Data availability statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
References
Arulanandan, K., & Perry, E. B. (1983). Erosion in relation to filter design criteria in earth dams. Journal of Geotechnical Engineering, 109(5), 682-698. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:5(682)
ASTM. Committee D18 on Soil and Rock. (2006). Standard test method for identification and classification of dispersive clay soils by the pinhole test. ASTM International. https://doi.org/10.1520/D4647_D4647M-13
Benahmed, N., & Bonelli, S. (2012). Investigating concentrated leak erosion behaviour of cohesive soils by performing hole erosion tests. European Journal of Environmental and Civil Engineering, 16(1), 43-58. https://doi.org/10.1080/19648189.2012.667667
Benaissa, K., Angel, P. V. M., Dlolores, R. C. M., Philippe, D., Abdellatif, K., Mohammed, B., & Larbi, E. B. (2012). Predicting initial erosion during the hole erosion test by using turbulent flow CFD simulation. Applied Mathematical Modelling, 36(8), 3359–3370. https://doi.org/10.1016/j.apm.2011.04.036
Bernatek-Jakiel, A., & Poesen, J. (2018). Subsurface erosion by soil piping: significance and research needs. Earth-Science Reviews, 185, 1107-1128. https://doi.org/10.1016/j.earscirev.2018.08.006
Bonelli, S., & Brivois, O. (2008). The scaling law in the hole erosion test with a constant pressure drop. International Journal for Numerical and Analytical Methods in Geomechanics, 32(13), 1573-1595. https://doi.org/10.1002/nag.683
Bonelli, S., Brivois, O., Borghi, R., & Benahmed, N. (2006). On the modelling of piping erosion. Comptes Rendus Mécanique, 334(8-9), 555-559. https://doi.org/10.1016/j.crme.2006.07.003
Briaud, J. L., Ting, F. C. K., Chen, H. C., Cao, Y., Han, S. W., & Kwak, K. W. (2001). Erosion function apparatus for scour rate predictions. Journal of geotechnical and geoenvironmental engineering, 127(2), 105-113. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(105)
Chang, D., Zhang, L. M., Xu, Y., & Huang, R. (2011). Field testing of erodibility of two landslide dams triggered by the 12 May Wenchuan earthquake. Landslides, 8(3), 321-332. https://10.1007/s10346-011-0256-x
Chang, D. S., & Zhang, L. M. (2013). Extended internal stability criteria for soils under seepage. Soils and Foundations, 53(4), 569–583. https://doi.org/10.1016/j.sandf.2013.06.008
Cividini, A., & Gioda, G. (2004). Finite-element approach to the erosion and transport of fine particles in granular soils. International Journal of Geomechanics, 4(3), 191-198. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(191)
Cividini, A., Bonomi, S., Vignati, G. C., & Gioda, G. (2009). Seepage-induced erosion in granular soil and consequent settlements. International Journal of Geomechanics, 9(4), 187-194. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(187)
Dumberry, K., Duhaime, F., & Ethier, Y.A. (2017). Erosion monitoring during core overtopping using a laboratory model with digital image correlation and x-ray microcomputed tomography. Canadian Geotechnical Journal, cgj-2016-0684. https://doi.org/10.1139/cgj-2016-0684
Elkholy, M., Sharif, Y. A., Chaudhry, M. H., & Imran, J. (2015). Effect of soil composition on piping erosion of earthen levees. Journal of Hydraulic Research, 53(4), 478–487. http://dx.doi.org/10.1080/00221686.2015.1026951
Fattahi, S. M., Soroush, A., & Shourijeh, P. T. (2017). The Hole Erosion Test: A Comparison of Interpretation Methods. Geotechnical Testing Journal, 40(3), 494-505. https://doi.org/10.1520/GTJ20160069
Fell, R., Wan, C. F., Cyganiewicz, J., & Foster, M. (2003). Time for development of internal erosion and piping in embankment dams. Journal of geotechnical and geoenvironmental engineering, 129(4), 307-314. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(307)
Foster, M., Fell, R., & Spannagle, M. (2000). The statistics of embankment dam failures and accidents. Canadian Geotechnical Journal, 37(5), 1000-1024. https://doi.org/10.1139/t00-030
Foster, M., Fell, R., & Spannagle, M. (2002). A method for assessing the relative likelihood of failure of embankment dams by piping: reply. Canadian Geotechnical Journal, 39(2), 497-500. https://doi.org/10.1139/t01-109
Haghighi, I., Chevalier, C., Duc, M., Guédon, S., & Reiffsteck, P. (2013). Improvement of Hole Erosion Test and Results on Reference Soils. Journal of Geotechnical and Geoenvironmental Engineering, 139(2), 330–339. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000747
Hicher, P.-Y. (2013). Modelling the impact of particle removal on granular material behaviour. Géotechnique, 63(2), 118–128. http://dx.doi.org/10.1680/geot.11.P.020
Indiketiya, S., Jegatheesan, P., Rajeev, P., & Kuwano, R. (2019). The influence of pipe embedment material on sinkhole formation due to erosion around defective sewers. Transportation Geotechnics, 19, 110–125. https://doi.org/10.1016/j.trgeo.2019.03.001
Indraratna, B., Muttuvel, T., Khabbaz, H., & Armstrong, R. (2008). Predicting the erosion rate of chemically treated soil using a process simulation apparatus for internal crack erosion. Journal of Geotechnical and Geoenvironmental Engineering, 134(6), 837-844. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(837)
Indraratna, B., Muttuvel, T., & Khabbaz, H. (2009). Modelling the erosion rate of chemically stabilized soil incorporating tensile force – deformation characteristics. Canadian Geotechnical Journal, 46(1), 57–68. https://doi.org/10.1139/t08-103
Jiang, N.-J., & Soga, K. (2019). Erosional behavior of gravel-sand mixtures stabilized by microbially induced calcite precipitation (MICP). Soils and Foundations, 59, 699–709. https://doi.org/10.1016/j.sandf.2019.02.003
Khanal, A., Klavon, K. R., Fox, G. A., & Daly, E. R. (2016). Comparison of linear and nonlinear models for cohesive sediment detachment: rill erosion, hole erosion test, and streambank erosion studies. Journal of Hydraulic Engineering, 142(9), 04016026.1-04016026.12. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001147
Lachouette, D., Golay, F., & Bonelli, S. (2008). One-dimensional modeling of piping flow erosion. Comptes Rendus Mécanique, 336(9), 731-736. https://doi.org/10.1016/j.crme.2008.06.007
Marot, D., Sail, Y., & Alexis, A. (2010). Experimental Bench for Study of Internal Erosion in Cohesionless Soils. International Conference on Scour & Erosion. https://doi.org/10.1061/41147(392)40
Nadal-Romero, E., Verachtert, E., Maes, R., & Poesen, J. (2011). Quantitative assessment of the piping erosion susceptibility of loess-derived soil horizons using the pinhole test. Geomorphology, 135(1-2), 66-79. https://doi.org/10.1016/j.geomorph.2011.07.026
Nguyen, T. T., & Indraratna, B. (2020). The energy transformation of internal erosion based on fluid-particle coupling. Computers and Geotechnics, 121, 103475. https://doi.org/10.1016/j.compgeo.2020.103475
Nieber, J. L., Wilson, G. V., & Fox, G. A. (2019). Modeling Internal Erosion Processes in Soil Pipes: Capturing Geometry Dynamics. Vadose Zone Journal, 18(1). https://10.2136/vzj2018.09.0175
Onate, E., Celigueta, M. A., Idelsohn, S., Salazar, F., & Suarez, B. (2011). Possibilities of the particle finite element method for fluid—soil—structure interaction problems. Computational Mechanics, 48(3), 307-318. https://10.1007/s00466-011-0617-2
Ouyang, M., & Takahashi, A. (2016). Influence of initial fines content on fabric of soils subjected to internal erosion. Canadian Geotechnical Journal, 53(2), 299–313. https://doi.org/10.1139/cgj-2014-0344
Parron Vera, M. A., Yakhlef, F., Rubio Cintas, M. D., Castillo Lopez, O., Dubujet, P., Khamlichi, A., & Bezzazi, M. (2014). Analytical solution of coupled soil erosion and consolidation equations by asymptotic expansion approach. Applied Mathematical Modelling, 38(15-16), 4086–4098. http://dx.doi.org/10.1016/j.apm.2014.02.006
Pereyra, M. A., Fernández, D. S., Marcial, E. R., & Puchulu, M. E. (2019). Agricultural land degradation by piping erosion in Chaco Plain, Northwestern Argentina. CATENA, 104295. https://doi.org/10.1016/j.catena.2019.104295
Říha, J., & Jandora, J. (2015). Pressure conditions in the hole erosion test. Canadian Geotechnical Journal, 52(1), 114-119. https://doi.org/10.1139/cgj-2013-0474
Sang, J., Allen, P., Dunbar, J., & Hanson, G. (2015). Development of semi-physically based model to predict erosion rate of kaolinite clay under different moisture content. Canadian Geotechnical Journal, 52(5), 577–586. https://doi.org/10.1139/cgj-2012-0274
Sato, M., & Kuwano, R. (2018). Laboratory testing for evaluation of the influence of a small degree of internal erosion on deformation and stiffness. Soils and Foundations, 58(3), 547–562. https://doi.org/10.1016/j.sandf.2018.01.004
Sterpi, D. (2003). Effects of the Erosion and Transport of Fine Particles due to Seepage Flow. International Journal of Geomechanics, 3(1), 111–122. https://doi.org/10.1061/(asce)1532-3641(2003)3:1(111)
Tomlinson, S. S., & Vaid, Y. P. (2000). Seepage forces and confining pressure effects on piping erosion. Canadian Geotechnical Journal, 37(1), 1-13. https://doi.org/10.1139/t99-116
Wan, C. F., & Fell, R. (2004a). Investigation of rate of erosion of soils in embankment dams. Journal of geotechnical and geoenvironmental engineering, 130(4), 373-380. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(373)
Wan, C. F., & Fell, R. (2004b). Laboratory tests on the rate of piping erosion of soils in embankment dams. Geotechnical testing journal, 27(3), 295-303. https://doi.org/10.1520/GTJ11903
Wilson, G. V. (2009). Mechanisms of ephemeral gully erosion caused by constant flow through a continuous soil-pipe. Earth Surface Processes and Landforms, 34(14), 1858-1866. https://doi.org/10.1002/esp.1869
Wilson, G. V., & Fox, G. A. (2013). Pore-water pressures associated with clogging of soil pipes: Numerical analysis of laboratory experiments. Soil Science Society of America Journal, 77(4), 1168-1181. https://doi.org/10.2136/sssaj2012.0416
Wilson, G. V., Nieber, J. L., Sidle, R. C., & Fox, G. A. (2013). Internal Erosion during Soil Pipeflow: State of the Science for Experimental and Numerical Analysis. Transactions of the ASABE, 56(2), 465-478. https://10.13031/2013.42667
Wilson, G. V., Wells, R. R., Kuhnle, R. A., Fox, G. A., & Nieber, J. L. (2018). Sediment detachment and transport processes associated with internal erosion of soil pipes. Earth Surface Processes and Landforms, 43(1), 45-63. https://doi.org/10.1002/esp.4147
Xie, L., Liang, X., & Su, T.-C. (2018). Measurement of pressure in viewable hole erosion test. Canadian Geotechnical Journal, 1–8. http://dx.doi.org/10.1139/cgj-2017-0292
Yang, J., Yin, Z.-Y., Laouafa, F., & Hicher, P.-Y. (2020). Hydromechanical modeling of granular soils considering internal erosion. Canadian Geotechnical Journal, 57(2), 157–172. https://doi.org/10.1139/cgj-2018-0653
Zhang, D.-M., Du, W.-W., Peng, M.-Z., Feng, S.-J., & Li, Z.-L. (2020). Experimental and numerical study of internal erosion around submerged defective pipe. Tunnelling and Underground Space Technology, 97, 103256. https://doi.org/10.1016/j.tust.2019.103256