − i sin �)] Tl,s0

2�kDT
,

C2 =
!C
4DC

dC̄l
dyc

, C1 =
3!C
4�kDC

dC̄l
dyc

−
[! + V k (� cos � − i sin �)]C0

2�kDC
.

(14)

Note that the derivatives dT̄l∕dyc = ℎ1 and dC̄l∕dyc = ℎ2 at the crystal interface are defined by expressions (10) and (11) and
take the form

ℎ1 = −
2TQV ks exp(−Pg)
��ℎ�lclu∗DT IT (∞)

, ℎ2 = −
2(1 − k0)V Cl∞ exp(−PC )
�
[

�mu∗ − (1 − k0)V
]

IC (∞)
. (15)

Now expanding expressions (3)-(5) in series at the crystal surface yc = 0, we arrive at four equations for the morhological
perturbations

T ′l = −(ℎ1 + mℎ2)�
′ − mC ′l − dTQ

)2�′

)y2c
+ �̃

)�′

)t
, T ′s = mℎ2�

′ + mC ′l + dTQ
)2�′

)y2c
− �̃

)�′

)t
,

TQ
DT

)�′

)t
=
)T ′s
)yc

− 2bℎ1�′ − 2bT ′l ,
1 − k0
�mu∗

(

V cos �C ′l + V cos �ℎ2�
′ + Ci

)�′

)t

)

+ C ′l + ℎ2�
′ = 0,

(16)

where b = �ℎ�lclu∗∕(2ks).
Now combining the morphological perturbations (13) and the boundary conditions (16) at yc = 0, we come to the equations

for Tl0, Ts0, Cl0 and C . Eliminating these amplitudes from this set of four equations, we come to the dispersion law !(k). Let us
now take into account that the real perturbation evolves with a shift−iV k sin � in the dispersion law!(k)−iV k sin � if the frame
of reference is moving in the z-direction with a constant velocity V .21,22 Keeping this in mind, chosing � = −1 and replacing i
by −i,21 we arrive at the equation for marginal mode k = km of the wavenumber at the neutral stability surface (where ! = 0)

km
2 +

(

2b −
i�V sin �

d
− iB sin �

dA

)

km −
2bi�V sin �

d
− iV sin �

DT d
− 2biB sin �

dA
= 0, (17)

where
A = 1 +

(1 − k0)V cos �
�mu∗

, B =
(1 − k0)mCiV
�mu∗TQ

, �(�) =
�̃(�)
TQ

.

To obtainn the selection criterion (expression for V and �), the marginal wavenumber km found from equation (17) should be
substituted into the following solvability condition derived by Pelcé and Bensimon31

∞

∫
−∞

G
[

X0(l)
]

Ym(l)dl = 0, Ym(l) = exp
⎡

⎢

⎢

⎣

i

l

∫
0

km(l1)dl1
⎤

⎥

⎥

⎦

, (18)

where G designates the curvature operator, and X0(l) is a continuum of solutions from which the dependence km(l) can be
deduced.
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4 SELECTION CRITERION IN THE CASE OFN-FOLD SYMMETRY OF DENDRITIC
GROWTH

In this section, we analyze the solvability integral (18) with allowance for the wavenumber km given by expression (17). First,
considering various dendritic growth modes with convective heat and mass transfer, we derive the corresponding criterion for
selecting a stable growth scenario. Then this criterion will be sewed together with the previously derived selection criterion for
the conductive conditions of heat and mass transfer on the dendrite surface.

4.1 Selection criterion for purely thermal dendritic growth with convective boundary conditions
Equation (17) in the absence of solute concentration (Cl∞ = 0 and Ci = 0) gives

k = −b
√

1 +
iqV sin �
bd

− b +
i�V sin �
2d

, (19)

where q = �0 + 1∕(bDT ), �� ≪ 1 and V ≲ 10 m/s.
Now combining expressions (18) and (19) in the case of small anisotropies �d ≪ 1, �� ≪ 1 and considering �d = 0,1 one

can get

∞

∫
−∞

d�G
[

X0(�(�))
]

exp

⎧

⎪

⎨

⎪

⎩

�

∫
1∕
√

2�d

⎡

⎢

⎢

⎢

⎣

√

√

√

√

√

27∕4�2bqV �5∕nd A5∕nn

(

�′
n+1
2 − �̃�′(�′n∕2 − 1)

)

d0
(

1 − �′n∕2
)

+
�An

2∕n

√

2d0�
1−2∕n
d

(

27∕4�1+1∕nd A1∕nn bd0
√

�′ + �0V ��
)
⎤

⎥

⎥

⎦

d�′
⎫

⎪

⎬

⎪

⎭

= 0,

(20)

where

�̃ = �A1∕nn �
(n−1)(n−4)

4n
d , � =

23∕4�
5−n
4
d bd0
qV

, An = 2−3n∕4
n
∑

k=0

(

n
k

)

in−k cos
(n − k)�

2
.

Here the following substitutions are taken into account6,21

l1 = −
�
2

[ tan �
cos �

+ ln
( 1
cos �

+ tan �
)]

, �(�) = tan � = i
(

1 −
√

2�d�
)

, � =
A2∕nn �′

�(n−4)∕(2n)d

, �d ≈ �� ≪ 1.

The integral equation (20) has two main contributions. The first one is the contribution from the stationary phase points,
which reads as

cos
⎡

⎢

⎢

⎣

Ā2

√

�2bqV �5∕nd A5∕nn

d0

(

1 + B̄2�̃
n+5
2(n−1)

)

+
2a1(1 − �̃

3
n−1 )

3
+ a2

(

1 − �̃
2
n−1

)
⎤

⎥

⎥

⎦

. (21)

The second one is the contribution from the loop (between the distance ∼ �̃2∕(n−1)) at the intersection of the sharp descent
trajectory and the real axis and �′ ∼ 1. In this case, an oscillating factor of the exponentially small value of the integral can be
written out as

cos
⎡

⎢

⎢

⎣

Ā1

√

�2bqV �5∕nd A5∕nn

d0

(

1 + B̄1�̃
n+5
2(n−1)

)

+
2a1
3
�̃

3
n−1 + a2�̃

2
n−1

⎤

⎥

⎥

⎦

, (22)

a1 = 25∕4A3∕nn �3∕nd �b, a2 =
��A

2∕n
n ��0V

√

2d0�
n−2
n
d

.

Here Ā1, Ā2, B̄1 and B̄2 are constans.
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Setting equal to zero the sum of contributions (21) and (22), we obtain the solvability (selection) criterion of dendrite growth
in a pure substance in the case of convective heat transfer in the liquid phase

�∗ =
2d0DT

�2V
=

�0�
5∕n
d A5∕nn

(

1 + bDT �0
)

(

1 + ��̃
n+5
2(n−1)

)2

[

1 + �1

(

�3∕nd A3∕nn �b +
3�1∕4d A2∕nn ��0V

25∕4d0

)]2
, (23)

where �21 = 2
9∕225�0∕27, �0 and � are constants determined from the experimental tests40 or phase field simulationmethods.41,42

4.2 Selection criterion for thermo-solutal dendrite growth with convective boundary conditions
Let us now introduce �1 = �0+mCi(1−k0)∕(TQ�mu∗). In the limit of very dilute systems �1 ≪

√

d0∕(V DT ) or �1 ≪ bd0∕V and
A ∼ 1, the wave number km can be found from expression (19), where �0 is replaced by �1, and the selection criterion becomes

�∗ =
�0�

5∕n
d A5∕nn

(

1 + bDT �1
)

(

1 + ��̃
n+5
2(n−1)

1

)2

[

1 + �1

(

�3∕nd A3∕nn �b +
3��1∕4d A2∕nn �1V

25∕4d0

)]2
, �̃1 =

�1∕nd A1∕nn �b2d0
21∕4Pg(1 + bDT �1)

. (24)

Considering now the case �1 ≫
√

d0∕(V DT ), we obtain from (17)

k =
i�1V sin �

d
. (25)

Further, combining expressions (18) and (25), we arrive at
∞

∫
−∞

d�G
[

X0(�(�))
]

exp

⎛

⎜

⎜

⎜

⎝

√

2�V �1�
2∕n
d A2∕nn

d0

�

∫
1∕
√

2�d

�′n∕2d�′

�′n∕2 − 1

⎞

⎟

⎟

⎟

⎠

= 0, (26)

where the contribution from the loop is written in the form of

cos

(

Ā3�V �1�
2∕n
d A2∕nn

d0

)

= 0 (27)

and Ā3 is a constant.
Now equating (27) to zero, we come to the selection criterion

�∗ =
2d0DT

�2V
=
2�0DT �1�

2∕n
d A2∕nn

�
, (28)

where �0 represents a constant, which can be found again by the phase field modeling or experimentally (here the limit of
applicability is �1 ≫

√

d0∕(V DT )).
The generalized selection criterion for both limiting cases in �1 can be written as

�∗(�, V ) = �∗conv(�, V ) =
2d0DT

�2V
=

�0�
5∕n
d A5∕nn

(

1 + bDT �1
)

(

1 + ��̃
n+5
2(n−1)

1

)2

[

1 + �1

(

�3∕nd A3∕nn �b +
3�1∕4d A2∕nn Pg�1DT

21∕4d0

)]2
+
2�0�

2∕n
d A2∕nn DT �1

�
. (29)

Consequently, the selection criterion (29) defines a combination between the dendrite growth velocity V and its tip diameter
� in the case of convective heat and mass transfer in liquid and n-fold symmetry order of crystalline anisotropy. An important
point is that the selection criterion (29) transforms to the previously developed theory with the four-fold order of the crystalline
symmetry (n = 4).6
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4.3 Selection criterion for the thermo-solutal dendritic growth with conductive boundary
conditions
Following the paper by Alexandrov et al.,6 let us write down the selection criterion that describes the stable crystal growth with
conductive heat and mass transfer boundary conditions at the dendritic surface

�∗(�, V ) = �∗cond(�, V ) =
2d0DT

�2V
=
�0�

7∕n
d A7∕nn

1 + b̃�̄�nn

⎧

⎪

⎨

⎪

⎩

1
[

1 + a1n�
2∕n
d A2∕nn Pg

(

1 + �0DT �0∕d0
)

]2

+
2mCi(1 − k0)DT

[

1 + a2n�
2∕n
d A2∕nn PC

(

1 + �0DC�0∕d0CD
)

]2
TQDC

⎫

⎪

⎬

⎪

⎭

,

(30)

where
�̄n = �

−3∕n
d A−3∕nn

(

aUd0
4�V P

+
aUd0DT

2�V PDC

)

, P = 1 +
2mCi(1 − k0)DT

TQDC
, �n =

n + 7
2(n + 3)

,

a1n =
(

8�0
7

)1∕2
( 3
56

)3∕8
A3∕(2n)n �(12−3n)∕(8n)d , a2n =

√

2a1n, d0CD =
TQd0

2mCi(1 − k0)
, �0 = 20

√

7
24

(56
3

)3∕8
.

Here k0 is the equilibrium segregation coefficient, b̃ is a hydrodynamic selection constant, and parameters Ci and a should be
substituted from expressions (2.15) and (3.3) (for details, see our previous theory6).
This criterion describes a stable mode of dendritic growth in a forced hydrodynamic flow with velocity U directed in the

opposite direction to the crystal growth axis.6 Let us also especially underline that expression (30) can be generalized considering
the case of rapid crystallization.25,26

4.4 Stitching together the "convective" and "conductive" selection criteria
It is significant to note that the selection criterion (29) describes the case of convective heat andmass transfer boundary conditions
on the dendritic surface. It means that this criterion works when such a transfer mechanism predominates. This, in turn, occurs
at sufficiently intense convection (e.g., in the case of turbulent flows in the ocean) and small undercoolings ΔT . From the other
hand, the selection criterion (30) describes the classical conductive heat and mass transfer mechanism, which works in a broad
range of undercoolings when the convective type of heat and mass transfer can be neglected in comparison with the conductive
one. Therefore, to obtain a generalized criterion, we need stitching together the "convective" and "conductive" selection criteria
(29) and (30).
Using a simple power form for the stitching functions bcond(ΔT ) and bconv(ΔT ), we arrive at a generalized selection critrerion,

which reads as

�∗gen =
2d0DT

�2V
=
�∗convbconv(ΔT ) + �

∗
condbcond(ΔT )

bconv(ΔT ) + bcond(ΔT )
. (31)

Here the subscript gen designates a generalized selection criterion, whereas subscripts conv and cond mean the convective and
conductive contributions. As this takes place, the stitching functions are introduced as follows

bconv(ΔT ) = �conv

( TQ
ΔT

)jconv
, bcond(ΔT ) = �cond

(

ΔT
T0

)jcond
, (32)

where �conv = (TQ∕T0)iconv ≪ 1, �cond = (TQ∕T0)icond ≪ 1, and iconv > 1, icond > 1, jcond > 1 and jconv > 1 are the fitting
constants. These parameters should be chosen in such a way as to achieve the best possible stitching of functions �∗conv(�, V ,ΔT )
and �∗cond(�, V ,ΔT ). Let us especilally note that TQ ∼ 10

2 and T0 ∼ 103 for metallic melts22,43 so that � can be small enough at
a chosen value of j.
It is significant that the stitching functions formally satisfy the following asymptotic conditions bcond(ΔT ) → 0 if ΔT → 0

and bconv(ΔT )→ 0 if ΔT →∞. Thus, �∗gen ≈ �
∗
conv at a small undercooling and �∗gen ≈ �

∗
cond at a large undercooling.
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5 UNDERCOOLING BALANCE

One or another selection criterion discussed in the previous section determines an equation, which connects the dendrite tip
diameter �, tip velocity V , and undercooling ΔT . To find �(ΔT ) and V (ΔT ) we need a second law connecting �, V and ΔT .
The undercooling balance represents such a condition.
Considering the case of convective boundary conditions (3) and (4) at the dendritic surface, we come to

ΔTconv = ΔTT conv + ΔTCconv + ΔTR + ΔTK . (33)

Here the thermal ΔTT conv and concentration ΔTCconv contributions read as

ΔTT conv = Ti − T∞ =
TQV ks

�ℎ�lclu∗DT
, ΔTCconv = m(Ci − Cl∞) =

(1 − k0)V mCl∞
�mu∗ − (1 − k0)V

, (34)

where the aforementioned analytical solutions (10) and (11) are taken into account.
The contributions ΔTR and ΔTK caused by the interface curvature (the Gibbs-Thomson effect) and the attachement kinetics

of atoms at the dendritic interface can be written in the form of

ΔTR =
4d0TQ
�

, ΔTK =
V
�k
, (35)

where �k is the kinetic coefficient. Note that expression (35) for ΔTR is written in the three-dimensional case. In the case of
two-dimensional grows this expression reads as ΔTR = 2d0TQ∕�.14
Combining expressions (33)-(35), we obtain an explicit function

�(V ,ΔTconv) =
4d0TQ

ΔTconv − ΔTT conv(V ) − ΔTCconv(V ) − V ∕�k
. (36)

In addition, the selection criterion (29) enables us to find the following implicit dependence defining the dendrite tip velocity V
as a function of the melt undercooling ΔTconv

�2(V ,ΔTconv)V �∗conv(�(V ,ΔTconv), V )
2d0DT

= 1. (37)

Thus, equations (36) and (37) determine dependencies �(ΔTconv) and V (ΔTconv).
In the case of conductive mechanism of heat and mass transfer, the undercooling balance takes the form

ΔTcond = ΔTT cond + ΔTCcond + ΔTR + ΔTK , (38)

where the thermal ΔTT cond and concentration ΔTCcond contributions are defined by expressions found in the previous
studies.6,14,15,22,24
To obtain a generalized undercooling balance, we stitch together the convective and conductive balances (33) and (38) with

the same stitching functions

ΔT = ΔTgen =
ΔTconvbconv(ΔT ) + ΔTcondbcond(ΔT )

bconv(ΔT ) + bcond(ΔT )
. (39)

Note that this condition has the same limiting properties as the selection criterion (31).
Thus, the generalized selection and balance laws (31) and (39) determine the dendrite tip diameter � and its velocity V as

functions of the melt undercooling ΔT in the case of the mixed (convective and conductive) type of heat and mass transfer near
the growing dendritic surface.

6 DISCUSSION AND CONCLUSION

In this section, we analyze the behavior of analytical solutions for convective and conductive heat and mass transfer mechanisms
and compare these cases. First of all, figure 2 demonstrates the dendrite tip velocity versus the melt undercooling calculated
for both conductive (expressions (30) and (38)) and convective (expressions (36) and (37)) heat and mass transfer mechanisms.
So, for example, if we use the classical (conductive) boundary conditions, none of the blue dashed and green dash-dotted
lines can describe experimental data for small undercooling. What is more, increasing the rate U of incoming forced flow, the
"conductive" curve shifts to the right (to greater undercooling) and moves away from experimental data. In other words, by
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FIGURE 2 Dendrite tip velocity V as a function of the melt undercooling ΔT for Ti45Al55 melt. The dashed (blue) and dash-
dotted (green) curves are plotted for the conductive heat and mass transfer mechanism without (U = 0 m/s) and with (U = 0.5
m/s) the forced fluid flow (expressions (30) and (38)). The solid line (red) is illustrated accordingly to expressions (36) and (37).
Theoretical predictions are compared with experimental data44 for small undercoolings. The model parameters are �0 = 1.17,
n = 4, d0 = 9.28 ⋅10−10 m,DT = 2.5 ⋅10−6 m2 s−1, �l = 2.46 ⋅103 kg m−3, k0 = 0.86, Cl∞ = 55 at%, �d = 0.3, �0 = 1.88 ⋅10−2
s m−1, �k = 10−3 m s−1 K−1, m = 8.78 K at%−1, cl = 1237 J kg−1 K−1, �ℎ = 3.55, �m = 1, u∗ = 4 m s−1, TQ = 272.64 K,
ks = 29.22Wm−1 K−1, An = A4 = 1.

changing the parameter U it is not possible to combine the "conductive" theory with measurements. However, if we use the
"convective" theory under consideration, it is possible to describe experiments. Indeed, the red solid line is within the error bars
of measurements.
From the physical point of view, this behavior is explained by the fact that the intense fluid flow can arise near the growing

crystals. In turn, this flow is responsible for a transition from the laminar regime to the turbulent one in levitated droplets.45 Such
a transition can be caused by the presence of intense fluid curls leading to the convective heat and mass transfer mechanism near
dendritic tips (where the flow can be turbulent45). Therefore, given all the above, we conclude that the "convective" boundary
conditions leading to the model expressions (36) and (37) of stable dendritic growth, where �∗conv is defined by the selection
criterion (29), can describe experimental data for small undercooling.
Figure 3 illustrates the wider diapason of undercooling from the same experimental work. As would be expected, the con-

vective model (36) and (37) well describes experiments in the range of small undercooling (blue line in figure 3 ). However,
the range of large undercooling is described well by the conductive model (30) and (38). Describing the intermediate region in
ΔT as well as the whole undercooling diapason, we must use the generalized stitched model (31) and (39), which well describes
experimental data in figure 3 . In other words, describing all undercooling range in the case of intense convection near the
growing dendrites, one can use the mixed (conductive and convective) heat and mass transfer mechanism corresponding to
the generalized stitched model (31) and (39), where the stitching functions are given by expressions (32). As this takes place,
their parameters iconv, icond , jconv and jcond should be chosen in such a manner to achieve a better fitting between the theory and
experimental data. Let us especially note in conclusion that the stitching functions can be chosen in diverse ways with the limit
transitions to the "convective" and "conductive" models. This question represents an interesting and important topic for future
research.
As a special note, the present theory of stable dendritic growth with convective heat and mass transfer can be extended in

describing such phenomena as dendritic growth at the inner core boundary of the Earth,46 the evolution of crystals in magma
chambers and lava lakes,47 as well as in mushy layers of sea ices48−50 or, in other words, wherever convective heat and mass
transfer plays an important role.
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FIGURE 3 Dendrite tip velocity V as a function of the melt undercooling ΔT for Ti45Al55 melt (experimental points are taken
from Hartmann et al.44). Two experimental points lying near 40 K are the same as the points shown in figure 2 . The model
parameters correspond to figure 2 andDC = 8.27 ⋅ 10−9 m2 s−1, T0 = 1748 K, �conv = 3 ⋅ 10−9, �cond = 0.03, jconv = jcond = 3,
b̃ = 0.1.
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