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Abstract  16 

Pigs (Sus scrofa) may be important surveillance targets for risk assessment and risk-based 17 

control planning against emerging zoonoses. Pigs have high-contact rates with humans and other 18 

animals, transmit similar pathogens as humans including CoVs, and serve as reservoirs and 19 

intermediate hosts for notable human pandemics. Wild and domestic pigs both interface with 20 

humans and each other but have unique ecologies that demand different surveillance strategies. 21 

Three fundamental questions shape any surveillance program: where, when, and how can 22 

surveillance be conducted to optimize the surveillance objective? Using theory of mechanisms of 23 

zoonotic spillover and data on risk factors, we propose a framework for determining where 24 

surveillance might begin initially to maximize a detection in each host species at their interface. 25 

We illustrate the utility of the framework using data from the United States. We then discuss 26 

variables to consider in refining when and how to conduct surveillance. Recent advances in 27 

accounting for opportunistic sampling designs and in translating serology samples into infection 28 

times provide promising directions for extracting spatio-temporal estimates of disease risk from 29 

typical surveillance data. Such robust estimates of population-level disease risk allow 30 

surveillance plans to be updated in space and time based on new information (adaptive 31 

surveillance) thus optimizing allocation of surveillance resources to maximize the quality of risk 32 

assessment insight.  33 

Keywords: coronavirus, swine, pig, spillover, surveillance 34 

Pigs (Sus scrofa) share many pathogens with humans (Ruiz-Fons et al., 2008; Meng et 35 

al., 2009; Miller et al., 2017) and have been the source of notable human pandemics such as 36 

(H1N1)pdm09 virus (Smith et al., 2009). They also transmit a variety of coronaviruses (CoVs) 37 

(Miller et al., 2017; Cui et al., 2019; Wang et al., 2019; Leopardi et al., 2020), some of which 38 
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show broad host-receptor usage (Li et al., 2018; Wang et al., 2019). While there is overwhelming 39 

evidence that bats have been important reservoirs for the evolution and spillover of zoonotic 40 

CoVs (Li et al., 2020b), the role of pigs is less well studied. In addition to high levels of contact 41 

with humans, several lines of evidence suggest pigs could be intermediate hosts, mixing vessels, 42 

or even reservoirs of new CoVs (Li et al., 2018; Wang et al., 2019; Leopardi et al., 2020), as has 43 

been suggested for influenza A viruses (Ma et al., 2008). In fact, it was recently suggested that 44 

the genome of SARS-CoV had a complicated history of recombination with alpha- and gamma-45 

CoVs from multiple divergent taxa including bats, birds, mice, pigs, and humans (Su et al., 46 

2016). The ongoing threat from persistence and transmission of influenza A genetic variants 47 

among wild birds, pigs, and humans (including frequent human-to-pig transmission (Nelson and 48 

Worobey, 2018), and repeated emergence of zoonotic CoVs in humans from different animal 49 

reservoirs, underscores the importance of better understanding the potential role of multiple 50 

animal hosts, including pigs, in the emergence and persistence of disease in humans. One step 51 

towards preparation for managing zoonotic disease emergence is to develop risk-based 52 

surveillance strategies that are rooted in the fundamental mechanisms of zoonotic emergence 53 

theory, ready for deployment as needed. Below we outline how to plan surveillance for an 54 

emerging zoonotic disease using CoVs as an example, assuming that pigs could be relevant 55 

reservoir, intermediate, or maintenance hosts to a novel CoV emergence event. 56 

The zoonotic spillover framework of Lloyd-Smith et al. (2009) describes the sequential 57 

phases of zoonotic emergence: reservoir dynamics, spillover, stuttering chain transmission, 58 

followed by ongoing human-to-human transmission, where each phase is determined by 59 

ecological and evolutionary processes (Lloyd-Smith et al., 2009). The spillover phase of the 60 

framework was then expanded by Plowright et al. (2017) to describe the barriers of spillover as a 61 
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series of bottlenecks that must align for zoonotic spillover to occur (Plowright et al., 2017). Key 62 

bottlenecks in the spillover process include: 1) Pathogen availability in the reservoir: e.g., host 63 

reservoir distribution and density, pathogen prevalence, infection intensity, survival outside the 64 

host and transmissibility (pathogen availability for spillover), 2) Interface connectivity: contact 65 

with humans (interhost-species connectivity), and 3) Success in the new host species: genetic 66 

pliability of the pathogen and low immunity in humans so that the pathogen can replicate well in 67 

humans (ability of the pathogen be fit in a new host species). Similar bottlenecks would apply 68 

with humans as the ‘reservoir’ when considering transmission from humans to animals. Thus, for 69 

predicting risk in a system where both spillover and spillback could be important, the framework 70 

can be generalized as: pathogen availability in host 1, interface connectivity, and pathogen 71 

availability in host 2, assuming that host 1 and host 2 are receptive to each other’s pathogens.   72 

The CoV pathway to zoonotic spillover can involve multiple evolutionary processes, 73 

including mutation and recombination, and transmission among multiple host species (Zhao et 74 

al., 2004; Cotten et al., 2014; Su et al., 2016; Li et al., 2020b) before a cross-species transmission 75 

to humans results in successful human-to-human transmission. The role of spillover-spillback 76 

dynamics in the process of emergence is unknown. Similarly, our understanding of the order of 77 

evolutionary events, ecological conditions, and host species that allowed the last three CoV 78 

emergences (SARS-CoV, MERS, SARS-CoV-2) in humans remain poorly understood (Su et al., 79 

2016; Li et al., 2020b). Below we describe the potential relevance of pigs in the emergence and 80 

persistence of new CoVs. 81 

 82 

Why might pigs contribute to emergence of zoonotic CoVs? 83 
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Pigs are abundant, widely distributed, and have frequent contact with both humans and 84 

wildlife. As livestock, domestic pigs have high contact rates with humans, especially at county 85 

fairs (CDC, 2016) and on smaller, backyard or niche production farms that are widespread across 86 

human populations (Burdett et al., 2015). Similar to domestic pigs, wild pigs are widespread 87 

across the globe (Lewis et al., 2017). Wild pigs have been highly successful in both their native 88 

and non-native ranges and continue to expand geographically (Lewis et al., 2017; Snow et al., 89 

2017; Aschim and Brook, 2019), suggesting that wild pig contact rates with humans and 90 

backyard domestic pigs are increasing rather than decreasing. Wild pigs contact a variety of 91 

wildlife species, including bats (Wang et al., 2018), while also contacting humans through 92 

hunting (Bevins et al., 2014), living in urban spaces (Stillfried et al., 2017), and intense control 93 

programs (Pepin et al., 2019b) or with backyard domestic pigs (Wyckoff et al., 2009; Wu et al., 94 

2012). As such, pigs have been implicated in the emergence of  novel influenza A viruses in 95 

humans (Brown, 2001; Hass et al., 2011), and human influenza A prevalence is positively 96 

correlated with influenza A prevalence in wild pigs (Pepin et al., 2019a). Thus, relative to other 97 

animal species, pigs may be quite connected to other reservoir species and humans concurrently, 98 

while supporting pathogen transmission and evolution with an ample supply of susceptible hosts. 99 

Several divergent CoVs are prevalent in pigs. Pigs readily transmit a variety of CoVs 100 

(Cui et al., 2019; Wang et al., 2019). While only alpha- and beta-CoVs typically circulate in 101 

humans, alpha-, beta-, and delta-CoVs have been detected in pigs (Chan et al., 2013; Cui et al., 102 

2019; Wang et al., 2019). Of the alpha-CoVs, the same genus as Middle Eastern respiratory 103 

syndrome CoV (MERS-CoV), the three most commonly studied and monitored alpha-CoVs in 104 

pigs are transmissible gastroenteritis virus (TGEV), porcine respiratory CoV (PRCV), and 105 

porcine epidemic diarrhea virus (PEDV). These viruses are highly prevalent and transmissible in 106 
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domestic pigs (Li et al., 2018; Wang et al., 2019) and wild pigs (Kaden et al., 2009; Roic et al., 107 

2012; Lee et al., 2016; Bevins et al., 2018), although surveys in wild pigs remain scarce. 108 

Additionally, a severe acute respiratory syndrome CoV (SARS-CoV)-like alpha-CoV named 109 

swine acute diarrhea syndrome-coronavirus (SADS-CoV) and porcine enteric alpha-CoV 110 

(PEAV) have recently emerged in pigs (causing widespread morbidity and mortality) likely 111 

through spillover from bats (Gong et al., 2017; Wang et al., 2018; Zhou et al., 2018). In addition 112 

to these alpha-CoVs, porcine delta-CoVs (PDCoV) are prevalent in domestic pigs (Li et al., 113 

2018; Wang et al., 2019), but have not been surveyed in wild pigs to our knowledge. PDCoVs 114 

and SADS-CoV have been highlighted as high-risk for of a novel zoonotic spillover (Li et al., 115 

2018; Edwards et al., 2020). In fact, there is evidence that PDCoV has spilled over into poultry 116 

(Boley et al., 2020). It has also been shown that several of these CoVs can remain infectious on 117 

animal feed for extended periods of time (up to 42 days for PDCoV and TGEV, and 7 days for 118 

PEDV; (Trudeau et al., 2017), suggesting that these CoVs could increase their chance of 119 

spillover with high environmental persistence. There is also one pig beta-CoV, the CoV genus 120 

that SARS-CoV and SARS CoV-2 belong to, that is highly prevalent in domestic swine and is 121 

named porcine hemagglutinating encephalomyelitis virus (PHEV) (Mora-Diaz et al., 2019; 122 

Wang et al., 2019), but it has not been detected in wild pigs (Moutelikova et al., 2016) (although 123 

surveillance has been minimal). In summary, CoVs from other host species are highly available 124 

for spillover into pigs, where the virus can successfully replicate.  125 

CoVs evolve rapidly and human CoVs can replicate in pigs. Like many RNA viruses, CoVs 126 

evolve rapidly (compared with DNA viruses) through a combination of mutation, recombination, 127 

and purifying selection (Li et al., 2020b). Emergence of both SARS-CoV and SARS-CoV-2 were 128 

thought to be the product of recombination events in wildlife hosts, including pigs (Su et al., 129 
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2016; Cui et al., 2019; Li et al., 2020b). In fact, the SARS-CoV genome shows evidence of 130 

recombination with PEDV at some point in its evolutionary history (Su et al., 2016). 131 

Experiments have shown that SARS-CoV do not replicate well in juvenile pigs (Weingartl et al., 132 

2004), while MERS-CoVs do (Vergara-Alert et al., 2017), although spillover of SARS-CoV 133 

from humans to domestic pigs was detected (Chen et al., 2005). 134 

The science on SARS-CoV-2 is evolving rapidly and shows inconsistent findings on the 135 

potential role of pigs in SARS-CoV-2 epidemiology. While two experiments showed that 136 

juvenile pigs were not susceptible to SARS-CoV-2 inoculated at < 106 PFU (Meekins et al., 137 

2020; Shi et al., 2020), a more recent experiment showed that SARS-CoV-2 does replicate at low 138 

levels in 8 week old domestic pigs when inoculated oronasally at 106 PFU (Pickering et al., 139 

2020) and that SARS-CoV-2 does infect and cause damage to cultured porcine cells (Meekins et 140 

al., 2020). Similarly, while multiple studies have demonstrated that pig ACE2 receptors (a 141 

mechanism of viral entry into host cells) show high affinity for SARS-CoV-2 spike protein 142 

binding (Wan et al., 2020; Zhai et al., 2020; Zhao et al., 2020), another suggests that pig ACE2 143 

should have low compatibility for SARS-CoV-2 (Damas et al., 2020). However, the latter study 144 

also predicted that dog and mink ACE2 should have low to very low affinity for SARS-CoV-2, 145 

yet multiple cases and outbreaks in these species have been detected (Oreshkova et al., 2020; 146 

USDA-APHIS, 2020). Thus, our understanding of the infection mechanisms of SARS-CoV-2 147 

and the potential role of pigs and other animals in the epidemiology of SARS-CoV-2 remains 148 

incomplete (Zhao et al., 2020). 149 

Regardless of whether the currently circulating strains of SARS-CoVs are infectious to 150 

pigs, there is the possibility that human-infectious strains could mutate or recombine with 151 

prevalent porcine CoVs, expanding their host range further and expanding the reservoir of 152 
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SARS-CoVs. This kind of genetic pliability appears common based on the recent emergences of 153 

bat-like CoVs in pigs (Gong et al., 2017; Wang et al., 2018; Zhou et al., 2018), pig CoV genetic 154 

elements in SARS-CoV (Su et al., 2016), and frequent coinfection (Zhang, 2016) and 155 

recombination of CoVs in pigs and among pigs and other host species (Wang et al., 2019). 156 

 157 

Where should we do surveillance? 158 

With such potential for CoVs and other zoonotic pathogens to transmit between pigs and 159 

humans, it is useful to establish off-the-shelf guidelines for emerging disease surveillance, 160 

especially for wild pigs which frequently contact other wildlife species. Wildlife disease 161 

surveillance is challenging because animals are difficult to sample randomly across a geographic 162 

area or at a target proportion, and resources are typically limited (Park et al., 2013). Thus it is 163 

useful to guide surveillance programs spatially based on where risk might be highest – targeted 164 

risk-based surveillance (Miller and Pepin, 2019). Using pigs and CoVs in the USA as a case 165 

study, we illustrate how risk factors can be used to develop guidance for triaging surveillance 166 

resources. In our example, the surveillance objective is risk assessment for either a new (pig to 167 

human) or reverse zoonosis (human to pig) that could lead to ongoing persistence or spatial 168 

spread. We assume that either would be of interest to control because spillover and ongoing 169 

transmission of a human CoV in pigs could have the risk of transmitting to other human 170 

populations or recombining with other pig CoVs and undergoing further evolutionary change. 171 

Applying the spillover framework of Plowright et al. (2017), we expect that risk of a CoV 172 

transmission among wild pigs and humans, for example, would be highest where virus 173 

availability in wild pigs and humans (Aw and Ah) is highest and where contact (Cw-h) is highest 174 

(Fig. 1). Because alpha- and beta-CoVs are prevalent in both pigs and humans and pigs 175 
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additionally have delta-CoVs that are thought to pose and emergence risk in humans (described 176 

above), we assume that an initial surveillance plan would involve all of these groups. Similarly, 177 

as bat-derived coronaviruses are known to emerge in pigs (Gong et al., 2017; Wang et al., 2018; 178 

Zhou et al., 2018) and bats are thought to have played a role in the generation of novel pandemic 179 

coronaviruses, it could be useful to surveil areas where bats and pigs have the most opportunity 180 

for contact. Other examples of risk factors to consider initially are described in Table 1.  181 

 182 

Fig. 1. Risk factors of the spillover-spillback process. Risk factors of pathogen availability 183 

within each host group are shown in the colored boxes – these factors affect the dynamics of 184 

pathogen availability within each host group. Risk factors that affect the contact and transmission 185 

between host groups (interface connectivity) are shown in white between the host groups that 186 

they connect. Factors that influence the entire system - both pathogen availability in hosts and 187 
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interface connectivity – such as climate would be included only once in the relative risk 188 

framework. 189 

Without considering hierarchical relationships of factors that determine A and C, the 190 

simplest proxy for risk can be expressed as the multiplicative process: Aw∙Ah∙Cw-h,, with 191 

component risk factors (Table 1) also being multiplicative within A and C. The relative risk of 192 

each spatial unit (here, counties) in the USA can then represented as, 193 

 194 

∏𝜔𝑟𝜃𝑗,𝑟

𝑅

𝑟=1

 195 

where ω is the weight for risk factor r and Өj,r is the relative risk score for risk factor r in county 196 

j. Each risk factor, Өr, is normalized from 0 to 1 using minimum-maximum normalization (i.e., 197 

with county values being relative to one another such that the highest score would be 1 and 198 

reflect the county with the highest risk factor score) to allow each risk factor to be considered 199 

equally. The weights, ωr, then place importance on each risk factor relative to the other risk 200 

factors. This can either be defined by data or based on expert opinion. Here we weight each risk 201 

factor equally (ωr  = 1; Fig. 2), however if there is evidence for the relative role of different risk 202 

factors other weighting schemes could be used. Ultimately, it would be useful to understand 203 

mechanistic or hierarchical relationships for the role of these risk factors in spillover so that their 204 

potential non-linear relationships could be accounted for in the risk assessment framework (e.g., 205 

(Plowright et al., 2017; Cross et al., 2019)). 206 
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 207 

Fig. 2. Relative risk map for CoVs at the wild pig-domestic pig- human interface (a). The 208 

histogram presents the distribution of % risk values across all counties. (b)-(d) show pathogen 209 

availability risk maps in each host group and (e-g) show risk maps for interface connectivity. 210 

Data layers that were included in mapping (a) for each type of risk factor included: (b) wild pig 211 

density and CoVs in wild pigs (c) commercial domestic pig density and CoVs in domestic pigs 212 

(d) human density and CoVs in humans, (e) backyard domestic pig density, (f) agricultural 213 

workers and county fairs, (g) hunters and control personnel. Data sources are listed in Table 1. 214 

Note climate and bat diversity are shown in Fig. S1 and were only included once (in (a)) and are 215 

therefore not shown in (b)-(g). Individual data streams for each risk layer of pathogen 216 

availability and connectivity are shown in Fig. S2 and Fig. S3.  217 

 218 
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Table 1. Description of example risk factors for triaging surveillance plans. The scale and source 219 

columns describe the data sources used in our map examples. Caveats describe issues that if 220 

resolved could improve risk assessment mapping or understanding effective mitigation 221 

strategies. This is not an exhaustive list of possibilities, rather it represents risk factors for which 222 

there is already readily available data. Additionally, factors that affect both pathogen availability 223 

in hosts and interface connectivity (e.g., climate) should be included only once in the relative risk 224 

framework. 225 

 226 

Risk factor Type Rationale Scale Source Caveats 

Pathogen availability in hosts (A) 

Host density A 

 

Pathogen 

availability 

– all host 

species 

Host density affects 

dynamics and 

prevalence of CoVs 

in each host 

population 

County 

(All 

data 

streams) 

  

(Lewis et al., 

2017) 

using methods 

from (Lewis 

et al., 2019) 

 

(USDA, 

2020) 

(Institute, 

2018) 

Wild pigs: 

density over 

time is 

important 

because 

densities can 

fluctuate 

dramatically 

due to birth 

pulses and 

control efforts. 
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Commercial 

domestic pigs: 

Size of farms 

may not 

correlate 

directly to risk 

due to 

differences in 

farm 

connectivity 

and biosecurity  

CoV trends 

in hosts 

A 

 

Pathogen 

availability 

– all host 

species 

Historical trends of 

CoV circulation in 

hosts could 

represent hotspots 

for CoV availability 

in hosts 

County 

(All 

data 

streams) 

 

(USDA-APHIS, 

2015; Bevins et 

al., 2018; 

Benatia et al., 

2020) 

 

Recent 

prevalence of  

specific ‘high-

risk’ CoVs 

would be a 

more direct risk 

metric of 

pathogen 

availability 
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Climate A 

 

Pathogen 

availability 

– all host 

species 

CoV transmission 

within host species 

will be higher in 

colder climates 

because CoVs 

persist longer 

outside hosts in 

colder climates 

providing an 

additional source of 

infection within 

host species (i.e., 

higher virus 

availability). 

County  nCLIMGRID 

(Vose et al., 

2014) 

Relationship of 

climate and 

CoV 

prevalence 

remains poorly 

understood, is 

likely non-

linear, and 

depends on 

other factors 

that could 

modify its 

effects.   

Interface connectivity (C) 

Hunters Cw-h 

 

Wild pig 

↕ 

Humans 

Areas with more 

hunting have more 

wild pig-human 

contact 

 State (USFWS, 

2020) 

Some hunting 

practices may 

be more 

conducive to 

human-wild 

pig contact 

than others.   
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Control 

personnel 

Cw-h 

 

Wild pig 

↕ 

Humans 

Areas with higher 

rates of wild pig 

control have higher 

contact among 

humans and wild 

pig 

 State (Labor, 2019) Some control 

techniques and 

local practices 

may be more 

conducive to 

human-wild 

pig contact 

than others.   

Climate C 

 

All hosts 

↕ 

All hosts 

CoV transmission 

among host species 

will be higher in 

colder climates 

because CoVs 

persist longer 

outside hosts in 

colder climates 

providing enhanced 

environmental 

transmission among 

host species (i.e., 

direct contact with 

County  nCLIMGRID 

(Vose et al., 

2014) 

Relationship of 

climate and 

transmission 

remains poorly 

understood, is 

likely non-

linear, and 

depends on 

other factors 

that could 

modify its 

effects.   
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environmental 

surfaces). 

Agricultural 

workers 

Cd-h 

 

Domestic 

pigs 

↕ 

Humans 

Agricultural 

workers (including 

animal caretakers 

and slaughterhouse 

workers) have the 

highest contact 

rates with domestic 

pigs  

 State (USDA, 

2020) 

Some types of 

agricultural 

workers may 

have more 

risky contacts 

than others  

County fairs Cd-h 

 

Domestic 

pigs 

↕ 

Humans 

County fairs allow 

increased 

interaction among 

humans and 

domestic pigs 

 County (Fairgrounds, 

2020) 

The 

relationship of 

county fairs to 

contact might 

not be related 

to Ad and Ah in 
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the same 

county because 

humans may 

travel from 

other counties 

to attend fairs  

Bat species 

density 

Cw-b 

 

Wild pigs 

↕ 

Bats 

 

(affects Aw) 

Higher bat species 

densities present a 

higher spillover risk 

for CoVs into pigs 

that could act as 

intermediate hosts 

for further 

evolution or 

transmission to 

humans 

County  (States, 2011) Best to use the 

bat species that 

are most 

suspected for 

the spillover of 

risky CoVs 

(see (Olival et 

al., 2020) for 

recent analysis 

of North 

American bat 

species) 

Backyard 

pig density 

Cw-d 

 

Domestic 

pigs 

Backyard 

operations often 

have low 

biosecurity 

 County (USDA, 

2020) 

Some 

landscapes and 

local practices 

may be more 



18 

 

↕ 

Wild pigs 

allowing direct and 

indirect contact 

with wild pigs thus 

areas with higher 

backyard pig 

densities would 

have higher risk of 

transmission among 

wild and domestic 

pigs 

conducive to 

backyard-wild 

pig contact 

than others  

 227 

When should we do surveillance? 228 

Temporal variation in risk. The risk maps we present ignore temporal variation, yet 229 

temporal fluctuations in host demography, movement ecology, and pathogen prevalence 230 

determine transmission risk (Lloyd-Smith et al., 2009; Peel et al., 2014; Plowright et al., 2017; 231 

Scherer et al., 2019) and detection probability (Walton et al., 2016). Thus the risk maps we 232 

present for guiding surveillance design should be updated regularly with recent demographic and 233 

CoV prevalence data, or at least scaled over time to account for regular temporal fluctuations in 234 

transmission risk due to seasonal factors such as birth pulse dynamics (Peel et al., 2014) or 235 

mating behavior (Scherer et al., 2019).  Meteorological factors, such as temperature and relative 236 

humidity, can also drive temporal changes in CoV transmission risk by affecting environmental 237 

persistence of CoVs (Kim et al., 2007; Casanova et al., 2010; Gardner et al., 2019; Altamimi and 238 

Ahmed, 2020; Gunthe et al., 2020). However, the relationship between meteorological factors 239 
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and virus persistence is non-linear and dependent on multiple interacting meteorological 240 

variables (Casanova et al., 2010), which has made it complicated to determine how meteorology 241 

modifies transmission risk in host populations (Dowell and Ho, 2004; Tan et al., 2005; Cai et al., 242 

2007). Unraveling how meteorological variables modify disease risk remains an important 243 

challenge for optimizing risk-based surveillance plans. 244 

Also poorly understood is how reproductive phenology in wild pigs varies geographically 245 

(Macchi et al., 2010), in a way that could impact contact with domestic pigs (Wu et al., 2012). 246 

Reproductive phenology in both males and females is impacted by seasonal and inter-annual 247 

availability of forage, potentially affecting both birth rates within wild pigs and contact between 248 

wild and domestic pigs (Wu et al., 2012). Similarly, hunting rates (Johann et al., 2020) and wild 249 

pig control rates by trapping (Pepin et al., 2019b) (a technique that involves the more risk for 250 

transmission between humans and wild pigs) vary seasonally suggesting that seasonal variation 251 

in these activities could be used to optimize detection of spillover at the wild pig-human 252 

interface.  253 

 254 

How should we conduct surveillance? 255 

Surveillance objectives. Surveillance for pathogens in wild pigs is often designed to 256 

identify pathogen presence for objectives such as determining disease freedom, or to gain 257 

baseline information about emergence of new diseases or where diseases of agricultural concern 258 

may occur (Pedersen et al., 2012; Pedersen et al., 2013; Pedersen et al., 2015; Bevins et al., 259 

2018). Surveillance programs with these objectives provide useful foundational information for 260 

developing risk-based surveillance plans. However, for the surveillance objective here of 261 

informing risk assessment and response to cross-species disease emergence, we need to target 262 
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locations that are most likely to lead to cross-species transmission and ongoing spread of disease 263 

in the spillover host population (i.e., areas where pathogen availability and interface connectivity 264 

are high). Pathogen availability can be determined by population-level quantities that describe 265 

the current status of disease risk such as prevalence (per capita number of cases at a given time), 266 

incidence (per capita number of cases over time), force of infection (rate at which susceptible 267 

hosts become infected), or Re (effective reproduction number; the average number of individuals 268 

that an infected individual transmits to). Incidence, force of infection, and Re are more functional 269 

epidemiological metrics of pathogen availability because they describe ‘transmission risk’ – how 270 

likely the disease is to transmit to other hosts (and therefore persist), whereas prevalence only 271 

describes how many hosts are currently impacted (current pathogen availability) rather than the 272 

likelihood of ongoing transmission. Functional epidemiological metrics are especially useful for 273 

optimizing surveillance and control programs (Ferguson et al., 2001; Lessler and Cummings, 274 

2016; Routledge et al., 2018) because they can be used to quantify factors that drive transmission 275 

risk thus providing more refined predictions about where pathogen availability for spillover will 276 

be highest. Thus, surveillance aimed at quantifying functional epidemiological metrics can 277 

provide better prediction about where to focus more expensive and intensive sampling for 278 

genetic markers of emergence risk. 279 

Opportunistic sampling designs and assay error. Estimating functional epidemiological 280 

metrics is challenging using typical surveillance data because many surveillance systems are 281 

opportunistic (e.g., (Pedersen et al., 2012; Lee et al., 2016; Smietanka et al., 2016; Bevins et al., 282 

2018; Bertelloni et al., 2020)) to maximize the number of samples that can be collected on a very 283 

limited budget. Thus, there is uneven sampling in space and time and maps of apparent 284 

prevalence (number of positive samples over total samples across space) mainly reflect the 285 
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sampling design rather than providing information about how disease risk varies spatially 286 

(Wilber et al., 2020). Applying survival analysis to surveillance data can help remove bias 287 

induced by temporally uneven sampling efforts. Survival analysis is widely applicable to 288 

commonly-collected disease surveillance data (Pepin et al., 2019a; Wilber et al., 2020), 289 

suggesting that functional epidemiological metrics can be gleaned from opportunistic sampling 290 

designs when the sampling design biases are accounted for. A second approach is to apply state-291 

space models that infer epidemiological metrics while accounting for reporting biases (Chen et 292 

al., 2012; Miller, 2017; Pepin et al., 2017a; Baker et al., 2019; Tabak et al., 2019). These 293 

approaches can be especially useful for informing surveillance design by estimating the amount 294 

of under-reporting (Chen et al., 2012), which types of surveillance methods are most informative 295 

(Davis et al., 2019), or where additional surveillance might best inform epidemiological metrics 296 

of interest and management (Davis et al., 2019). A separate problem from opportunistic sampling 297 

designs is assay error. That is, sometimes the test of a sample will falsely conclude no evidence 298 

of the target pathogen (sensitivity) or will falsely conclude evidence of a pathogen (specificity). 299 

These sources of error can be substantial (Gilbert et al., 2013), and can be accounted for in 300 

epidemiological estimates of disease risk (Tabak et al., 2019).  301 

Surveillance for antibodies. In wildlife hosts, it is common for surveillance systems to 302 

search for antibodies (Elbers et al., 2003; Pedersen et al., 2015; Bevins et al., 2018; Elfadil et al., 303 

2018) instead of pathogens because pathogens are more difficult to find – especially those that 304 

have short infectious periods. Serosurveillance data are often reported as zero/one data -- a host 305 

has either been exposed or not to a pathogen. The threshold for determining whether a host is 306 

seropositive is based on a predetermined cutoff of the ratio between antibody quantity (signal) 307 

and procedural noise (i.e. the signal to noise ratio, (Gilbert et al., 2013)). However, recent 308 
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developments in quantitative antibody analyses have shown that the signal to noise ratio itself 309 

can be used to estimate when hosts were infected with a pathogen (Borremans et al., 2016; Pepin 310 

et al., 2017b) and have highlighted opportunities to use serological data to estimate functional 311 

epidemiological metrics through time (Borremans et al., 2016; Pepin et al., 2017b; Gamble et al., 312 

2020; Hay et al., 2020). Moreover, integrating multiple streams of data, such as data on viral 313 

load, virus presence/absence, and host age, with quantitative antibody data can further improve 314 

inference on estimates (Borremans et al., 2016; Wilber et al., 2020). While longitudinal 315 

laboratory data on within-host infection dynamics facilitate inference of functional 316 

epidemiological metrics from serosurveillance data (Pepin et al., 2017b), they are not strict 317 

prerequisites (Wilber et al. 2020). For example, Gamble et al. (2020) showed that longitudinal 318 

data from the field in the form of mark-recapture data can be integrated with serosurveillance 319 

data to provide estimates of functional epidemiological metrics. Thus, for acute pathogens such 320 

as CoVs that may be difficult to find in wildlife hosts, serosurveillance data can be used to 321 

quantify functional epidemiological metrics which, compared to seroprevalence data, can 322 

improve seasonal predictions of when spillover risk might be greatest, helping further optimize 323 

the allocation of surveillance resources.   324 

Adaptive surveillance. Adaptive management is a valuable concept for optimizing spatial 325 

allocation of limited resources. In adaptive management frameworks, management is structured 326 

to improve learning about the system by iterating between monitoring that reduces uncertainty 327 

about key drivers of management outcomes and updating management strategies based on the 328 

improved knowledge (Williams et al., 2009). Similarly a surveillance plan for emerging CoVs in 329 

pigs could be implemented adaptively in order to optimize the amount learned based on the 330 

surveillance objectives, current conditions, and most recent insight, e.g., (Clow et al., 2019; 331 
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Miller and Pepin, 2019). To implement adaptive surveillance there needs to be methods and 332 

personnel in place for regular assessments of risk from the surveillance data, in a manner that is 333 

appropriate for the surveillance objective and sampling design. As surveillance data are collected 334 

according to the initial surveillance plan, analyses to estimate the relative role of specific risk 335 

factors in predicting cases will then allow weighting schemes of the risk factors in the plan to be 336 

updated to refine the surveillance plan (increase accuracy and precision) and maximize the 337 

amount learned from the data based on available funding. For example, if initial surveillance failed 338 

to identify any ongoing chains of transmission for CoVs in wild pigs despite suspected pathogen 339 

introduction (suggesting that R0 < 1) , increased weight and thus increased surveillance effort could be 340 

allocated to regions with a high human-animal interface where stuttering chains of transmission could be 341 

more easily detected. Designing adaptive surveillance plans is especially important for pre-342 

emerging diseases because management objectives are likely to change from predominantly risk 343 

assessment to predominantly control if the disease emerges in an area (Clow et al., 2019). In 344 

addition to an adaptive design, the plan might also need flexibility in diagnostic assays. For 345 

example, during pre-emergence surveillance pan-CoV diagnostics (Zhang, 2016; Li et al., 2020a) 346 

can be conducted that are then followed up with diagnostic assays for specific strains in areas 347 

where CoVs are detected most frequently, which may allow more informative surveillance in the 348 

same budget (Zhang, 2016).  349 

We described a starting point for an adaptive surveillance plan for disease emergence at 350 

the wildlife-livestock-human interface based on current knowledge and available data for risk 351 

factors. As knowledge of spatial transmission risk improves using the baseline plan, the 352 

surveillance design can be adapted based on a mechanistic description for how the risk factors 353 

predict spillover among host groups (Cross et al. 2019), which could be used to optimize control 354 

strategies. Given our a priori ignorance on seasonality and age-specific prevalence of CoVs in 355 



24 

 

wild pigs, we recommend that initial surveillance sampling be evenly distributed across age 356 

groups and time. Analyses of initial surveillance data can then reveal whether the timing of 357 

surveillance should be adapted based on demographic fluctuations or seasonal changes in host 358 

movement. An initial surveillance plan could also benefit from including CoV serosurveillance, 359 

which would improve detection of previous transmission and thus evidence of viral presence. To 360 

maximize information gained from all the available analytic tools, serosurveillance programs 361 

should consider collecting and reporting both quantitative antibody data and viral 362 

presence/absence data, and host demographic data as well as considering small scale laboratory 363 

or field studies that can generate longitudinal infection data. Together these data will provide the 364 

best opportunity to implement adaptive serosurveillance to uncover potential seasonal 365 

mechanisms underlying pig infection risk to CoVs, which will also help to optimize sampling 366 

designs for more expensive genetic assays that can reveal transmission among host groups or 367 

identify high-risk strains or genes. 368 

Conclusions and recommendations 369 

Pigs transmit a variety of CoVs, some of which have come from bats and humans. They 370 

frequently contact humans and potentially bats, and co-infections and recombination of CoVs 371 

occur in pigs. Together these observations suggest that pigs are a useful surveillance target for 372 

guarding against emergence and ongoing transmission of new CoVs. They also suggest that 373 

agricultural workers, hunters, and personnel working on control of wild pigs should wear 374 

appropriate personal protective equipment when contacting pigs directly or contacting control 375 

equipment or environmental features that pigs may have contaminated. Currently, movement of 376 

wild pigs by humans occurs frequently in the USA (Tabak et al., 2017; Hernandez et al., 2018), 377 

suggesting not only the opportunity for intimate contact with humans and wild pigs but also a 378 
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mechanism for broader spatial dissemination. This type of capture and release should be avoided 379 

to minimize the spatial spread and evolution of new CoV strains. Our work outlines a plan for 380 

risk-based surveillance of disease emergence at the wildlife-livestock-human interface that can 381 

be implemented adaptively to optimize detection, learning about transmission risk factors, and 382 

prediction of transmission hotspots.   383 
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Fig. S1. Risk layers that were included only in Fig. 1 (a), and not its sublayers (b)-(g). 737 
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Fig. S2. Individual data streams for the pathogen availability risk layers. 740 
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Fig. S3. Individual data streams for the connectivity risk layers. 742 


