References
Akhtar, A., Dhaliwal, J., et al. (2021). 7,8-Dihydroxyflavone improves
cognitive functions in ICV-STZ rat model of sporadic Alzheimer’s disease
by reversing oxidative stress, mitochondrial dysfunction, and insulin
resistance. Psychopharmacology (Berl), 238 (7), 1991-2009.
doi:10.1007/s00213-021-05826-7
Alexander, S. P. H., Roberts, R. E., et al. (2018). Goals and
practicalities of immunoblotting and immunohistochemistry: A guide for
submission to the British Journal of Pharmacology. Br J Pharmacol,
175 (3), 407-411. doi:10.1111/bph.14112
Banqueri, M., Mendez, M., et al. (2019). Early life stress by repeated
maternal separation induces long-term neuroinflammatory response in
glial cells of male rats. Stress, 22 (5), 563-570.
doi:10.1080/10253890.2019.1604666
Blasco-Serra, A., Gonzalez-Soler, E. M., et al. (2017). A
standardization of the Novelty-Suppressed Feeding Test protocol in rats.Neurosci Lett, 658 , 73-78. doi:10.1016/j.neulet.2017.08.019
Burke, S. L., Cadet, T., et al. (2018). Psychosocial risk factors and
Alzheimer’s disease: the associative effect of depression, sleep
disturbance, and anxiety. Aging Ment Health, 22 (12), 1577-1584.
doi:10.1080/13607863.2017.1387760
Carlen, M. (2017). What constitutes the prefrontal cortex?Science, 358 (6362), 478-482. doi:10.1126/science.aan8868
Codeluppi, S. A., Chatterjee, D., et al. (2021). Chronic Stress Alters
Astrocyte Morphology in Mouse Prefrontal Cortex. Int J
Neuropsychopharmacol, 24 (10), 842-853. doi:10.1093/ijnp/pyab052
Cui, S. Y., Song, J. Z., et al. (2018). Intracerebroventricular
streptozotocin-induced Alzheimer’s disease-like sleep disorders in rats:
Role of the GABAergic system in the parabrachial complex. CNS
Neurosci Ther, 24 (12), 1241-1252. doi:10.1111/cns.13032
Curtis, M. J., Alexander, S., et al. (2018). Experimental design and
analysis and their reporting II: updated and simplified guidance for
authors and peer reviewers. Br J Pharmacol, 175 (7), 987-993.
doi:10.1111/bph.14153
Deng, Y., Zhou, M., et al. (2021). Involvement of the
microbiota-gut-brain axis in chronic restraint stress: disturbances of
the kynurenine metabolic pathway in both the gut and brain. Gut
Microbes, 13 (1), 1-16. doi:10.1080/19490976.2020.1869501
Dezsi, L., Tuka, B., et al. (2015). Alzheimer’s disease, astrocytes and
kynurenines. Curr Alzheimer Res, 12 (5), 462-480.
doi:10.2174/156720501205150526114000
Ding, H., Cui, S. Y., et al. (2021). Anti-stress effects of combined
block of glucocorticoid and mineralocorticoid receptors in the
paraventricular nucleus of the hypothalamus. Br J Pharmacol,
178 (18), 3696-3707. doi:10.1111/bph.15511
Fan, C., Song, Q., et al. (2018). Curcumin Protects Against Chronic
Stress-induced Dysregulation of Neuroplasticity and Depression-like
Behaviors via Suppressing IL-1beta Pathway in Rats. Neuroscience,
392 , 92-106. doi:10.1016/j.neuroscience.2018.09.028
Fullana, M. N., Covelo, A., et al. (2019). In vivo knockdown of
astroglial glutamate transporters GLT-1 and GLAST increases excitatory
neurotransmission in mouse infralimbic cortex: Relevance for
depressive-like phenotypes. Eur Neuropsychopharmacol, 29 (11),
1288-1294. doi:10.1016/j.euroneuro.2019.09.004
Garrison, A. M., Parrott, J. M., et al. (2018). Kynurenine pathway
metabolic balance influences microglia activity: Targeting kynurenine
monooxygenase to dampen neuroinflammation.Psychoneuroendocrinology, 94 , 1-10.
doi:10.1016/j.psyneuen.2018.04.019
Garro-Martinez, E., Fullana, M. N., et al. (2021). mTOR Knockdown in the
Infralimbic Cortex Evokes A Depressive-like State in Mouse. Int J
Mol Sci, 22 (16). doi:10.3390/ijms22168671
Gatchel, J. R. (2021). Late-Life Depression and Alzheimer’s Disease
Pathology: An Ounce of Prevention, a Pound of Cure. Am J Geriatr
Psychiatry, 29 (5), 458-461. doi:10.1016/j.jagp.2020.11.006
Gosselin, R. D., Gibney, S., et al. (2009). Region specific decrease in
glial fibrillary acidic protein immunoreactivity in the brain of a rat
model of depression. Neuroscience, 159 (2), 915-925.
doi:10.1016/j.neuroscience.2008.10.018
Grieb, P. (2016). Intracerebroventricular Streptozotocin Injections as a
Model of Alzheimer’s Disease: in Search of a Relevant Mechanism.Mol Neurobiol, 53 (3), 1741-1752. doi:10.1007/s12035-015-9132-3
Han, X. M., Qin, Y. J., et al. (2019). Development of an underivatized
LC-MS/MS method for quantitation of 14 neurotransmitters in rat
hippocampus, plasma and urine: Application to CUMS induced depression
rats. J Pharm Biomed Anal, 174 , 683-695.
doi:10.1016/j.jpba.2019.06.043
Helm, M. S., Dankovich, T. M., et al. (2021). A large-scale nanoscopy
and biochemistry analysis of postsynaptic dendritic spines. Nat
Neurosci, 24 (8), 1151-1162. doi:10.1038/s41593-021-00874-w
Hestad, K., Alexander, J., et al. (2022). The Role of Tryptophan
Dysmetabolism and Quinolinic Acid in Depressive and Neurodegenerative
Diseases. Biomolecules, 12 (7). doi:10.3390/biom12070998
Kalafatakis, K., & Zarros, A. (2014). Intracerebroventricular
administration of streptozotocin as an experimental approach to
Alzheimer’s disease. Int J Neurosci, 124 (12), 944-946.
doi:10.3109/00207454.2014.890934
Lawson, M. A., Parrott, J. M., et al. (2013). Intracerebroventricular
administration of lipopolysaccharide induces
indoleamine-2,3-dioxygenase-dependent depression-like behaviors. J
Neuroinflammation, 10 , 87. doi:10.1186/1742-2094-10-87
Lilley, E., Stanford, S. C., et al. (2020). ARRIVE 2.0 and the British
Journal of Pharmacology: Updated guidance for 2020. Br J
Pharmacol, 177 (16), 3611-3616. doi:10.1111/bph.15178
Liu, R. J., Ota, K. T., et al. (2015). Ketamine Strengthens
CRF-Activated Amygdala Inputs to Basal Dendrites in mPFC Layer V
Pyramidal Cells in the Prelimbic but not Infralimbic Subregion, A Key
Suppressor of Stress Responses. Neuropsychopharmacology, 40 (9),
2066-2075. doi:10.1038/npp.2015.70
Meier, T. B., Drevets, W. C., et al. (2016). Relationship between
neurotoxic kynurenine metabolites and reductions in right medial
prefrontal cortical thickness in major depressive disorder. Brain
Behav Immun, 53 , 39-48. doi:10.1016/j.bbi.2015.11.003
Moench, K. M., Maroun, M., et al. (2016). Alterations in neuronal
morphology in infralimbic cortex predict resistance to fear extinction
following acute stress. Neurobiol Stress, 3 , 23-33.
doi:10.1016/j.ynstr.2015.12.002
Moench, K. M., & Wellman, C. L. (2017). Differential dendritic
remodeling in prelimbic cortex of male and female rats during recovery
from chronic stress. Neuroscience, 357 , 145-159.
doi:10.1016/j.neuroscience.2017.05.049
O’Connor, J. C., Lawson, M. A., et al. (2009).
Lipopolysaccharide-induced depressive-like behavior is mediated by
indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry,
14 (5), 511-522. doi:10.1038/sj.mp.4002148
Paxinos, G., & Watson, C. J. R. B. i. S. C. (1986). The Rat Brain in
Stereotaxic Coordinates. 3 (2), 6.
Percie du Sert, N., Hurst, V., et al. (2020). The ARRIVE guidelines 2.0:
Updated guidelines for reporting animal research. Br J Pharmacol,
177 (16), 3617-3624. doi:10.1111/bph.15193
Shin, C. B., Templeton, T. J., et al. (2018). Endogenous glutamate
within the prelimbic and infralimbic cortices regulates the incubation
of cocaine-seeking in rats. Neuropharmacology, 128 , 293-300.
doi:10.1016/j.neuropharm.2017.10.024
Sierra-Mercado, D., Padilla-Coreano, N., et al. (2011). Dissociable
roles of prelimbic and infralimbic cortices, ventral hippocampus, and
basolateral amygdala in the expression and extinction of conditioned
fear. Neuropsychopharmacology, 36 (2), 529-538.
doi:10.1038/npp.2010.184
Song, J. Z., Cui, S. Y., et al. (2018). Dysfunction of GABAergic neurons
in the parafacial zone mediates sleep disturbances in a
streptozotocin-induced rat model of sporadic Alzheimer’s disease.Metab Brain Dis, 33 (1), 127-137. doi:10.1007/s11011-017-0125-y
Souza, L. C., Filho, C. B., et al. (2013). Depressive-like behaviour
induced by an intracerebroventricular injection of streptozotocin in
mice: the protective effect of fluoxetine, antitumour necrosis
factor-alpha and thalidomide therapies. Behav Pharmacol, 24 (2),
79-86. doi:10.1097/FBP.0b013e32835efc2f
Souza, L. C., Jesse, C. R., et al. (2016). Indoleamine-2,3-dioxygenase
mediates neurobehavioral alterations induced by an
intracerebroventricular injection of amyloid-beta1-42 peptide in mice.Brain Behav Immun, 56 , 363-377. doi:10.1016/j.bbi.2016.03.002
Souza, L. C., Jesse, C. R., et al. (2017). Activation of Brain
Indoleamine-2,3-dioxygenase Contributes to Depressive-Like Behavior
Induced by an Intracerebroventricular Injection of Streptozotocin in
Mice. Neurochem Res, 42 (10), 2982-2995.
doi:10.1007/s11064-017-2329-2
Suzuki, S., Saitoh, A., et al. (2016). The infralimbic and prelimbic
medial prefrontal cortices have differential functions in the expression
of anxiety-like behaviors in mice. Behav Brain Res, 304 , 120-124.
doi:10.1016/j.bbr.2016.01.044
Tackenberg, C., Ghori, A., et al. (2009). Thin, stubby or mushroom:
spine pathology in Alzheimer’s disease. Curr Alzheimer Res, 6 (3),
261-268. doi:10.2174/156720509788486554
Tao, X., Yan, M., et al. (2020). Homeostasis Imbalance of Microglia and
Astrocytes Leads to Alteration in the Metabolites of the Kynurenine
Pathway in LPS-Induced Depressive-Like Mice. Int J Mol Sci,
21 (4). doi:10.3390/ijms21041460
Wellman, C. L., Bollinger, J. L., et al. (2020). Effects of stress on
the structure and function of the medial prefrontal cortex: Insights
from animal models. Int Rev Neurobiol, 150 , 129-153.
doi:10.1016/bs.irn.2019.11.007
Yang, L., Zhou, Y., et al. (2020). Affective Immunology: The Crosstalk
Between Microglia and Astrocytes Plays Key Role? Front Immunol,
11 , 1818. doi:10.3389/fimmu.2020.01818
Ye, H., Cui, X. Y., et al. (2018). Melanin-Concentrating Hormone (MCH)
and MCH-R1 in the Locus Coeruleus May Be Involved in the Regulation of
Depressive-Like Behavior. Int J Neuropsychopharmacol, 21 (12),
1128-1137. doi:10.1093/ijnp/pyy088
Young, K., & Morrison, H. (2018). Quantifying Microglia Morphology from
Photomicrographs of Immunohistochemistry Prepared Tissue Using ImageJ.J Vis Exp (136). doi:10.3791/57648
Zhao, H. L., Cui, S. Y., et al. (2021). Prophylactic effects of
sporoderm-removed Ganoderma lucidum spores in a rat model of
streptozotocin-induced sporadic Alzheimer’s disease. J
Ethnopharmacol, 269 , 113725. doi:10.1016/j.jep.2020.113725