REFERENCES
Almagro, L., Gómez Ros, L.V., Belchi-Navarro, S., Bru, R., Ros Barceló, A. & Pedreño, M.A. (2009). Class III peroxidases in plant defence reactions. Journal of Experimental Botany, 60 , 377-390. https://doi.org/10.1093/jxb/ern277.
Amalfitano, C., Evidente, A., Surico, G., Tegli, S., Bertelli, E. & Mugnai, L. (2000). Phenols and stilbene polyphenols in the wood of esca-diseased grapevine. Phytopathologia Mediterranea, 39,178-183. https://oajournals.fupress.net/index.php/pm/article/view/4799/4797.
Andolfi, A., Mugnai, L., Luque, J, Surico, G., Cimmino, A. & Evidente, A. (2011). Phytotoxins produced by fungi associated with grapevine trunk diseases. Toxins, 3 , 1569-1605. https://doi.org/10.3390/toxins3121569.
Asada, K. (1999). The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 50 , 601-639. https://doi.org/10.1146/annurev.arplant.50.1.601.
Baggiolini, M. (1979). Stades repères de la vigne. In La défence des plantes cultivées (ed R. Bovey), pp. 456-461. Payot, Lausanne.
Bruno, G. & Sparapano, L. (2006a). Effects of three esca-associated fungi on Vitis vinifera L. : I. Characterization of secondary metabolites in culture media and host responses to the pathogens in calli. Physiological and Molecular Plant Pathology, 69 , 209-223. https://doi.org/10.1016/j.pmpp.2007.04.008.
Bruno, G. & Sparapano, L. (2006b). Effects of three esca-associated fungi on Vitis vinifera L.: II. Characterization of biomolecules in xylem sap and leaves of healthy and diseased vines.Physiological and Molecular Plant Pathology , 69 , 195-208. https://doi.org/10.1016/j.pmpp.2007.04.007.
Bruno, G. & Sparapano, L. (2006c). Effects of three esca-associated fungi on Vitis vinifera L.: III. Enzymes produced by the pathogens and their role in fungus-to-plant or in fungus-to-fungus interactions. Physiological and Molecular Plant Pathology, 69 , 182-194. https://doi.org/10.1016/j.pmpp.2007.04.006.
Bruno, G. & Sparapano, L. (2007). Effects of three esca-associated fungi on Vitis vinifera L. : V. Changes in the chemical and biological profile of xylem sap from diseased cv. Sangiovese vines.Physiological and Molecular Plant Pathology , 71, 210-229. https://doi.org/10.1016/j.pmpp.2008.02.005.
Bruno, G., Sparapano, L. & Graniti, A. (2007). Effects of three esca-associated fungi on Vitis vinifera L. : IV. Diffusion through the xylem of metabolites produced by two tracheiphilous fungi in the woody tissue of grapevine leads to esca-like symptoms on leaves and berries. Physiological and Molecular Plant Pathology, 71 , 106-124. https://doi.org/10.1016/j.pmpp.2007.12.004.
Calzarano, F., Di Marco, S., D’agostino, V., Schiff, S. & Mugnai, L. (2014). Grapevine leaf stripe disease symptoms (esca complex) are reduced by a nutrients and seaweed mixture. Phytopathologia Mediterranea, 53 , 543-558. https://doi.org/10.14601/Phytopathol_Mediterr-15253.
Chang, X., Heene, E., Qiao, F. & Nick, P. (2011). The phytoalexin resveratrol regulates the initiation of hypersensitive cell death in Vitis cell. PLoS One 6 , e26405.https://doi.org/10.1371/journal.pone.0026405.
Chiarappa, L. (1959). Extracellular oxidative enzymes of wood-inhabiting fungi associated with the heart rot of living grapevines.Phytopathology, 49 , 578-582.
Christen, D., Schönmann, S., Jermini, M., Strasser, R.J. & Défago, G. (2007). Characterization and early detection of grapevine (Vitis vinifera ) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environmental and Experimental Botany, 60 , 504-514. Doi:10.1016/j.envexpbot.2007.02.003.
De Gara, L., de Pinto, M. & Tommasi, F. (2003). The antioxidant systems via-á-via reactive oxygen species during plant-pathogen interaction.Plant Physiology and Biochemistry, 41 , 863-870.https://doi.org/10.1016/S0981-9428(03)00135-9.
del Rio, J. A. et al. Phenolic compounds have a role in the defence mechanism protecting grapevine against the fungi involved in petri disease. Phytopathol. Mediterr.43, 87–94 (2004).
Elena, G., Bruez, E., Rey, P., Luque, J., (2018). Microbiota of grapevine woody tissues with or without esca-foliar symptoms in northeast Spain. Phytopathologia Mediterranea, 57(3) , 425-438. Doi:https://doi.org/10.14601/Phytopathol_Mediterr-23337
Evidente, A. Sparapano, L., Andolfi, A. & Bruno, G. (2000). Two naphthalenone pentaketides isolated from liquid cultures ofPhaeoacremonium aleophilum , a fungus associated with esca disease syndrome. Phytopathologia Mediterranea, 39 , 162-18. https://oajournals.fupress.net/index.php/pm/article/view/4807/4805.
Fontaine, F., Pinto, C., Vallet, J., Clément, C., Gomes, A.C. & Spagnolo, A. (2016). The effects of grapevine trunk diseases (GTDs) on vine physiology. European Journal of Plant Pathology, 144 , 707-721. https://doi.org/10.1007/s10658-015-0770-0.
Gallie, D.R. (2013). L-Ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifca, 795964 . https://doi.org/10.1155/2013/795964.
Graniti, A., Surico, G. & Mugnai, L. (2000). Esca of grapevine: a disease complex or a complex of diseases? Phytopatholgia Mediterranea, 39 , 16-20. https://oajournals.fupress.net/index.php/pm/article/view/4787/4785.
Harborne, J. (1973). Nitrogen Compounds. In Phytochemical methods. A guide to modern techniques of plant analysis (ed J. Harborne), pp. 176-221. Chapman & Hall, London.
Heath, R.L. & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation.Archives of Biochemistry and Biophysics, 125 , 189-198. https://doi.org/10.1016/0003-9861(68)90654-1.
Hung, S.H., Yu, C.W. & Lin, C.H. (2005). Hydrogen peroxide functions as a stress signal in plants. Botanical Bulletin- Academia Sinica,46 1-10. https://ejournal.sinica.edu.tw/bbas/content/2005/1/Bot461-01.pdf.
Jeandet, P., Douillet-Breuil, A.C., Bessis, R., Debord, S., Sbaghi, M. & Adrian, M. (2002). Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. Journal of Agricultural and Food Chemistry ,50 , 2731-2741. https://doi.org/10.1021/jf011429s.
Khan, T.A., Mazid, M. & Mohammad, F. (2011). Role of ascorbic acid against pathogenesis in plants. Journal of Stress Physiology & Biochemistry, 7 , 222-234. http://www.jspb.ru/issues/2011/N3/JSPB_2011_3_222-234.pdf.
Jayawardena, R.S., Purahong, W., Zhang, W. Wubet, T., Li, X., Zhao, W., Hyde, K.D., Liu ,J. & Yan, J. (2018). Biodiversity of fungi onVitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. Fungal diversity, 90 , 1–84. https://doi.org/10.1007/s13225-018-0398-4
Lambert, C.K.K.I., Lucas, S., Télef-Micoleau, N., Mérillon, J.M. & Cluzet, S. (2013). A faster and stronger defence response: one of the key elements in grapevine explaining its lower susceptibility to esca?Phytopathology, 103 , 1028-1034. http://dx.doi.org/10.1094/PHYTO-11-12-0305-R.
Lee, D.H. & Lee, C.B. (2000). Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Science, 159 , 75-85. https://doi.org/10.1016/s0168-9452(00)00326-5.
Leshem, Y. (1992). Plant membranes: a biophysical approach to structure, development and senescence. The Netherlands: Kluwer Academic Publishers.
Lima, M.R.M., Felgueiras, M.L., Graca, G., Rodrigues, J.E.A., Barros, A., Gil, A.M. & Dias, A.C. (2010). NMR metabolomics of esca disease-affected Vitis vinifera cv. Alvarinho leaves,Journal of Experimental Botany, 61 , 4033–4042. https://doi.org/10.1093/jxb/erq214.
Luini, E., Fleurat-Lessard, P., Rousseau, L., Roblin, G. & Berjeaud, J. (2010). Inhibitory effects of polypeptides secreted by the grapevine pathogens Phaeomoniella chlamydospora and Phaeoacremonium aleophilum on plant cell activities. Physiological and Molecular Plant Pathology , 74 , 403-411. https://doi.org/10.1016/j.pmpp.2010.06.007.
Magnin-Robert, M., Letousey, P., Spagnolo, A., Rabenoelina, F., Jacquens, L., Mercier, L., Clément, C. & Fontaine, F. (2011). Leaf strip of esca induces alteration of photosynthesis and defence reactions in presymptomatic leaves. Functional Plant Biology, 38 , 856-866. http://dx.doi.org/10.1071/FP11083.
Marchi, G., Roberti, S., D’Ovidio, R., Mugnai, L. & Surico, G. (2001). Pectic enzymes production by Phaeomoniella chlamydospora .Phytopathologia Mediterranea, 40 , S407-S416. https://oajournals.fupress.net/index.php/pm/article/view/4921/4919.
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance.Trends in Plant Science, 7 , 405-410. https://doi.org/10.1016/s1360-1385(02)02312-9.
Mondello V., Songy A., Battiston E., Pinto, C., Coppin, C., Trotel-Aziz, P., Clément, C., Mugnai, L. & Fontaine F. (2018). Grapevine Trunk Diseases: a review of fifteen years of trials for their control with chemicals and biocontrol agents. Plant Disease, 102 , 1189-1217.https://doi.org/10.1094/PDIS-08-17-1181-FE.
Moreno-Sanz, P., Lucchetta, G., Zanzotto, A., Loureiro, M.D., Suarez, B. & Angelini, E. (2013). Fungi associated to grapevine trunk diseases in young plants in Asturias (Northern Spain). Horticultural Science (Prague), 40 , 138–144.
Mugnai, L., Graniti, A. & Surico, G. (1999). Esca (black measles) and brown wood-streaking: two old and elusive diseases of grapevines.Plant Disease, 83 , 404-418. https://doi.org/10.1094/PDIS.1999.83.5.404.
Munné-Bosch, S. & Alegre, L. (2003). Drought-induced changes in the redox state of α-tocopherol, ascorbate and diterpene carnosic acid in chloroplast of Labiatae specie differing in carnosic acid contents.Plant Physiology, 131 , 1-10.https://doi.org/10.1104/pp.102.019265.
Niim, Y. & Torikata, H. (1978). Changes in endogenous plant hormones in the xylem sap of grapevines during development Journal of the Japanese Society for Horticultural Science, 47 , 181-187. https://www.jstage.jst.go.jp/article/jjshs1925/47/2/47_2_181/_pdf.
Noctor, G., Foyer, C.H. (1998). Ascorbate and glutathione: keeping active oxygen under control, Annual Review of Plant Physiology and Plant Molecular Biology, 49 , 249-279. https://doi.org/10.1146/annurev.arplant.49.1.249.
Paciolla, C., Ippolito, M.P., Logrieco, A., Dipierro, N., Mulè G. & Dipierro, S. (2008). A different trend of antioxidant defense responses makes tomato plants less susceptible to beauvericin than to T-2 mycotoxin phytotoxicity. Physiological and Molecular Plant Pathology, 72 , 3-9. https://doi.org/10.1016/j.pmpp.2008.06.003.
Papadakis, A.K., Siminis, C.I. & Roubelakis-Angelakis, K.A. (2001). Reduced activity of antioxidant machinery is correlated with suppression of totipotency in plant protoplasts. Plant Physiology, 126 , 434-441. https://doi.org/10.1104/pp.126.1.434.
Pennisi, A.M. & Graniti, A. (1987). Cell permeability changes in tissues of Citrus trees infected by Phoma tracheiphila (Petri) Kanc. Et Ghik. Phytophatologia Mediterranea, 26 , 142-145.
Pérez, F.J., Villegas, D. & Mejia, N. (2002). Ascorbic acid and flavonoid-peroxidase reaction as a detoxifying system of H2O2 in grapevine leaves.Phytochemistry, 60 , 573-580. https://doi.org/10.1016/S0031-9422(02)00146-2.
Petit, A.N., Vaillant, N., Boulay, M., Clement, C. & Fontaine, F. (2006). Alteration of photosynthesis in grapevines affected by esca.Phytopathology, 96 , 1060-1066.https://doi.org/10.1094/phyto-96-1060.
Pouzoulet, J., Jacques, A., Besson, X., Dayde, J. & Mailhac, N. Histopathological study of response of Vitis vinifera cv. Cabernet sauvignon to bark and wood injury with and without inoculation by Phaeomoniella chlamydospora . Phytopathologia Mediterranea, 52 , 313–323 (2013)
Skene, K.G.M. (1967). Gibberellin-like substances in root exudate ofVitis vinifera . Planta, 74 , 250-262. https://doi.org/10.1007/BF00384846.
Soares, C., Carvalho, M.E.A., Azevedo, R.A. & Fidalgo, F. (2019). Plants facing oxidative challenges—A little help from the antioxidant net works. Environmental and Experimental Botany, 161 , 4-25. https://doi.org/10.1016/j.envexpbot.2018.12.009.
Sperry, J.S., Holbrook, N.M., Zimmermann, M.H. & Tyree, M.T. (1987). Tyree, Spring filling of xylem vessels in wild grapevine. Plant Physiology , 83 , 414-417. https://doi.org/10.1104/pp.83.2.414.
Surico, G. (2009). Towards a redefinition of the diseases within the esca complex of grapevine. Phytopathologia Mediterranea, 48 , 5-10. https://oajournals.fupress.net/index.php/pm/article/view/5262/5260.
Tabacchi, R., Fkyerat, A., Poliart, C. & Dubin, G.M. (2000). Phytotoxins from fungi of esca of grapevine. Phytopathologia Mediterranea, 39 , 156-161. https://oajournals.fupress.net/index.php/pm/article/view/4800/4798.
Torres, M.A., Jonathan, D.G. & Dangl, J.L. (2006). Reactive oxygen species signaling in response to pathogen. Plant Physiology, 141 , 373-378. https://doi.org/10.1104/pp.106.079467.
Valtaud C., Thibault F., Larignon P., Berstch C., Fleurat-Lessard P. & Bourbouloux A. (2011). Systemic damage in leaf metabolism caused by esca infection in grapevines. Australian Journal of Grape and Wine Research, 17 , 101-110. https://doi.org/10.1111/j.1755-0238.2010.00122.x.
Van Alfen, N.K. (1989). Reassessment of plant wilt toxins. Annual Review of Phytopathology , 27 , 533-550. https://www.annualreviews.org/doi/pdf/10.1146/annurev.py.27.090189.002533.
Wormall, A. (1924). The constituents of the sap of the vine (Vitis vinifera L.) Biochemical Journal, 18 , 1187-1202.https://doi.org/10.1042/bj0181187.
Yadeta, K. & Thomma, B. P. H. J. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant. Sci. 4, https://doi.org/10.3389/fpls.2013.00097 (2013).
Yamasaki, H., Sakihama, Y. & Ikehara, N. (1997). Flavonoid-peroxidase reactions as a detoxification mechanism of plant cells against H2O2. Plant Physiol ogy,115 , 1405-1412. https://doi.org/10.1104/pp.115.4.1405.
Zhang, J. & Kirkham, M.B. (1996). Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytologist , 132 , 361-373. https://doi.org/10.1111/j.1469-8137.1996.tb01856.x.
Zhao, Z.R., Wu, Z.L., Huang, G.Q. & Li, G.R. (1992). An improved disk bioassay for determining activities of plant growth regulators.Journal of Plant Growth Regulation, 11 , 209-213. https://doi.org/10.1007/BF02115479.