References
Adya R, Tan BK, & Randeva HS (2015).
Differential effects of leptin and adiponectin in endothelial
angiogenesis. Journal of diabetes research 2015: 648239.
Backhed F, Ding H, Wang T, Hooper LV,
Koh GY, Nagy A, et al. (2004). The gut microbiota as an
environmental factor that regulates fat storage. Proceedings of the
National Academy of Sciences of the United States of America
101: 15718-15723.
Bagarolli RA, Tobar N, Oliveira AG,
Araujo TG, Carvalho BM, Rocha GZ, et al. (2017). Probiotics
modulate gut microbiota and improve insulin sensitivity in DIO mice. The
Journal of nutritional biochemistry 50: 16-25.
Bond DM, Morris JM, & Nassar N
(2017). Study protocol: evaluation of the probiotic Lactobacillus
Fermentum CECT5716 for the prevention of mastitis in breastfeeding
women: a randomised controlled trial. BMC pregnancy and childbirth
17: 148.
Boutagy NE, McMillan RP, Frisard MI,
& Hulver MW (2016). Metabolic endotoxemia with obesity: Is it real and
is it relevant? Biochimie 124: 11-20.
Cani PD, Amar J, Iglesias MA, Poggi M,
Knauf C, Bastelica D, et al. (2007). Metabolic endotoxemia
initiates obesity and insulin resistance. Diabetes 56:1761-1772.
Castaner O, Goday A, Park YM, Lee SH,
Magkos F, Shiow STE, et al. (2018). The Gut Microbiome Profile in
Obesity: A Systematic Review. International journal of endocrinology
2018: 4095789.
Cavalcante RGS, de Albuquerque TMR, de
Luna Freire MO, Ferreira GAH, Carneiro Dos Santos LA, Magnani M,
et al. (2019). The probiotic Lactobacillus fermentum 296 attenuates
cardiometabolic disorders in high fat diet-treated rats. Nutrition,
metabolism, and cardiovascular diseases : NMCD 29: 1408-1417.
Crovesy L, Masterson D, & Rosado EL
(2020). Profile of the gut microbiota of adults with obesity: a
systematic review. European journal of clinical nutrition.
Chakraborti CK (2015). New-found link
between microbiota and obesity. World journal of gastrointestinal
pathophysiology 6: 110-119.
Chang CJ, Lin TL, Tsai YL, Wu TR, Lai
WF, Lu CC, et al. (2019). Next generation probiotics in disease
amelioration. Journal of food and drug analysis 27: 615-622.
Chen LH, Chen YH, Cheng KC, Chien TY,
Chan CH, Tsao SP, et al. (2018). Antiobesity effect of
Lactobacillus reuteri 263 associated with energy metabolism remodeling
of white adipose tissue in high-energy-diet-fed rats. The Journal of
nutritional biochemistry 54: 87-94.
Choi WJ, Dong HJ, Jeong HU, Jung HH,
Kim YH, & Kim TH (2019). Antiobesity Effects of Lactobacillus plantarum
LMT1-48 Accompanied by Inhibition of Enterobacter cloacae in the
Intestine of Diet-Induced Obese Mice. Journal of medicinal food
22: 560-566.
Daniali M, Nikfar S, & Abdollahi M
(2020). A brief overview on the use of probiotics to treat overweight
and obese patients. Expert review of endocrinology & metabolism
15: 1-4.
De Filippo C, Cavalieri D, Di Paola
M, Ramazzotti M, Poullet JB, Massart S, et al. (2010). Impact of
diet in shaping gut microbiota revealed by a comparative study in
children from Europe and rural Africa. Proceedings of the National
Academy of Sciences of the United States of America 107:14691-14696.
Dhariwal A, Chong J, Habib S, King
IL, Agellon LB, & Xia J (2017). MicrobiomeAnalyst: a web-based tool for
comprehensive statistical, visual and meta-analysis of microbiome data.
Nucleic acids research 45: W180-W188.
Didion SP (2017). Unraveling the Role
and Complexities of Inflammation in Hypertension. Hypertension
70: 700-702.
Ding S, Chi MM, Scull BP, Rigby R,
Schwerbrock NM, Magness S, et al. (2010). High-fat diet: bacteria
interactions promote intestinal inflammation which precedes and
correlates with obesity and insulin resistance in mouse. PloS one
5: e12191.
Eckel RH, Alberti KG, Grundy SM, &
Zimmet PZ (2010). The metabolic syndrome. The lancet 375:181-183.
El Hage R, Hernandez-Sanabria E, &
Van de Wiele T (2017). Emerging Trends in ”Smart Probiotics”: Functional
Consideration for the Development of Novel Health and Industrial
Applications. Frontiers in microbiology 8: 1889.
Esser N, Legrand-Poels S, Piette J,
Scheen AJ, & Paquot N (2014). Inflammation as a link between obesity,
metabolic syndrome and type 2 diabetes. Diabetes research and clinical
practice 105: 141-150.
Everard A, Belzer C, Geurts L,
Ouwerkerk JP, Druart C, Bindels LB, et al. (2013). Cross-talk
between Akkermansia muciniphila and intestinal epithelium controls
diet-induced obesity. Proceedings of the National Academy of Sciences of
the United States of America 110: 9066-9071.
Fasano A (2017). Gut permeability,
obesity, and metabolic disorders: who is the chicken and who is the egg?
The American journal of clinical nutrition 105: 3-4.
Festi D, Schiumerini R, Eusebi LH,
Marasco G, Taddia M, & Colecchia A (2014). Gut microbiota and metabolic
syndrome. World journal of gastroenterology 20: 16079-16094.
Gil-Cardoso K, Gines I, Pinent M,
Ardevol A, Blay M, & Terra X (2016). Effects of flavonoids on
intestinal inflammation, barrier integrity and changes in gut microbiota
during diet-induced obesity. Nutrition research reviews 29:234-248.
Greenblum S, Turnbaugh PJ, &
Borenstein E (2012). Metagenomic systems biology of the human gut
microbiome reveals topological shifts associated with obesity and
inflammatory bowel disease. Proceedings of the National Academy of
Sciences of the United States of America 109: 594-599.
Hildebrandt MA, Hoffmann C,
Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. (2009).
High-fat diet determines the composition of the murine gut microbiome
independently of obesity. Gastroenterology 137: 1716-1724
e1711-1712.
Huby AC, Otvos L, Jr., & Belin de
Chantemele EJ (2016). Leptin Induces Hypertension and Endothelial
Dysfunction via Aldosterone-Dependent Mechanisms in Obese Female Mice.
Hypertension 67: 1020-1028.
Jang HM, Han SK, Kim JK, Oh SJ, Jang
HB, & Kim DH (2019). Lactobacillus sakei Alleviates
High-Fat-Diet-Induced Obesity and Anxiety in Mice by Inducing AMPK
Activation and SIRT1 Expression and Inhibiting Gut Microbiota-Mediated
NF-kappaB Activation. Molecular nutrition & food research 63:e1800978.
Karlsson CL, Onnerfalt J, Xu J, Molin
G, Ahrne S, & Thorngren-Jerneck K (2012). The microbiota of the gut in
preschool children with normal and excessive body weight. Obesity
20: 2257-2261.
Karlsson FH, Tremaroli V, Nookaew I,
Bergstrom G, Behre CJ, Fagerberg B, et al. (2013). Gut metagenome
in European women with normal, impaired and diabetic glucose control.
Nature 498: 99-103.
Kawano M, Miyoshi M, Ogawa A, Sakai
F, & Kadooka Y (2016). Lactobacillus gasseri SBT2055 inhibits adipose
tissue inflammation and intestinal permeability in mice fed a high-fat
diet. Journal of nutritional science 5: e23.
Kim AY, Park YJ, Pan X, Shin KC, Kwak
SH, Bassas AF, et al. (2015). Obesity-induced DNA
hypermethylation of the adiponectin gene mediates insulin resistance.
Nature communications 6: 7585.
Kwon J, Kim B, Lee C, Joung H, Kim
BK, Choi IS, et al. (2020). Comprehensive amelioration of
high-fat diet-induced metabolic dysfunctions through activation of the
PGC-1alpha pathway by probiotics treatment in mice. PloS one
15: e0228932.
Lee IS, Shin G, & Choue R (2010).
Shifts in diet from high fat to high carbohydrate improved levels of
adipokines and pro-inflammatory cytokines in mice fed a high-fat diet.
Endocrine journal 57: 39-50.
Ley RE, Backhed F, Turnbaugh P,
Lozupone CA, Knight RD, & Gordon JI (2005). Obesity alters gut
microbial ecology. Proceedings of the National Academy of Sciences of
the United States of America 102: 11070-11075.
Lim SM, Jeong JJ, Woo KH, Han MJ, &
Kim DH (2016). Lactobacillus sakei OK67 ameliorates high-fat
diet-induced blood glucose intolerance and obesity in mice by inhibiting
gut microbiota lipopolysaccharide production and inducing colon tight
junction protein expression. Nutrition research 36: 337-348.
Lim SM, & Kim DH (2017).
Bifidobacterium adolescentis IM38 ameliorates high-fat diet-induced
colitis in mice by inhibiting NF-kappaB activation and
lipopolysaccharide production by gut microbiota. Nutrition research
41: 86-96.
Marchesi JR, Adams DH, Fava F, Hermes
GD, Hirschfield GM, Hold G, et al. (2016). The gut microbiota and
host health: a new clinical frontier. Gut 65: 330-339.
Martin R, Langa S, Reviriego C,
Jiminez E, Marin ML, Xaus J, et al. (2003). Human milk is a
source of lactic acid bacteria for the infant gut. The Journal of
pediatrics 143: 754-758.
Rivero-Gutierrez B, Gamez-Belmonte R,
Suarez MD, Lavin JL, Aransay AM, Olivares M, et al. (2017). A
synbiotic composed of Lactobacillus fermentum CECT5716 and FOS prevents
the development of fatty acid liver and glycemic alterations in rats fed
a high fructose diet associated with changes in the microbiota.
Molecular nutrition & food research 61.
Robles-Vera I, Toral M, de la
Visitacion N, Sanchez M, Romero M, Olivares M, et al. (2018). The
Probiotic Lactobacillus fermentum Prevents Dysbiosis and Vascular
Oxidative Stress in Rats with Hypertension Induced by Chronic Nitric
Oxide Blockade. Molecular nutrition & food research 62:e1800298.
Rodriguez-Nogales A, Algieri F,
Garrido-Mesa J, Vezza T, Utrilla MP, Chueca N, et al. (2017).
Differential intestinal anti-inflammatory effects of Lactobacillus
fermentum and Lactobacillus salivarius in DSS mouse colitis: impact on
microRNAs expression and microbiota composition. Molecular nutrition &
food research 61.
Rodríguez-Nogales A, Algieri F, Vezza
T, Garrido-Mesa N, Olivares M, Comalada M, et al. (2015). The
viability of Lactobacillus fermentum CECT5716 is not essential to exert
intestinal anti-inflammatory properties. Food & Function 6:1176-1184.
Rogero MM, & Calder PC (2018).
Obesity, Inflammation, Toll-Like Receptor 4 and Fatty Acids. Nutrients
10.
Saklayen MG (2018). The Global
Epidemic of the Metabolic Syndrome. Current hypertension reports
20: 12.
Saunders KH, Umashanker D, Igel LI,
Kumar RB, & Aronne LJ (2018). Obesity Pharmacotherapy. The Medical
clinics of North America 102: 135-148.
Shepherd PR, & Kahn BB (1999).
Glucose transporters and insulin action–implications for insulin
resistance and diabetes mellitus. The New England journal of medicine
341: 248-257.
Teixeira TF, Souza NC, Chiarello PG,
Franceschini SC, Bressan J, Ferreira CL, et al. (2012).
Intestinal permeability parameters in obese patients are correlated with
metabolic syndrome risk factors. Clinical nutrition 31:735-740.
Tenorio-Jimenez C, Martinez-Ramirez
MJ, Gil A, & Gomez-Llorente C (2020). Effects of Probiotics on
Metabolic Syndrome: A Systematic Review of Randomized Clinical Trials.
Nutrients 12.
Tomaro-Duchesneau C, Saha S, Malhotra
M, Jones ML, Labbe A, Rodes L, et al. (2014). Effect of orally
administered L. fermentum NCIMB 5221 on markers of metabolic syndrome:
an in vivo analysis using ZDF rats. Applied microbiology and
biotechnology 98: 115-126.
Toral M, Gómez-Guzmán M, Jiménez R,
Romero M, Sánchez M, Utrilla MP, et al. (2014). The probiotic
Lactobacillus coryniformis CECT5711 reduces the vascular pro-oxidant and
pro-inflammatory status in obese mice. Clinical Science 127:33-45.
Toral M, Robles-Vera I, Romero M, de
la Visitacion N, Sanchez M, O’Valle F, et al. (2019).
Lactobacillus fermentum CECT5716: a novel alternative for the prevention
of vascular disorders in a mouse model of systemic lupus erythematosus.
FASEB journal : official publication of the Federation of American
Societies for Experimental Biology 33: 10005-10018.
Vargas E, Podder V, & Carrillo
Sepulveda MA (2020). Physiology, Glucose Transporter Type 4 (GLUT4). In
StatPearls. Treasure Island (FL).
Vezza T, Rodriguez-Nogales A, Algieri
F, Garrido-Mesa J, Romero M, Sanchez M, et al. (2019). The
metabolic and vascular protective effects of olive (Olea europaea L.)
leaf extract in diet-induced obesity in mice are related to the
amelioration of gut microbiota dysbiosis and to its immunomodulatory
properties. Pharmacological research 150: 104487.
Walther G, Obert P, Dutheil F,
Chapier R, Lesourd B, Naughton G, et al. (2015). Metabolic
syndrome individuals with and without type 2 diabetes mellitus present
generalized vascular dysfunction: cross-sectional study.
Arteriosclerosis, thrombosis, and vascular biology 35:1022-1029.
Wang Q, Garrity GM, Tiedje JM, &
Cole JR (2007). Naive Bayesian classifier for rapid assignment of rRNA
sequences into the new bacterial taxonomy. Applied and environmental
microbiology 73: 5261-5267.
Yang JY, Lee YS, Kim Y, Lee SH, Ryu
S, Fukuda S, et al. (2017). Gut commensal Bacteroides
acidifaciens prevents obesity and improves insulin sensitivity in mice.
Mucosal immunology 10: 104-116.
Zarzuelo MJ, Jiménez R, Galindo P,
Sánchez M, Nieto A, Romero M, et al. (2011). Antihypertensive
effects of peroxisome proliferator-activated receptor-β activation in
spontaneously hypertensive rats. Hypertension 58: 733-743.
Zhu K, Tan F, Mu J, Yi R, Zhou X, &
Zhao X (2019). Anti-Obesity Effects of Lactobacillus fermentum CQPC05
Isolated from Sichuan Pickle in High-Fat Diet-Induced Obese Mice through
PPAR-alpha Signaling Pathway. Microorganisms 7.
Table 1. Primer sequences used in RT-qPCR assays