REFERENCES
Almagro, L., Gómez Ros, L.V., Belchi-Navarro, S., Bru, R., Ros Barceló,
A. & Pedreño, M.A. (2009). Class III peroxidases in plant defence
reactions. Journal of Experimental Botany, 60 , 377-390.
https://doi.org/10.1093/jxb/ern277.
Amalfitano, C., Evidente, A., Surico, G., Tegli, S., Bertelli, E. &
Mugnai, L. (2000). Phenols and stilbene polyphenols in the wood of
esca-diseased grapevine. Phytopathologia Mediterranea, 39,178-183.
https://oajournals.fupress.net/index.php/pm/article/view/4799/4797.
Andolfi, A., Mugnai, L., Luque, J, Surico, G., Cimmino, A. & Evidente,
A. (2011). Phytotoxins produced by fungi associated with grapevine trunk
diseases. Toxins, 3 , 1569-1605.
https://doi.org/10.3390/toxins3121569.
Asada, K. (1999). The water-water cycle in chloroplasts: scavenging of
active oxygens and dissipation of excess photons. Annual Review of
Plant Physiology and Plant Molecular Biology, 50 , 601-639.
https://doi.org/10.1146/annurev.arplant.50.1.601.
Baggiolini, M. (1979). Stades repères de la vigne. In La défence des
plantes cultivées (ed R. Bovey), pp. 456-461. Payot, Lausanne.
Bruno, G. & Sparapano, L. (2006a). Effects of three esca-associated
fungi on Vitis vinifera L. : I. Characterization of
secondary metabolites in culture media and host responses to the
pathogens in calli. Physiological and Molecular Plant Pathology,
69 , 209-223. https://doi.org/10.1016/j.pmpp.2007.04.008.
Bruno, G. & Sparapano, L. (2006b). Effects of three esca-associated
fungi on Vitis vinifera L.: II. Characterization of biomolecules
in xylem sap and leaves of healthy and diseased vines.Physiological and Molecular Plant Pathology , 69 , 195-208.
https://doi.org/10.1016/j.pmpp.2007.04.007.
Bruno, G. & Sparapano, L. (2006c). Effects of three esca-associated
fungi on Vitis vinifera L.: III. Enzymes produced by the
pathogens and their role in fungus-to-plant or in fungus-to-fungus
interactions. Physiological and Molecular Plant Pathology, 69 ,
182-194. https://doi.org/10.1016/j.pmpp.2007.04.006.
Bruno, G. & Sparapano, L. (2007). Effects of three esca-associated
fungi on Vitis vinifera L. : V. Changes in the chemical and
biological profile of xylem sap from diseased cv. Sangiovese vines.Physiological and Molecular Plant Pathology , 71, 210-229.
https://doi.org/10.1016/j.pmpp.2008.02.005.
Bruno, G., Sparapano, L. & Graniti, A. (2007). Effects of three
esca-associated fungi on Vitis vinifera L. : IV. Diffusion
through the xylem of metabolites produced by two tracheiphilous fungi in
the woody tissue of grapevine leads to esca-like symptoms on leaves and
berries. Physiological and Molecular Plant Pathology, 71 ,
106-124. https://doi.org/10.1016/j.pmpp.2007.12.004.
Calzarano, F., Di Marco, S., D’agostino, V., Schiff, S. & Mugnai, L.
(2014). Grapevine leaf stripe disease symptoms (esca complex) are
reduced by a nutrients and seaweed mixture. Phytopathologia
Mediterranea, 53 , 543-558.
https://doi.org/10.14601/Phytopathol_Mediterr-15253.
Chang, X., Heene, E., Qiao, F. & Nick, P. (2011). The phytoalexin
resveratrol regulates the initiation of hypersensitive cell death in
Vitis cell. PLoS One 6 , e26405.https://doi.org/10.1371/journal.pone.0026405.
Chiarappa, L. (1959). Extracellular oxidative enzymes of wood-inhabiting
fungi associated with the heart rot of living grapevines.Phytopathology, 49 , 578-582.
Christen, D., Schönmann, S., Jermini, M., Strasser, R.J. & Défago, G.
(2007). Characterization and early detection of grapevine (Vitis
vinifera ) stress responses to esca disease by in situ chlorophyll
fluorescence and comparison with drought stress. Environmental and
Experimental Botany, 60 , 504-514. Doi:10.1016/j.envexpbot.2007.02.003.
De Gara, L., de Pinto, M. & Tommasi, F. (2003). The antioxidant systems
via-á-via reactive oxygen species during plant-pathogen interaction.Plant Physiology and Biochemistry, 41 , 863-870.https://doi.org/10.1016/S0981-9428(03)00135-9.
del Rio, J. A. et al. Phenolic compounds have a role in the defence
mechanism protecting grapevine against the fungi involved in petri
disease. Phytopathol. Mediterr.43, 87–94 (2004).
Elena, G., Bruez, E., Rey, P., Luque, J., (2018). Microbiota of
grapevine woody tissues with or without esca-foliar symptoms in
northeast Spain. Phytopathologia Mediterranea, 57(3) ,
425-438. Doi:https://doi.org/10.14601/Phytopathol_Mediterr-23337
Evidente, A. Sparapano, L., Andolfi, A. & Bruno, G. (2000). Two
naphthalenone pentaketides isolated from liquid cultures ofPhaeoacremonium aleophilum , a fungus associated with esca disease
syndrome. Phytopathologia Mediterranea, 39 , 162-18.
https://oajournals.fupress.net/index.php/pm/article/view/4807/4805.
Fontaine, F., Pinto, C., Vallet, J., Clément, C., Gomes, A.C. &
Spagnolo, A. (2016). The effects of grapevine trunk diseases (GTDs) on
vine physiology. European Journal of Plant Pathology, 144 ,
707-721. https://doi.org/10.1007/s10658-015-0770-0.
Gallie, D.R. (2013). L-Ascorbic acid: a multifunctional molecule
supporting plant growth and development. Scientifca, 795964 .
https://doi.org/10.1155/2013/795964.
Graniti, A., Surico, G. & Mugnai, L. (2000). Esca of grapevine: a
disease complex or a complex of diseases? Phytopatholgia
Mediterranea, 39 , 16-20.
https://oajournals.fupress.net/index.php/pm/article/view/4787/4785.
Harborne, J. (1973). Nitrogen Compounds. In Phytochemical methods. A
guide to modern techniques of plant analysis (ed J. Harborne), pp.
176-221. Chapman & Hall, London.
Heath, R.L. & Packer, L. (1968). Photoperoxidation in isolated
chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation.Archives of Biochemistry and Biophysics, 125 , 189-198.
https://doi.org/10.1016/0003-9861(68)90654-1.
Hung, S.H., Yu, C.W. & Lin, C.H. (2005). Hydrogen peroxide functions as
a stress signal in plants. Botanical Bulletin- Academia Sinica,46 1-10.
https://ejournal.sinica.edu.tw/bbas/content/2005/1/Bot461-01.pdf.
Jeandet, P., Douillet-Breuil, A.C., Bessis, R., Debord, S., Sbaghi, M.
& Adrian, M. (2002). Phytoalexins from the Vitaceae: biosynthesis,
phytoalexin gene expression in transgenic plants, antifungal activity,
and metabolism. Journal of Agricultural and Food Chemistry ,50 , 2731-2741. https://doi.org/10.1021/jf011429s.
Khan, T.A., Mazid, M. & Mohammad, F. (2011). Role of ascorbic acid
against pathogenesis in plants. Journal of Stress Physiology &
Biochemistry, 7 , 222-234.
http://www.jspb.ru/issues/2011/N3/JSPB_2011_3_222-234.pdf.
Jayawardena, R.S., Purahong, W., Zhang, W. Wubet, T., Li, X., Zhao, W.,
Hyde, K.D., Liu ,J. & Yan, J. (2018). Biodiversity of fungi onVitis vinifera L. revealed by traditional and high-resolution
culture-independent approaches. Fungal diversity, 90 , 1–84.
https://doi.org/10.1007/s13225-018-0398-4
Lambert, C.K.K.I., Lucas, S., Télef-Micoleau, N., Mérillon, J.M. &
Cluzet, S. (2013). A faster and stronger defence response: one of the
key elements in grapevine explaining its lower susceptibility to esca?Phytopathology, 103 , 1028-1034.
http://dx.doi.org/10.1094/PHYTO-11-12-0305-R.
Lee, D.H. & Lee, C.B. (2000). Chilling stress-induced changes of
antioxidant enzymes in the leaves of cucumber: in gel enzyme activity
assays. Plant Science, 159 , 75-85.
https://doi.org/10.1016/s0168-9452(00)00326-5.
Leshem, Y. (1992). Plant membranes: a biophysical approach to structure,
development and senescence. The Netherlands: Kluwer Academic Publishers.
Lima, M.R.M., Felgueiras, M.L., Graca, G., Rodrigues, J.E.A., Barros,
A., Gil, A.M. & Dias, A.C. (2010). NMR metabolomics of esca
disease-affected Vitis vinifera cv. Alvarinho leaves,Journal of Experimental Botany, 61 , 4033–4042.
https://doi.org/10.1093/jxb/erq214.
Luini, E., Fleurat-Lessard, P., Rousseau, L., Roblin, G. & Berjeaud, J.
(2010). Inhibitory effects of polypeptides secreted by the grapevine
pathogens Phaeomoniella chlamydospora and Phaeoacremonium
aleophilum on plant cell activities. Physiological and Molecular
Plant Pathology , 74 , 403-411.
https://doi.org/10.1016/j.pmpp.2010.06.007.
Magnin-Robert, M., Letousey, P., Spagnolo, A., Rabenoelina, F.,
Jacquens, L., Mercier, L., Clément, C. & Fontaine, F. (2011). Leaf
strip of esca induces alteration of photosynthesis and defence reactions
in presymptomatic leaves. Functional Plant Biology, 38 , 856-866.
http://dx.doi.org/10.1071/FP11083.
Marchi, G., Roberti, S., D’Ovidio, R., Mugnai, L. & Surico, G. (2001).
Pectic enzymes production by Phaeomoniella chlamydospora .Phytopathologia Mediterranea, 40 , S407-S416.
https://oajournals.fupress.net/index.php/pm/article/view/4921/4919.
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance.Trends in Plant Science, 7 , 405-410.
https://doi.org/10.1016/s1360-1385(02)02312-9.
Mondello V., Songy A., Battiston E., Pinto, C., Coppin, C., Trotel-Aziz,
P., Clément, C., Mugnai, L. & Fontaine F. (2018). Grapevine Trunk
Diseases: a review of fifteen years of trials for their control with
chemicals and biocontrol agents. Plant Disease, 102 , 1189-1217.https://doi.org/10.1094/PDIS-08-17-1181-FE.
Moreno-Sanz, P., Lucchetta, G., Zanzotto, A., Loureiro, M.D., Suarez, B.
& Angelini, E. (2013). Fungi associated to grapevine trunk diseases in
young plants in Asturias (Northern Spain). Horticultural Science
(Prague), 40 , 138–144.
Mugnai, L., Graniti, A. & Surico, G. (1999). Esca (black measles) and
brown wood-streaking: two old and elusive diseases of grapevines.Plant Disease, 83 , 404-418.
https://doi.org/10.1094/PDIS.1999.83.5.404.
Munné-Bosch, S. & Alegre, L. (2003). Drought-induced changes in the
redox state of α-tocopherol, ascorbate and diterpene carnosic acid in
chloroplast of Labiatae specie differing in carnosic acid contents.Plant Physiology, 131 , 1-10.https://doi.org/10.1104/pp.102.019265.
Niim, Y. & Torikata, H. (1978). Changes in endogenous plant hormones in
the xylem sap of grapevines during development Journal of the
Japanese Society for Horticultural Science, 47 , 181-187.
https://www.jstage.jst.go.jp/article/jjshs1925/47/2/47_2_181/_pdf.
Noctor, G., Foyer, C.H. (1998). Ascorbate and glutathione: keeping
active oxygen under control, Annual Review of Plant Physiology and
Plant Molecular Biology, 49 , 249-279.
https://doi.org/10.1146/annurev.arplant.49.1.249.
Paciolla, C., Ippolito, M.P., Logrieco, A., Dipierro, N., Mulè G. &
Dipierro, S. (2008). A different trend of antioxidant defense responses
makes tomato plants less susceptible to beauvericin than to T-2
mycotoxin phytotoxicity. Physiological and Molecular Plant
Pathology, 72 , 3-9. https://doi.org/10.1016/j.pmpp.2008.06.003.
Papadakis, A.K., Siminis, C.I. & Roubelakis-Angelakis, K.A. (2001).
Reduced activity of antioxidant machinery is correlated with suppression
of totipotency in plant protoplasts. Plant Physiology, 126 ,
434-441. https://doi.org/10.1104/pp.126.1.434.
Pennisi, A.M. & Graniti, A. (1987). Cell permeability changes in
tissues of Citrus trees infected by Phoma tracheiphila (Petri)
Kanc. Et Ghik. Phytophatologia Mediterranea, 26 , 142-145.
Pérez, F.J., Villegas, D. & Mejia, N. (2002). Ascorbic acid and
flavonoid-peroxidase reaction as a detoxifying system of
H2O2 in grapevine leaves.Phytochemistry, 60 , 573-580.
https://doi.org/10.1016/S0031-9422(02)00146-2.
Petit, A.N., Vaillant, N., Boulay, M., Clement, C. & Fontaine, F.
(2006). Alteration of photosynthesis in grapevines affected by esca.Phytopathology, 96 , 1060-1066.https://doi.org/10.1094/phyto-96-1060.
Pouzoulet, J., Jacques, A., Besson, X., Dayde, J. & Mailhac, N.
Histopathological study of response of Vitis vinifera cv.
Cabernet sauvignon to bark and wood injury with and without inoculation
by Phaeomoniella chlamydospora . Phytopathologia
Mediterranea, 52 , 313–323 (2013)
Skene, K.G.M. (1967). Gibberellin-like substances in root exudate ofVitis vinifera . Planta, 74 , 250-262.
https://doi.org/10.1007/BF00384846.
Soares, C., Carvalho, M.E.A., Azevedo, R.A. & Fidalgo, F. (2019).
Plants facing oxidative challenges—A little help from the antioxidant
net works. Environmental and Experimental Botany, 161 , 4-25.
https://doi.org/10.1016/j.envexpbot.2018.12.009.
Sperry, J.S., Holbrook, N.M., Zimmermann, M.H. & Tyree, M.T. (1987).
Tyree, Spring filling of xylem vessels in wild grapevine. Plant
Physiology , 83 , 414-417. https://doi.org/10.1104/pp.83.2.414.
Surico, G. (2009). Towards a redefinition of the diseases within the
esca complex of grapevine. Phytopathologia Mediterranea, 48 ,
5-10.
https://oajournals.fupress.net/index.php/pm/article/view/5262/5260.
Tabacchi, R., Fkyerat, A., Poliart, C. & Dubin, G.M. (2000).
Phytotoxins from fungi of esca of grapevine. Phytopathologia
Mediterranea, 39 , 156-161.
https://oajournals.fupress.net/index.php/pm/article/view/4800/4798.
Torres, M.A., Jonathan, D.G. & Dangl, J.L. (2006). Reactive oxygen
species signaling in response to pathogen. Plant Physiology, 141 ,
373-378. https://doi.org/10.1104/pp.106.079467.
Valtaud C., Thibault F., Larignon P., Berstch C., Fleurat-Lessard P. &
Bourbouloux A. (2011). Systemic damage in leaf metabolism caused by esca
infection in grapevines. Australian Journal of Grape and Wine
Research, 17 , 101-110.
https://doi.org/10.1111/j.1755-0238.2010.00122.x.
Van Alfen, N.K. (1989). Reassessment of plant wilt toxins. Annual
Review of Phytopathology , 27 , 533-550.
https://www.annualreviews.org/doi/pdf/10.1146/annurev.py.27.090189.002533.
Wormall, A. (1924). The constituents of the sap of the vine (Vitis
vinifera L.) Biochemical Journal, 18 , 1187-1202.https://doi.org/10.1042/bj0181187.
Yadeta, K. & Thomma, B. P. H. J. The xylem as battleground for plant
hosts and vascular wilt pathogens. Front. Plant. Sci. 4,
https://doi.org/10.3389/fpls.2013.00097 (2013).
Yamasaki, H., Sakihama, Y. & Ikehara, N. (1997). Flavonoid-peroxidase
reactions as a detoxification mechanism of plant cells against
H2O2. Plant Physiol ogy,115 , 1405-1412. https://doi.org/10.1104/pp.115.4.1405.
Zhang, J. & Kirkham, M.B. (1996). Antioxidant responses to drought in
sunflower and sorghum seedlings. New Phytologist , 132 ,
361-373. https://doi.org/10.1111/j.1469-8137.1996.tb01856.x.
Zhao, Z.R., Wu, Z.L., Huang, G.Q. & Li, G.R. (1992). An improved disk
bioassay for determining activities of plant growth regulators.Journal of Plant Growth Regulation, 11 , 209-213.
https://doi.org/10.1007/BF02115479.