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1 Introduction

Elementary Ca2+ signaling events occur in many different cell types and exhibit
a variety of spatiotemporal features, according to which they were classified. For
such events an ever growing nomenclature has been developed (e.g. Ca2+ sparks,
puffs, blinks, quarks, etc., for review see Niggli, E., and N. Shirokova. 2007.
A guide to sparkology: The taxonomy of elementary cellular Ca2+ signaling
events. Cell Calcium. 42:379–387.). More complex Ca2+ signals, such as Ca2+
waves and whole-cell Ca2+ transients are often composed of a variable number
of such elementary events.

Numerous methods exist for analysing Ca2+ sparks and other types of el-
ementary and global Ca2+ signals in confocal linescan images. These employ
various different approaches: noise tresholding [4, 3], wavelet transform [6], etc.

Recently, a method was developed by Tian et al., [7], where the fluorescence
time trace in each pixel is fitted and provides a practically noise free approxima-
tion of the original fluorescence data. This pixel-by-pixel method had, however,
several limitations which made it impractical to be used for Ca2+ release event
detection.

Here we extend the method by Tian et al., in several ways. The new method
allows for Ca2+ release event classification based on pixel-by-pixel denoising of
the original signal.
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2 Methods

2.1 Cell isolation

2.2 Solutions

2.3 Confocal Ca2+ imaging

Data acquisition was performed on two confocal setups. Linescan images were
obtained on an Olympus FluoView 1000 confocal microscope. Framescan im-
ages were recorded with a VTInfinity multi-beam confocal microscope recording
512x64 pixel images at 150Hz freqency.

2.4 Computational

The detection algorithm is presented in the Results section.

3 Results

3.1 Pixel by pixel event classification

The algorithm is presented schematically on figure 1. Each subroutine is ex-
plained in detail below.

3.1.1 Region detection

Before it is possible to fit the fluorescence signal in each pixel with a transient
function, candidate regions containing possible events must be detected. For this
we have modified a continous wavelet transform based peak detection algorithm
by Du et al.[2]. Whereas the the original algorithm of Du et al. provides the
location of the peak, we have extended it to also yield the the width of the peak.

The original algorithm works by calculating a wavelet transform of the signal
for increasing window lengths (Figure 1 B). Ridge lines along local maxima on
the surface correspond to peaks if they satisfy certain criteria (length of the
ridge, SNR, etc., see Du et al.[2] for details) In our extension, the width of the
peak is obtained from finding the first maximum of the wavelet transform values
along the ridge line (Figure 1C). The left and right edges of the region are taken
as [peakcenter − 1.5 × width, peakcenter + 2 × width]

Region estimation provides a ranked list of potential event regions. The
rank of a region indicates how many regions having a lower peak SNR overlap
with it. For example, region 1 and 3 on Figure 1D have rank 3, because neither
overlap with a region having a lower peak SNR. Region 2 has a rank of 2 as
it overlaps with region 3 which has a lower peak SNR. Ranking is necessary to
ensure overlapping signals are correctly fitted in the fitting stage.

2



Figure 1: Detecting regions with potential events. A Example of a raw
fluorescence signal from a single pixel for which event regions are detected. B
Continous wavelet transform is perfomed on the raw signal with varying wavelet
widths. Coloured lines indicate ridge lines along maxima at changing window
length values. Squares denote the first maxima on each ridge line. C Signal-to-
noise ratio of the continous wavelet transform along each ridge line. The first
maximum on each ridge line is taken as the region size. D Regions detected by
the algorithm.

3.1.2 Signal fitting

Fitting function for transients The function used for fitting Ca2+ release
events is shown on Figure 3. The shape of the function is described by 4 parame-
ters: amplitude (A), rise and decay time constants (τr, τd) and plateau duration
(d). An additional parameter (µ) determines the time when the maximum is
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reached. The function describing a transient is:

g(A, d, τd, τr, µ, t) = A ·


1 − exp

(
− t−µ

τr

)
· exp (−2) µ− 2τr ≤ t < µ

1 − exp(−2) µ ≤ t < µ+ d

exp
(
− t−µ−d

τd

)
· (1 − exp(−2)) t ≥ µ+ d

0 otherwise
(1)

The transient consists of four phases: zero level before the onset of the
transient, an exponential increase with time constant τr starging when t =
µ − 2τr, a plateau phase of duration d starting at t = µ and an exponential
decay with time constant τd starting at t = µ+ d

For the optimizer to obtain good performance when fitting, the function used
for fitting should be continously differentiable. With this in mind, the transient
function is convolved with a gaussian G(σ) to yield the actual fitting function:

f(A, d, τd, τr, µ, t, σ) = g ∗G

For notational purposes we shall represent the fit function parameters by the
vector

p =
[
A d τd τr µ

]
. The smoothing parameter σ will be fixed for all pixels. Therefore, for the i -th
pixel the k -th event is represented by f(pi,k, t).

The entire raw signal for the i -th pixel can be represented as:

Fi(t) = b(qi, t) +

m∑
k=0

f(pi,k, t) +W +R

, where b is a n-th order polynomial with qi being the polynomial coefficients
for the i -th pixel, summation is performed over all m events in the pixel, W
represents noise and R is the remaining residual not captured in the baseline
nor events. Ideally, R = 0, but achieving this is limited by the accuracy of the
event region detection (we cannot fit what we do not detect) and whether or not
our fitting function is general enough to be able to approximate various types
of events.

Because it is not known which part of the signal is the event and which is
the baseline, the first fit also has to estimate the baseline properties. Signal
in the candidate region is fitted with an extended fit function (Figure 3) that
also depends on relaxation baseline B and baseline offset C. The C parameter
allows for the possibility of an elevated background before the release event.

Iterative fitting Fitting of potential event regions is performed iteratively.
The algorithm is depicted on figure x.

First, the highest ranked regions are fitted with the extended fit function.
After parameter optimization with the signal in the region is fitted with a linear
model. For both models the corrected Akaike Information Criterion (AICc [1])
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is calculated and the region is taken to contain an event only if the AICc for the
fit function is less than the AICc for the line. This ensures that the fit obtained
with the fit function is good enough to justify the use of the more complicated
model. After this the fit is subtracted from the original signal. This allows the
lower ranked regions to be fitted with reduced interference from higher ranking
regions (see supporting info figures). When all regions have been fitted and their
fits subtracted from the signal, the remaining signal is fitted with a polynomial
function to approximate the baseline fluorescence.

In the second stage signals from approved regions are fitted again. Before
performing the fit for each region, the baseline and previously obtained fits for
other regions are subtracted from the raw signal. This allows the simpler fit
function to be used as the subtraction eliminates the need for the extra baseline
parameters (B and C). Once all regions are fitted in this manner the results
are subtracted from the raw signal to estimate the baseline again. The second
fitting stage is repeated once to improve the quality of the fits.

Figure 2: Diagram depicting the procedure for estimating parameters of events
and overall baseline in detected regions.

Approximating the original image Having detected events from all the
pixels it is possible to combine all fitted pixels into an approximation of the
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Figure 3: Fitting function. A: Fitting function for transients given by eq
1. B Result of fitting raw fluorescence data with the combined fitting function.
C Raw signal is the sum of the fit, noise (W) and residual (R). D The fit is a
superposition of the baseline and pixel events.

original image having a reduced level of noise. The results of applying the
denoising algorithm to a linescan image, where one pixel corresponds to one
horizontal line (Figure 4A), are presented on Figure 4B. The fitted image is
obtained by adding the baseline image (Figure 4C) and fitted pixelevents (Figure
4D). Separating the baseline and events into separate images allows to easily
calculate the standard ∆F/F0 image of the linescan (4E). Substracting the fitted
image from the original data yields the noise and residual (W + R in Eq. ??).
The histogram of the unfitted portion of the signal is symmetric around zero
and gaussian.

Shape and location parameters Each pixel event is characterized by the
parameters r. Four of these (A, d, τd, τr) determine the shape of the event and µ
the location in time. In order to completely charactarize a pixel event it is also
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Figure 4: Fitting a linescan image. A Raw fluorescence signal. B Each
horizontal line along the temporal axis was fitted with the fitting algorithm. The
fitted signal in the denoised image is a sum of fitted events (C) and baseline
(D). ΔF/F0 image (E) is obtained by dividing the event image (C) with the
baseline (D). Because the fitted baseline is a function of time, the ΔF/F0 image
is automatically corrected for temporal changes in background fluorescence (e.g.,
bleaching). F The residual signal obtained when subtracting the fitted image
from raw data. G Histogram of the residual values.

necessary to know the pixel’s spatial location. This would require one or two
spatial coordinates, respectively for line- or framescans. Hence, a pixel event
is wholly defined by two vectors: the shape parameter vector ps = [A, d, τd, τr]
and the position parameter vector pp = [µ, x, y].
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The k -th event detected in pixel i is represented by vectors psi,k and ppi,k.
An event matrix for the i -th pixel Ei contains the parameter vectors for all the
events in the pixel:

Ei =



psi,0 ppi,0

psi,1 ppi,1

. . .

psi,k ppi,k


=
(
Esi Epi

)

The event matrix for the entire image is obtained by stacking all pixel event
matrices:

E =



E0

E1

...

Ei


=



Es0 Ep0

Es1 Ep1

...
...

Esi Epi


=
(
Es Ep

)

, where Es and Ep are shape and position submatrices, respectively, containing
event shape and position parameters for all events from all pixels and making
up the entire image event matrix E. The separation of shape and position
parameters for events is necessary in the next clustering step.

3.1.3 Clustering

Having determined the events in each pixel it is possible to reconstruct the
image with reduced noise levels using the matrix E. However, this will not
tell us anything about the properties of actual release events (e.g., spark/wave
numbers or properties) as these macroscopic events are made up of several
events from different pixels. It is therefore necessary to combine elementary
events from various pixels into macroscopic release events.

This is achieved using the clustering method DBSCAN [5]. The algorithm?
works in the parameter space and finds clusters of arbitrary shape based on
the density of events. In contrast to many other clustering methods (e.g., k-
nearest neighbours, spectral clustering) the number of clusters found is not
determined in advance. The number of clusters found depends on the data and
two parameters: minimum number of events in a cluster and the maximum
distance from a cluster to be included in it).

Clustering is performed in two steps. First, pixel events are distributed
into groups according to their shape i.e., clustering is done on the matrix Es.
This is possible because, although the function used for fitting various release
events (e.g., sparks or waves) is the same, the shape parameters of a event
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approximating a spark are likely to be more similar to other spark events rather
than wave events. This is clearly visible on Figure 4A where . . .

In the second clustering step, the Ep matrix is processed for each shape
group and clusters of spatiotemporally close events are obtained. An example of
results of this positional clustering is shown on Figure 4B where events making
up single sparks are depicted in various shades of orange. A single wave is
shown in blue. Events that failed to be classified are black. Events that fail
to be classified in either the shape or positional clustering steps are essentially
filtered out as invalid events. With this two-step approach, release events of
various types consisting of elementary events from multiple pixels are obtained.

3.1.4 Algorithm parameters

3.1.5 Event characterisation

linescan sparks + wave / restitution
linescan sr waves
framescan

3.2 Sensitivity analysis

3.2.1 Pixel trace

As the amount of noise in the signal increases the performance of the event
detection algorithm should decrease (Fig X A). The sensitivity of the method
to noise was explored by estimating both the probability of detecting an event
in a noisy signal and the accuracy of the fit. The original signal to be fitted
was generated from the fitting function for five different amplitudes. To this
signal different levels of normally distributed noise was added (noise level is the
standard deviation of the noise distribution). Figure x B shows the probability
of detecting the event in the signal as a function of noise level. Increasing
the event amplitude shifts the event detection probability curve towards higher
noise levels and vice-versa. It is more informative to look at the relationship
between detection probability and the signal to noise ratio of the event. This is
calculated as:

SNR =

∫ b
a
f(t)2 dt

(b− a)σ2
n

where a and b are times, before and after the peak respectively, when the
fluorescence is at half of its peak value (i.e., b-a is FDHM), f(t) is the event
signal and σn the standard deviation of the noise (i.e., noise level). The resulting
plot is depicted on figure x C, and it can be seen that detection probability is
only dependent on the SNR. For visual comparison, the appearance of 4 events
with different SNR and detection probabilities are shown on Figure x.

On Figure X D the accuracy of the fit compared to the original event is
estimated for various amplitudes and noise levels as the R2 value. Predicatably

9



Figure 5: Classifying detected events. A Density based clustering al-
gorithm is used to classify pixel events into categories based on their shape.
Colours represent event categories. Black signifies events which could not be
categorized. B Categories obtained from clustering by shape plotted according
to event location. C In the second step of classification each shape category is
clustered further based on location. Groups of pixel events are obtained that
make up a Ca2+ release even (in this case sparks and a wave). D All detected
sparks visualized according to their center(location of coloured circle) and am-
plitude (colour of the circle). Events marked with a black x were not symmetric
and not classified as sparks. Circle colour shows sparks originating from the
same 2um segment. Empty circles are sparks with no nearby sparks.

the R2 value decreases as the amount of noise increases. Again, the R2 curves
calculated for different amplitudes overlap when plotted as a function of SNR.
Combining plots XC and XE the relationship between the probability of finding
an event and the accuracy of the fit can be obtained.
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3.2.2 Release event detection

3.3 Biological results

3.3.1 Spark location and parameters

Locations of individual sparks can be estimated once the clustering steps are
done. The fluorescence image for each spark is reconstructed from all its pixel
events. A gaussian is fitted to the spatial profile of the spark at the time of
maximum fluorescence. The spatial location and FWHM are obtained from the
fit parameters.

3.3.2 Waves in the cytosol and SR

When analyzing Ca2+ waves in cardiomyocytes it is customary to deskew them
(REF) before averaging the signal in the spatial dimension. This relies on
detecting the half maximal fluoresence along each pixel and then straigthening
the linescan. This approach can be problematic in case of noisy images or
when dealing with several waves in one image. With our method deskewing the
linescan is not necessary. The peak time for each pixelevent composing the wave
will be known from fitting and can be used to calculate the average wave profile
and wave speed. It is also possible to use detected cytosolic wave events to
analyze Ca2+ waves in the sarcoplasmic reticulum (SR). The SR signal is more
noisy than the cytosolic which makes it difficult to apply the fitting algorithm
directly. Assuming that a decrease in the SR signal is accompanied by increased
flourescence in the cytosol, the first step of the algorithm - region detection -
can be skipped and the regions detected in the cytosol reused for analysis in the
SR.

Homogeneinity of release (REF to nina)

3.3.3 Framescan analysis

Despite having focused on analysing linescans so far, the method can be readily
applied to analysis of framescans as well. Figure X shows the results for frames-
can analysis, comparing raw, fitted and delta F images from the same 139x33
pixel area (X x Y um). For each case three different timepoints are presented:
a wave, a weak spark and a strong spark.

Event clustering for framescan images is performed in a similar fashion to
linescan images, with the exception of two spatial dimensions used for release
event grouping.

The information provided by the method parameter maps can be constructed
for release events. On Figure examples of wave maximum time, angle and speed
are shown.
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4 Discussion

This project was supported by a SciEx felloship (to A.I.) and by Swiss National
Science Foundation grants (31-132689 and 31-156375 to E.N.). We would like
to thank M. Courtehoux for expert technical assistance.

5 Appendix

5.0.1 Image preprocessing

The only preprocessing step used is convolving the image with a (2n+1)×(2n+1)
kernel where the center element is 1/(n+ 1) and the k-th layer surrounding the
center is made up of values 1/(8k · (n+ 1)). For example, when n=1 the kernel
would be 

1/16
1/16

1/16

1/16
1/2

1/16

1/16
1/16

1/16


Convolving the image with this kind of kernel reduces the noise while re-

taining more of the original signal than simple averaging. Contributions from
the i-th layer around the center will have the same weight as the central pixel.
In this work we use the kernel with n = 1.
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Figure 6: Sensitivity and accuracy of the algorithm. A Four version of
the same original signal (shown in black on the top left panel) with different
levels of added noise. The title for each plot indicates detection probability
and the signal to noise ratio (SNR) for the each respective signal. B Detection
probabilities as a function of noise level for signals with various amplitudes. C
Detection probabilities as a function of SNR are no longer dependent on signal
amplitude. D R2 value for detected events as a function of noise level for signals
with various amplitudes. E R2 value as a function of SNR. F Combining (C)
and (E) to show the relationship between detection probability and fit accuracy.
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Figure 7: Dual channel linescan analysis A and B show, from left to right,
the raw signal, fitted signal and DF/F0 for cytosolic and SR measurements, re-
spectively. C Raw data with the fit for a time trace from a single pixel(indicated
by black rectangles on (A) and (B)) for SR(left) and cytosolic(right) signals.
D Average wave profiles for the 3 detected waves in SR and cytosol.
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Figure 8: Framescan analysis A Snapshot of a 512x64 pixel framescan at
t=1.1 seconds after initiation of recording. Rectangle shows the in focus region
analyzed in subsequent panels. B, C, D Raw image, pixel-by-pixel fitted image
and ∆F/F0, respectively for a Ca2+ wave. E, F, G Raw image, pixel-by-pixel
fitted image and ∆F/F0, respectively for a Ca2+ spark.
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Figure 9: Detailed framscan analysis A Baseline fluorescence (dye distribu-
tion) in the zoomed in region from Figure 8. B Map showing wave peak time.
C Map showing wave FDHM D Time difference between actual time of wave
maximum and expected time. Arrows indicate the gradient of wave peak time.
E Wave slowness - i.e., highest resistance to wave traversal.
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