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ABSTRACT
Impulsive differential equations of second-order appears in numerous applications
such as fluid dynamics, electromagnetism, quantum mechanics, neural networks and
the field of time symmetric electrodynamics. The aim of this work is to establish
necessary and sufficient conditions for the oscillation of the solutions to a second-
order neutral differential equation with impulses. Two examples are given and state
an open problem.
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The second-order differential equations are frequently using to make model of many
situations in physics and engineering. We looked at how differential equations works for
a systems of an object with mass attached to a vertical spring and an electric circuit,
an inductor, and a capacitor see [1]. These type of models can be used to approximate
some more complicated situations; for example, bonds between atoms or molecules are
often modeled as springs that vibrate, as described by the same differential equations.
The study of qualitative theory of differential equations is an active area of research
both in theory and applications, see [2–6]. For instance, oscillatory behavior of second-
order differential equations have many practical applications in the study of distributed
networks containing lossless transmission lines which arise in high-speed computers
where the lossless transmission lines are used to interconnect switching circuits.

Impulsive differential equations are now recognized as an excellent source of models
to simulate processes and phenomena observed in population dynamics, biotechnology,
control theory, physics, chemistry, industrial robotic, economics, rhythmical beating,
etc. Recently, impulsive differential equations have become a very active area of re-
search, since it is much richer than the corresponding theory of differential equations
without impulse effect and we refer the reader to the monographs by Lakshmikantham
et al [23] and Samoilenko and Perestynk [24]. In present years much effort has been
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devoted to study the functional differential equations of neutral type. However, the
differential equations of neutral type with impulse are not well studied due to the
theoretical and practical difficulties arising in the theory. Hence in this work, we have
made an attempt to establish the necessary and sufficient conditions for oscillation of
a class of forced impulsive differential systems of the form

(E1)


(
a(y)

(
w′(y)

)µ)′
+ c(y)g

(
u(ϑ(y))

)
= 0, y ≥ y0, y 6= φk,

∆
(
a(φk)

(
w′(φk)

)µ)
+ c̃(φk)g

(
u(ϑ(φk))

)
= 0 , k ∈ N,

where

w(y) = u(y) + b(y)u(ς(y)), ∆u(a) = lim
s→a+

u(s)− lim
s→a−

u(s),

the functions g, b, c, c̃, a, ϑ, ς are continuous that satisfy the conditions stated below;

(A1) ϑ ∈ C([0,∞),R), ς ∈ C2([0,∞),R), ϑ(y) < y, ς(y) < y, limy→∞ ϑ(y) = ∞,
limy→∞ ς(y) =∞.

(A2) a ∈ C1([0,∞),R), c, c̃ ∈ C([0,∞),R); 0 < a(y), 0 ≤ c(y), 0 ≤ c̃(y), y ≥ 0;
(A3) g ∈ C(R,R) is non-decreasing and g(u)u > 0 for u 6= 0.
(A4) limy→∞A(y) =∞ where A(y) =

∫ y
y1
a−1/µ(s) ds.

(A5) the sequence {φk} satisfies 0 < φ1 < φ2 < · · · < φk < · · · → ∞ as k → ∞ are
fixed moments of impulsive effects;

(A6) µ is the quotient of two positive odd integers. In particular, the assumption on
µ can be replaced by µ > 0, by using |u|µ sgn(u) instead of uµ, but the notation
will be much longer.

The main aim of this article is having conditions that are both necessary and suffi-
cient for the oscillation of all solutions to (E1). Sufficient conditions for the oscillation
of all solutions to the first and second order neutral impulsive differential equations
are provided in [18–21,29] and [26,32] respectively. Conditions for the existence of
non-oscillatory solutions to the first and second order neutral impulsive differential
equations are provided in [30,31] and [32] respectively. Also, the necessary and suffi-
cient conditions for the oscillation of all solutions to the first order neutral impulsive
differential equations are provided in [30,31].

In 2011, Dimitrova and Donev [19–21] considered the first-order impulsive differen-
tial equation (

u(y) + b(y)u(ς(y))
)′

+ c(y)u(ϑ(y)) = 0, y 6= φk, k ∈ N,
∆
(
u(φk) + b(φk)u(ς(φk))

)
+ c(φk)u(ϑ(φk)) = 0, k ∈ N,

(1)

and established several sufficient conditions for oscillation of the solutions of (1). In
2014, Tripathy [29] established sufficient conditions for the oscillation of the solutions
of (

u(y) + b(y)u(y − ς)
)′

+ c(y)g
(
u(y − ϑ)

)
= 0, y 6= φk, k ∈ N,

∆
(
u(φk) + b(φk)u(φk − ς)

)
+ c(φk)g

(
u(φk − ϑ)

)
= 0, k ∈ N .

(2)

In 2015, Tripathy and Santra [30] obtained necessary and sufficient conditions for the
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oscillatory and asymptotic behavior of the solutions of(
u(y) + b(y)u(y − ς)

)′
+ c(y)g

(
u(y − ϑ)

)
= g(y), y 6= φk, k ∈ N,

∆
(
u(φk) + b(φk)u(φk − ς)

)
+ c(φk)g

(
u(φk − ϑ)

)
= h(φk), k ∈ N .

(3)

In 2016, Tripathy, Santra and Pinelas [31] obtained necessary and sufficient condi-
tions of (2). Also, Tripathy and Santra [32] established sufficient conditions and the
conditions for existence of positive solutions of(

a(y)
(
u(y) + b(y)u(y − ς)

)′)′
+ c(y)g

(
u(y − ϑ)

)
= 0, y 6= φk, k ∈ N,

∆
(
a(φk)

(
u(φk) + b(φk)u(φk − ς)

)′)
+ c(φk)g

(
u(φk − ϑ)

)
= 0, k ∈ N .

In 2018, Santra established sufficient conditions for the oscillations of the solutions of(
a(y)

(
u(y) + b(y)u(ς(y))

)′)′
+ c(y)g

(
u(ϑ(y))

)
= 0, y 6= φk, k ∈ N,

∆
(
a(φk)

(
u(φk) + b(φk)u(ς(φk))

)′)
+ c(φk)g

(
u(ϑ(φk))

)
= 0, k ∈ N.

By a solution x we mean a function differentiable on [y0,∞), such that w(y) is
differentiable for y 6= yk, w(y) is left continuous at φk and has right limit at φk, and
x satisfies (E1). We restrict our attention to solutions for which supy≥b |u(y)| > 0 for
every b ≥ 0. A solution is called oscillatory it has arbitrarily large zeros; otherwise is
non-oscillatory.

To define a particular solution, we need an initial function φ(y) which is twice
differentiable for u in the interval

min
{

inf{ς(y) : y0 ≤ y}, inf{ϑ(y) : y0 ≤ y}
}
≤ y .

1. Results

Lemma 1.1. Assume (A1)–(A6), −1 < −b0 ≤ b(y) ≤ 0 for y ≥ y0, and that u is an
eventually positive solution of (E). Then only one of the following two cases happens:

(1) limy→∞ u(y) = 0;
(2) there exist y1 ≥ y0 and δ > 0 such that

0 < w(y) ≤ δA(y), (4)

A(y)Λ1/µ ≤ w(y) ≤ u(y) , (5)

for y ≥ y1 and where

Λ =

∫ ∞
y

c(ζ)g
(
u(ϑ(ζ))

)
dζ +

∑
φk≥y

c̃(φk)g(u(ϑ(φk))

Proof. Let u be an eventually positive solution. Then by (A1) there exists a y∗ such
that u(y) > 0, u(ς(y)) > 0 and u(ϑ(y)) > 0 for all y ≥ y∗. Note that z is continuous

3



and w(y) ≤ u(y). From (E1) it follows that(
a(y)

(
w′(y)

)µ)′
= −c(y)g

(
u(ϑ(y))

)
≤ 0 for y 6= φk,

∆
(
a(φk)

(
w′(φk)

)µ)
= −c̃(φk)g

(
u(ϑ(φk))

)
≤ 0 for k ∈ N.

(6)

Therefore, a(y)
(
w′(y)

)µ
is non-increasing for y ≥ y∗, including jumps of discon-

tinuity. Next we show the a(y)
(
w′(y)

)µ
is positive. By contradiction assume that

a(y)
(
w′(y)

)µ ≤ 0 at a certain time y ≥ y∗. Using that c is not identically zero on
any interval [b,∞), and that g(x) > 0 for x > 0, by (6), there exist y1 ≥ y∗ such that

a(y)
(
w′(y)

)µ ≤ a(y1)
(
w′(y1)

)µ
< 0 for all y ≥ y1.

Recall that µ is the quotient of two positive odd integers. Then

w′(y) ≤
(a(y1)

a(y)

)1/µ
w′(y1) for y ≥ y1 .

Integrating from y1 to y, we have

w(y) ≤ w(y1) +
(
a(y1)

)1/µ
w′(y1)A(y) . (7)

By (A4), the right-hand side approaches −∞; then limy→∞w(y) = −∞. Since b is
bounded and w is unbounded, u can not be bounded. This allows the existence of a
sequence {sk} → ∞ such that u(sk) = sup{u(s) : s ≤ sk}. Then u(ς(sk)) ≤ u(sk) and

w(sk) = u(sk) + b(sk)u(ς(sk)) ≥ (1 + b(sk))u(sk) ≥ (1− b0)u(sk) ≥ 0 ,

which contradicts limk→∞w(sk) = −∞. Therefore a(y)
(
w′(y)

)µ
> 0 for all y ≥ y∗.

From a(y)
(
w′(y)

)µ
> 0 and a(y) > 0, it follows that w′(y) > 0. Then there is

y1 ≥ y∗ such that only one of the following two cases happens.

Case 1: w(y) < 0 for all y ≥ y1. Note that by (A1), lim supy→∞ u(y) =
lim supy→∞ u(ς(y)). Then 0 > w(y) ≥ u(y)− b0u(ς(y)) implies

0 ≥ (1− b0) lim sup
y→∞

u(y) .

Since (1− b0) > 0, it follows that lim supy→∞ u(y) = 0; hence limy→∞ u(y) = 0.

Case 2: w(y) > 0 for all y ≥ y1. Note that u(y) ≥ w(y) and w is positive and
increasing so u cannot converge to zero. From a(y)

(
w′(y)

)µ
being non-increasing, we

have

w′(y) ≤
(a(y1)

a(y)

)1/µ
w′(y1) for y ≥ y1 .

Integrating this inequality from y1 to y, and using that w is continuous,

w(y) ≤ w(y1) +
(
a(y1)

)1/µ
w′(y1)A(y) .
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Since limy→∞A(y) =∞, there exists a positive constant δ such that (4) holds.
Since a(y)

(
w′(y)

)µ
is positive and non-increasing, limy→∞ a(y)

(
w′(y)

)µ
exists and

is non-negative. Integrating (E1) from u to a, we have

a(a)
(
w′(a)

)µ − a(y)
(
w′(y)

)µ
=

∫ a

y

(
a(s)

(
w′(s)

)µ)′
ds+

∑
y≤φk<a

∆
(
a(φk)w

′(φk)
)µ

Computing the limit as a→∞,

a(y)
(
w′(y)

)µ ≥ ∫ ∞
y

c(s)g
(
u(ϑ(s))

)
ds+

∑
φk≥y

c̃(φk)g
(
u(ϑ(φk))

)
. (8)

Then

w′(y) ≥
[ 1

a(y)

[ ∫ ∞
y

c(s)g
(
u(ϑ(s))

)
ds+

∑
y≤φk

c̃(φk)g
(
u(ϑ(φk))

)]]1/µ
.

Since w(y1) > 0, integrating the above inequality yields

w(y) ≥
∫ y

y1

[ 1

a(s)

[ ∫ ∞
s

c(ζ)g
(
u(ϑ(ζ))

)
dζ +

∑
s≤φk

c̃(φk)g
(
u(ϑ(φk))

)]]1/µ
ds

Since the integrand is positive, we can increase the lower limit of integration from s
to u, and then use the definition of a(y), to obtain

w(y) ≥ A(y)
[ ∫ ∞

y
c(ζ)g

(
u(ϑ(ζ))

)
dζ +

∑
y≤φk

c̃(φk)g
(
u(ϑ(φk))

)]1/µ
,

which yields (5).

For the next theorem we assume that there exists a constant α, the quotient of two
positive odd integers, with α < µ, such that

g(u)

uα
is non-increasing for 0 < u . (9)

For example g(u) = |u|β sgn(u), with 0 < β < α satisfies this condition. The assump-
tion that α is the quotient of odd integers can be removed by using |u|α sgn(u) instead
of uα.

Theorem 1.2. Assume (A1)–(A6), (9), and that −1 < −b0 ≤ b(y) ≤ 0 holds for all
y ≥ y0. Then each solution of (E1) is oscillatory or converges to zero, if and only if

[ ∫ ∞
y2

c(s)g(δA(ϑ(s))) ds+

∞∑
k=1

c̃(φk)g(δA(ϑ(φk)))
]

=∞ ∀δ 6= 0 . (10)

Proof. We prove sufficiency by contradiction. Initially we assume that a solution u is
eventually positive that does not converge to zero. Then case 1 in Lemma 1.1 leads to
limy→∞ u(y) = 0, which contradicts the assumption that u does not converge to zero.
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Case 2 of Lemma 1.1 also leads to a contradiction. In Case 2 there exists y1 such
that

u(y) ≥ w(y) ≥ A(y)Λ1/µ(y) ≥ 0 ∀y ≥ y1 , (11)

Note that w is left continuous at φk,

Λ′(y) = −c(y)g
(
u(ϑ(y))

)
for y 6= φk,

∆Λ(φk) = −c̃(φk)g
(
u(ϑ(φk))

)
≤ 0 .

Thus Λ is non-negative and non-increasing. Since u > 0, by (A3), g
(
u(ϑ(y))

)
> 0,

and by (A2), it follows that c(y)g
(
u(ϑ(y))

)
cannot be identically zero in any interval

[b,∞); thus Λ′ cannot be identically zero, and Λ can not be constant on any interval
[b,∞). Therefore Λ(y) > 0 for y ≥ y1. Computing the derivative,(

Λ1−α/µ(y)
)′

=
(

1− α

µ

)
Λ−α/µ(y)Λ′(y) for y 6= φk . (12)

To estimate the discontinuities of Λ1−α/µ we use a Taylor polynomial of order 1 for
the function h(u) = u1−α/µ, with 0 < α < µ, about u = e:

d1−α/µ − e1−α/µ ≤
(
1− α

µ

)
d−α/µ(e− d) .

Then ∆Λ1−α/µ(φk) ≤
(
1 − α

µ

)
Λ−α/µ(φk)∆Λ(φk). Integrating (12) from y2 to y, and

using that Λ > 0, we have

Λ1−α/µ(y2) ≥
(
1− α

µ

)[
−
∫ y

y2

Λ−α/µ(s)Λ′(s) ds−
∑

y2≤φk<y

Λ−α/µ(φk)∆Λ(φk)
]

=
(
1− α

µ

)[ ∫ y

y2

Λ−α/µ(s)
(
c(s)g

(
u(ϑ(s))

))
ds

+
∑

y2≤φk<y

Λ−α/µ(φk)c̃(φk)g
(
u(ϑ(φk))

)]
. (13)

Next we find a lower bound for the right-hand side of (13), independent of the
solution u. Since w ≤ u, by (A3), (9), (4), and (11), we have

g(u(y)) ≥ g
(
w(y))

)wα(y)

wα(y)
≥
g
(
δA(y)

)
(δA(y))α

wα(y)

≥
g
(
δA(y)

)
(δA(y))α

(
A(y)Λ1/µ(y)

)α
=
g
(
δA(y)

)
δα

Λα/µ(y) for y ≥ y2 .

Since w is non-increasing, α/µ > 0, and ϑ(s) < s, it follows that

g
(
u(ϑ(s))

)
≥
g
(
δA(ϑ(s))

)
δα

Λα/µ(ϑ(s)) ≥
g
(
δA(ϑ(s))

)
δα

Λα/µ(s) . (14)
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Going back to (13), we have

Λ1−α/µ(y2) ≥
(
1− α

µ

)
δα

[ ∫ y

y2

c(s)g(δA(ϑ(s))) ds+
∑

y2≤φk<y

c̃(φk)g
(
δA(ϑ(φk))

)]
. (15)

Since (1 − α/µ) > 0, by (10) the right-hand side approaches +∞ as y → ∞. This
contradicts (15) and completes the proof of sufficiency for eventually positive solutions.

For an eventually negative solution u, we introduce the variables v = −u and
g(y) = −g(y). Then v is an eventually positive solution of (E1) with f instead of g.
Note that f satisfies (A3) and (9) so can apply the above process for the solution v.

Next we show the necessity part by a contrapositive argument. When (10) does not
hold we find a eventually positive solution that does not converge to zero. If (10) does
not hold for some δ > 0, then for each ε > 0 there exists y1 ≥ y0 such that∫ ∞

s
c(ζ)g

(
δA(ϑ(ζ))

)
dζ +

∑
φk≥s

c̃(φk)g
(
δA(ϑ(φk))

)
≤ ε, (16)

for all s ≥ y1. In particular we use a positive ε such that

(2ε)1/µ = (1− b0)δ , (17)

so that 0 < ε1/µ ≤ (1− b0)δ/21/µ < δ. Note that y1 depends on δ. We define the set of
continuous functions

S = {u ∈ C([0,∞)) : ε1/µA(y) ≤ u(y) ≤ δA(y), y ≥ y1} .

Then we define an operator Φ on S by

(Φu)(y) =


0 if y ≤ y1
−b(y)u(ς(y)) +

∫ y
y1

[
1
a(s)

[
ε+

∫∞
s c(ζ)g

(
u(ϑ(ζ))

)
dζ

+
∑

φk≥s c̃(φk)g
(
u(ϑ(φk))

)]]1/µ
ds if y > y1 .

Note that when u is continuous, Φu is also continuous on [0,∞). If u is a fixed point
of Φ, i.e. Φu = u, then u is a solution of (E).

First we estimate (Φu)(y) from below. For u ∈ S, we have 0 ≤ ε1/µA(y) ≤ u(y). By
(A3), we have 0 ≤ g

(
u(ϑ(s))

)
and by (A2) we have

(Φu)(y) ≥ 0 +

∫ y

y1

[ 1

a(s)
[ε+ 0 + 0]

]1/µ
ds = ε1/µA(y) .

Now we estimate (Φu)(y) from above. For u in S, by (A2) and (A3), we have
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g
(
u(ϑ(ζ))

)
≤ g
(
δa(ϑ(ζ))

)
. Then by (16) and (17),

(Φx)(y) ≤ b0δ
(
A(ς(y)

)
+

∫ y

y1

[ 1

a(s)

[
ε+

∫ ∞
s

c(ζ)g(δa(ϑ(ζ))) dζ

+
∑
φk≥s

c̃(φk)g(δa(ϑ(φk)))
]]1/µ

ds

≤ b0δA(y) + (2ε)1/µA(y) = δA(y) .

Therefore, Φ maps S to S.
Next we find a fixed point for Φ in S. Let us define a sequence of functions in S by

the recurrence relation

v0(y) = 0 for y ≥ y0,

v1(y) = (Φv0)(y) =

{
0 if t < y1

ε1/µA(y)
)

if y ≥ y1
,

vn+1(y) = (Φvn)(y) for n ≥ 1, y ≥ y1 .

Note that for each fixed v, we have v1(y) ≥ v0(y). Using that g is non-decreasing and
mathematical induction, we can show that vn+1(y) ≥ vn(y). Therefore, the sequence
{vn} converges pointwise to a function v. Using the Lebesgue Dominated Convergence
Theorem, we can show that v is a fixed point of Φ in S. This shows under assumption
(16), there a non-oscillatory solution that does not converge to zero.

Remark 1. Under the assumptions of Theorem 1.2, An unbounded solution of (E1)
is oscillatory if and only if (10) holds.

In the next theorem, we assume the existence of a differentiable function ϑ0 such
that

0 < ϑ0(y) ≤ ϑ(y), ∃β > 0 : β ≤ ϑ′0(y), for y ≥ y0. (18)

Also we assume that there exists a constant α, the quotient of two positive odd integers,
with µ < α, such that

g(u)

uα
is non-decreasing for 0 < u . (19)

For example g(x) = |x|β sgn(x), with α < β satisfies this condition.

Theorem 1.3. Assume (A1)–(A6), (18), (19), a(y) is non-decreasing, and −1 <
−b0 ≤ b(y) ≤ 0 for all y ≥ y0. Every solution of (E1) is oscillatory or converges to
zero, if and only if∫ ∞

y1

[ 1

a(s)

[ ∫ ∞
s

c(ζ) dζ +
∑
φk≥s

c̃(φk)
]]1/µ

ds =∞ . (20)

Proof. We prove sufficiency by contradiction. Initially assume that u is an eventually
positive solution that does not converge to zero. Using the same argument as in Lemma
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1.1, there exists y1 ≥ y0 such that: u(ϑ(y)) > 0, u(ς(y)) > 0, and a(y)
(
w′(y)

)µ
is

positive and non-increasing. Case 1 of Lemma 1.1 leads to limy→∞ u(y) = 0 which
contradicts the assumption that u does not converge to zero.

Case 2 of Lemma 1.1 also leads to a contradiction. In case 2, w(y) is positive
and increasing for y ≤ y1. Since −1 < −b0 ≤ b(y) ≤ 0, it follows that w(y) =
u(y) + b(y)u(ς(y)) ≤ u(y). From (A3), w(y) ≥ w(y1) and (19), we have

g(u(y)) ≥ g(w(y))

zα(y)
zα(y) ≥ g(w(y1))

zα(y1)
zα(y) .

By (A1) there exists a y2 ≥ y1 such that ϑ(y) ≥ y1 for y ≥ y2. Then

g
(
u(ϑ(y))

)
≥ g(w(y1))

zα(y1)
zα(ϑ(y)) ∀y ≥ y2 . (21)

Using this inequality, (8), that ϑ(y) ≥ ϑ0(y) which is an increasing function, and that
z is increasing, we have

a(y)
(
w′(y)

)µ ≥ zα(ϑ0(y))

zα(y1)

[ ∫ ∞
y

c(s)g
(
w(y1)

)
ds+

∑
φk≥y

c̃(φk)g
(
w(y1)

)]
,

for y ≥ y2. From a(y)
(
w′(y)

)µ
being non-increasing and ϑ0(y) ≤ y, we have

a(ϑ0(y))
(
w′(ϑ0(y))

)µ ≥ a(y)
(
w′(y)

)µ
.

We use this in the left-hand side of the above inequality. Then dividing by a(ϑ0(y)) > 0,
raising both sides to the 1/µ power, and dividing by zα/µ(ϑ0(y)) > 0, we have

w′(ϑ0((y))

zα/µ(ϑ0(y))
≥
[ 1

a(ϑ0(y))zα(y1)

[ ∫ ∞
y

c(s)g(w(y1)) ds+
∑
φk≥y

c̃(φk)g(w(y1))
]]1/µ

,

for y ≥ y2. Multiplying the left-hand side by ϑ′0(y)/β ≥ 1, and integrating from y1 to
y,

1

β

∫ y

y1

w′(ϑ0(s))ϑ
′
0(s)

zα/µ(ϑ0(s))
ds ≥ 1

zα/µ(y1)

∫ y

y1

[ 1

a(ϑ0(s))

[ ∫ ∞
s

c(ζ)g(w(y1)) dζ

+
∑
s≤φk

c̃(φk)g
(
w(y1)

)]]1/µ
ds ∀y ≥ y2 . (22)

On the left-hand side, since µ < α, integrating, we have

1

β(1− α/µ)

[
z1−α/µ(ϑ0(s))

]y
s=y2

≤ 1

β(α/µ− 1)
z1−α/µ(ϑ0(y2)) .

On the right-hand side of (22), we use that g(w(y1)) > 0 and that a(ϑ0(s)) ≤ a(s),
to conclude that (20) implies the right-hand side approaching +∞, as y → ∞. This
contradiction implies that the solution u cannot be eventually positive.
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For eventually negative solutions, we use the same change of variables as in Theorem
1.2, and proceed as above.

To prove the necessity part we assume that (20) does not hold, and obtain an
eventually positive solution that does not converge to zero. If (20) does not hold, then
for each ε > 0 there exists y1 ≥ y0 such that∫ ∞

y1

[ 1

a(s)

[ ∫ ∞
s

c(ζ) dζ +
∑
φk≥s

c̃(φk)
]]1/µ

ds < ε ∀y ≥ y1 . (23)

In particular we use ε =
(
g(2/(1− b0)

)−1/µ
> 0. Let us consider the set of continuous

functions

S =
{
u ∈ C([0,∞)) : 1 ≤ u(y) ≤ 2

1− b0
for y ≥ y1

}
Then we define the operator

(Φu)(y) =



1
1+b(y1)

if ς(y1) = y1, y ≤ y1,
u−ς(y1)
y1−ς(y1) if ς(y1) < y1, y ≤ y1,
1− b(y)u(ς(y))

+
∫ y
y1

[
1
a(s)

[ ∫∞
s c(ζ)g

(
u(ϑ(ζ))

)
dζ

+
∑

φk≥s c̃(φk)g
(
u(ϑ(φk))

)]]1/µ
ds if y > y1 ,

Note that if u is continuous, Φu is also continuous at y = y1. This follows by taking
the right and left limits in the three possible cases in the the definition of Φ. Also note
that if Φu = u, then u is solution of (E).

First we estimate (Φu)(y) from below. Let u ∈ S. Then 1 ≤ u and by (A3), we have
(Φu)(y) ≥ 1 + 0 + 0, on [y1,∞).

Now we estimate (Φu)(y) from above. Let u ∈ S. Then u ≤ 2/(1− b0) and

(Φu)(y) ≤ 1− b(y)
2

1− b0
+

∫ y

y1

[ 1

a(s)

[ ∫ ∞
s

c(ζ)g
( 2

1− b0

)
dζ

+
∑
φk≥s

c̃(φk)g
( 2

1− b0

)]]1/µ
ds.

Since ϑ0(s) ≤ s and a(·) is non-decreasing, we can replace a(s) by a(ϑ0(s)) and the
above inequality is still valid. By (23) and the definition of ε, we have

(Φx)(y) ≤ 1 +
2b0

1− b0
+
(
g(2/(1− b0)

)1/µ
ε

= 1 +
2b0

1− b0
+ 1 =

2

1− b0
.

Therefore Φ maps S to S.
To find a fixed point for Φ in S, we define a sequence of functions by the recurrence
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relation

v0(y) = 0 for y ≥ y0,
v1(y) = (Φv0)(y) = 1 for y ≥ y1,

vn+1(y) = (Φvn)(y) for n ≥ 1, y ≥ y1 .

Note that for each fixed y, we have v1(y) ≥ v0(y). Using that g is non-decreasing and
mathematical induction, we can prove that vn+1(y) ≥ vn(y). Therefore {vn} converges
pointwise to a function v in S. Then v is a fixed point of Φ and a positive solution to
(E1) that does not converge to zero.

The next theorem does not require neither (9) nor (19), but considers only bounded
solutions.

Theorem 1.4. Assume (A1)–(A6) and −1 < −b0 ≤ b(y) ≤ 0 for all y ≥ y0. Then
every bounded solution of (E1) is oscillatory or converges to zero, if and only if (20)
holds.

Proof. We prove sufficiency by contradiction. Assume u is an eventually positive
solution that does not converge to zero. Then we proceed as in Lemma 1.1 up to
equation (7). Since u and b are bounded so w is bounded. Then the left-hand side of
(7) is bounded, while the right-hand side approaches −∞ as y →∞. This contradiction
implies that w′(y) > 0 for y ≥ y1. As in Lemma 1.1, we have two possible cases.

Case 1: w(y) < 0 for all y ≥ y1. This leads to a contradiction. As in case 1 of
Lemma 1.1, we have limy→∞ u(y) = 0 which contradicts the assumption that u does
not converge to zero.

Case 2: w(y) > 0 for all y ≥ y1. This also leads to a contradiction. Since z is positive
and increasing, w(y) ≥ w(y1) for y ≥ y1. Recall that u(y) ≥ w(y) so u cannot converge
to zero. By (A2), there is a y2 ≥ y1 such that ϑ(y) ≥ y1 and u(ϑ(y)) ≥ w(y1) for y ≥ y2.
From (A4), g

(
u(ϑ(y))

)
≥ g(w(y1)) > 0. Then integrating as we did for (8), we have

lim
y→∞

w(y)− w(y2) ≥
∫ ∞
y2

[ 1

a(s)

[ ∫ ∞
s

c(ζ)g(w(y1)) dζ +
∑
s≤φk

c̃(φk)g(w(y1)
]]1/µ

ds .

By (20), the right-hand side approaches +∞, which contradicts w being bounded.
For eventually negative solutions, we proceed as above to obtain also a contradiction.

Therefore, every bounded and solution must be oscillatory or converge to zero.
The proof of the necessity part is the same as that in Theorem 1.3; taking into

account that if u ∈ S, then w(y1) ≤ u(y1) ≤ 2/(1− p).

Example 1.5. Consider the neutral differential equations

(E2)


(
e−y
((
u(y)− e−yu(ς(y))

)′)11/3)′
+ 1

y+1(u(y − 2))1/3 = 0 ,(
e−k
((
u(k)− e−ku(ς(k))

)′)11/3)′
+ 1

k+4(u(k − 2))1/3 = 0 .

Here µ = 11/3, a(y) = e−y, −1 < b(y) = −e−y ≤ 0, ϑ(y) = t − 2, φk = k for k ∈ N,
a(y) =

∫ y
y1
e11s/3 ds = 3

11

(
e11y/3 − e11y2/3

)
and g(x) = x1/3. For α = 7/3, we have
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0 < β = 1/3 < α = 7/3 < µ = 11/3, and g(u)/uα = u−2 which is a decreasing
functions. To check (10) we have

[ ∫ ∞
y2

c(s)g(δa(ϑ(s))) ds+

∞∑
k=1

c̃(φk)f(δa(ϑ(φk)))
]
≥
∫ ∞
y2

c(s)g(δa(ϑ(s))) ds

=

∫ ∞
y2

1

s+ 1

(
δ

3

11

(
e11(s−2)/3 − e11y2/3

))1/3
ds =∞ ∀δ > 0,

since the integral approaches +∞ as s → +∞. So, all the conditions of Theorem 1.2
hold, and therefore, each solution of (E2) is oscillatory or converges to zero.

Example 1.6. Consider the neutral differential equations

(E3)


(((

u(y)− e−yu(ς(y))
)′)1/3)′

+ y(u(y − 2))7/3 = 0 ,(((
u(2k)− e−2k

u(ς(2k))
)′)1/3)′

+ (y + 2)(u(2k − 2))7/3 = 0 .

Here µ = 1/3, a(y) = 1, ϑ(y) = y − 2, φk = k for k ∈ N and g(v) = v7/3. For α = 5/3,
we have β = 7/3 > α = 5/3 > µ = 1/3, and g(u)uα = u2/3 which is a increasing
functions. To check (20) we have∫ ∞

y0

[ 1

a(s)

[ ∫ ∞
s

c(ζ) dζ +
∑
φk≥s

c̃(φk)
]]1/µ

ds ≥
∫ ∞
y0

[ 1

a(s)

[ ∫ ∞
s

c(ζ) dζ
]]1/µ

ds

≥
∫ ∞
y2

[ ∫ ∞
s

ζ dζ
]3
ds =∞.

So, all the conditions of of Theorem 1.3 hold. Thus, each solution of (E3) is oscillatory
or converges to zero.

Open Problem

Based on this work and [19–21,26,29–32] an open problem that arises is to establish
necessary and sufficient conditions for the oscillation of the solutions of the second-
order nonlinear neutral differential equation (E1) for b > 0 and −∞ < b ≤ −1.
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