References
Akhtar, A., Dhaliwal, J., et al. (2021). 7,8-Dihydroxyflavone improves cognitive functions in ICV-STZ rat model of sporadic Alzheimer’s disease by reversing oxidative stress, mitochondrial dysfunction, and insulin resistance. Psychopharmacology (Berl), 238 (7), 1991-2009. doi:10.1007/s00213-021-05826-7
Alexander, S. P. H., Roberts, R. E., et al. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of Pharmacology. Br J Pharmacol, 175 (3), 407-411. doi:10.1111/bph.14112
Banqueri, M., Mendez, M., et al. (2019). Early life stress by repeated maternal separation induces long-term neuroinflammatory response in glial cells of male rats. Stress, 22 (5), 563-570. doi:10.1080/10253890.2019.1604666
Blasco-Serra, A., Gonzalez-Soler, E. M., et al. (2017). A standardization of the Novelty-Suppressed Feeding Test protocol in rats.Neurosci Lett, 658 , 73-78. doi:10.1016/j.neulet.2017.08.019
Burke, S. L., Cadet, T., et al. (2018). Psychosocial risk factors and Alzheimer’s disease: the associative effect of depression, sleep disturbance, and anxiety. Aging Ment Health, 22 (12), 1577-1584. doi:10.1080/13607863.2017.1387760
Carlen, M. (2017). What constitutes the prefrontal cortex?Science, 358 (6362), 478-482. doi:10.1126/science.aan8868
Codeluppi, S. A., Chatterjee, D., et al. (2021). Chronic Stress Alters Astrocyte Morphology in Mouse Prefrontal Cortex. Int J Neuropsychopharmacol, 24 (10), 842-853. doi:10.1093/ijnp/pyab052
Cui, S. Y., Song, J. Z., et al. (2018). Intracerebroventricular streptozotocin-induced Alzheimer’s disease-like sleep disorders in rats: Role of the GABAergic system in the parabrachial complex. CNS Neurosci Ther, 24 (12), 1241-1252. doi:10.1111/cns.13032
Curtis, M. J., Alexander, S., et al. (2018). Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br J Pharmacol, 175 (7), 987-993. doi:10.1111/bph.14153
Deng, Y., Zhou, M., et al. (2021). Involvement of the microbiota-gut-brain axis in chronic restraint stress: disturbances of the kynurenine metabolic pathway in both the gut and brain. Gut Microbes, 13 (1), 1-16. doi:10.1080/19490976.2020.1869501
Dezsi, L., Tuka, B., et al. (2015). Alzheimer’s disease, astrocytes and kynurenines. Curr Alzheimer Res, 12 (5), 462-480. doi:10.2174/156720501205150526114000
Ding, H., Cui, S. Y., et al. (2021). Anti-stress effects of combined block of glucocorticoid and mineralocorticoid receptors in the paraventricular nucleus of the hypothalamus. Br J Pharmacol, 178 (18), 3696-3707. doi:10.1111/bph.15511
Fan, C., Song, Q., et al. (2018). Curcumin Protects Against Chronic Stress-induced Dysregulation of Neuroplasticity and Depression-like Behaviors via Suppressing IL-1beta Pathway in Rats. Neuroscience, 392 , 92-106. doi:10.1016/j.neuroscience.2018.09.028
Fullana, M. N., Covelo, A., et al. (2019). In vivo knockdown of astroglial glutamate transporters GLT-1 and GLAST increases excitatory neurotransmission in mouse infralimbic cortex: Relevance for depressive-like phenotypes. Eur Neuropsychopharmacol, 29 (11), 1288-1294. doi:10.1016/j.euroneuro.2019.09.004
Garrison, A. M., Parrott, J. M., et al. (2018). Kynurenine pathway metabolic balance influences microglia activity: Targeting kynurenine monooxygenase to dampen neuroinflammation.Psychoneuroendocrinology, 94 , 1-10. doi:10.1016/j.psyneuen.2018.04.019
Garro-Martinez, E., Fullana, M. N., et al. (2021). mTOR Knockdown in the Infralimbic Cortex Evokes A Depressive-like State in Mouse. Int J Mol Sci, 22 (16). doi:10.3390/ijms22168671
Gatchel, J. R. (2021). Late-Life Depression and Alzheimer’s Disease Pathology: An Ounce of Prevention, a Pound of Cure. Am J Geriatr Psychiatry, 29 (5), 458-461. doi:10.1016/j.jagp.2020.11.006
Gosselin, R. D., Gibney, S., et al. (2009). Region specific decrease in glial fibrillary acidic protein immunoreactivity in the brain of a rat model of depression. Neuroscience, 159 (2), 915-925. doi:10.1016/j.neuroscience.2008.10.018
Grieb, P. (2016). Intracerebroventricular Streptozotocin Injections as a Model of Alzheimer’s Disease: in Search of a Relevant Mechanism.Mol Neurobiol, 53 (3), 1741-1752. doi:10.1007/s12035-015-9132-3
Han, X. M., Qin, Y. J., et al. (2019). Development of an underivatized LC-MS/MS method for quantitation of 14 neurotransmitters in rat hippocampus, plasma and urine: Application to CUMS induced depression rats. J Pharm Biomed Anal, 174 , 683-695. doi:10.1016/j.jpba.2019.06.043
Helm, M. S., Dankovich, T. M., et al. (2021). A large-scale nanoscopy and biochemistry analysis of postsynaptic dendritic spines. Nat Neurosci, 24 (8), 1151-1162. doi:10.1038/s41593-021-00874-w
Hestad, K., Alexander, J., et al. (2022). The Role of Tryptophan Dysmetabolism and Quinolinic Acid in Depressive and Neurodegenerative Diseases. Biomolecules, 12 (7). doi:10.3390/biom12070998
Kalafatakis, K., & Zarros, A. (2014). Intracerebroventricular administration of streptozotocin as an experimental approach to Alzheimer’s disease. Int J Neurosci, 124 (12), 944-946. doi:10.3109/00207454.2014.890934
Lawson, M. A., Parrott, J. M., et al. (2013). Intracerebroventricular administration of lipopolysaccharide induces indoleamine-2,3-dioxygenase-dependent depression-like behaviors. J Neuroinflammation, 10 , 87. doi:10.1186/1742-2094-10-87
Lilley, E., Stanford, S. C., et al. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. Br J Pharmacol, 177 (16), 3611-3616. doi:10.1111/bph.15178
Liu, R. J., Ota, K. T., et al. (2015). Ketamine Strengthens CRF-Activated Amygdala Inputs to Basal Dendrites in mPFC Layer V Pyramidal Cells in the Prelimbic but not Infralimbic Subregion, A Key Suppressor of Stress Responses. Neuropsychopharmacology, 40 (9), 2066-2075. doi:10.1038/npp.2015.70
Meier, T. B., Drevets, W. C., et al. (2016). Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder. Brain Behav Immun, 53 , 39-48. doi:10.1016/j.bbi.2015.11.003
Moench, K. M., Maroun, M., et al. (2016). Alterations in neuronal morphology in infralimbic cortex predict resistance to fear extinction following acute stress. Neurobiol Stress, 3 , 23-33. doi:10.1016/j.ynstr.2015.12.002
Moench, K. M., & Wellman, C. L. (2017). Differential dendritic remodeling in prelimbic cortex of male and female rats during recovery from chronic stress. Neuroscience, 357 , 145-159. doi:10.1016/j.neuroscience.2017.05.049
O’Connor, J. C., Lawson, M. A., et al. (2009). Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry, 14 (5), 511-522. doi:10.1038/sj.mp.4002148
Paxinos, G., & Watson, C. J. R. B. i. S. C. (1986). The Rat Brain in Stereotaxic Coordinates. 3 (2), 6.
Percie du Sert, N., Hurst, V., et al. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Br J Pharmacol, 177 (16), 3617-3624. doi:10.1111/bph.15193
Shin, C. B., Templeton, T. J., et al. (2018). Endogenous glutamate within the prelimbic and infralimbic cortices regulates the incubation of cocaine-seeking in rats. Neuropharmacology, 128 , 293-300. doi:10.1016/j.neuropharm.2017.10.024
Sierra-Mercado, D., Padilla-Coreano, N., et al. (2011). Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology, 36 (2), 529-538. doi:10.1038/npp.2010.184
Song, J. Z., Cui, S. Y., et al. (2018). Dysfunction of GABAergic neurons in the parafacial zone mediates sleep disturbances in a streptozotocin-induced rat model of sporadic Alzheimer’s disease.Metab Brain Dis, 33 (1), 127-137. doi:10.1007/s11011-017-0125-y
Souza, L. C., Filho, C. B., et al. (2013). Depressive-like behaviour induced by an intracerebroventricular injection of streptozotocin in mice: the protective effect of fluoxetine, antitumour necrosis factor-alpha and thalidomide therapies. Behav Pharmacol, 24 (2), 79-86. doi:10.1097/FBP.0b013e32835efc2f
Souza, L. C., Jesse, C. R., et al. (2016). Indoleamine-2,3-dioxygenase mediates neurobehavioral alterations induced by an intracerebroventricular injection of amyloid-beta1-42 peptide in mice.Brain Behav Immun, 56 , 363-377. doi:10.1016/j.bbi.2016.03.002
Souza, L. C., Jesse, C. R., et al. (2017). Activation of Brain Indoleamine-2,3-dioxygenase Contributes to Depressive-Like Behavior Induced by an Intracerebroventricular Injection of Streptozotocin in Mice. Neurochem Res, 42 (10), 2982-2995. doi:10.1007/s11064-017-2329-2
Suzuki, S., Saitoh, A., et al. (2016). The infralimbic and prelimbic medial prefrontal cortices have differential functions in the expression of anxiety-like behaviors in mice. Behav Brain Res, 304 , 120-124. doi:10.1016/j.bbr.2016.01.044
Tackenberg, C., Ghori, A., et al. (2009). Thin, stubby or mushroom: spine pathology in Alzheimer’s disease. Curr Alzheimer Res, 6 (3), 261-268. doi:10.2174/156720509788486554
Tao, X., Yan, M., et al. (2020). Homeostasis Imbalance of Microglia and Astrocytes Leads to Alteration in the Metabolites of the Kynurenine Pathway in LPS-Induced Depressive-Like Mice. Int J Mol Sci, 21 (4). doi:10.3390/ijms21041460
Wellman, C. L., Bollinger, J. L., et al. (2020). Effects of stress on the structure and function of the medial prefrontal cortex: Insights from animal models. Int Rev Neurobiol, 150 , 129-153. doi:10.1016/bs.irn.2019.11.007
Yang, L., Zhou, Y., et al. (2020). Affective Immunology: The Crosstalk Between Microglia and Astrocytes Plays Key Role? Front Immunol, 11 , 1818. doi:10.3389/fimmu.2020.01818
Ye, H., Cui, X. Y., et al. (2018). Melanin-Concentrating Hormone (MCH) and MCH-R1 in the Locus Coeruleus May Be Involved in the Regulation of Depressive-Like Behavior. Int J Neuropsychopharmacol, 21 (12), 1128-1137. doi:10.1093/ijnp/pyy088
Young, K., & Morrison, H. (2018). Quantifying Microglia Morphology from Photomicrographs of Immunohistochemistry Prepared Tissue Using ImageJ.J Vis Exp (136). doi:10.3791/57648
Zhao, H. L., Cui, S. Y., et al. (2021). Prophylactic effects of sporoderm-removed Ganoderma lucidum spores in a rat model of streptozotocin-induced sporadic Alzheimer’s disease. J Ethnopharmacol, 269 , 113725. doi:10.1016/j.jep.2020.113725