Data availability statement
The data that support the findings of this study are available on
request from the corresponding author. The data are not publicly
available due to privacy or ethical restrictions.
References
Arulanandan, K., & Perry, E. B. (1983). Erosion in relation to filter
design criteria in earth dams. Journal of Geotechnical
Engineering, 109(5), 682-698.
https://doi.org/10.1061/(ASCE)0733-9410(1983)109:5(682)
ASTM. Committee D18 on Soil and Rock. (2006). Standard test method for
identification and classification of dispersive clay soils by the
pinhole test. ASTM International.
https://doi.org/10.1520/D4647_D4647M-13
Benahmed, N., & Bonelli, S. (2012). Investigating concentrated leak
erosion behaviour of cohesive soils by performing hole erosion
tests. European Journal of Environmental and Civil Engineering, 16(1),
43-58. https://doi.org/10.1080/19648189.2012.667667
Benaissa, K., Angel, P. V. M., Dlolores, R. C. M., Philippe, D.,
Abdellatif, K., Mohammed, B., & Larbi, E. B. (2012). Predicting initial
erosion during the hole erosion test by using turbulent flow CFD
simulation. Applied Mathematical Modelling, 36(8), 3359–3370.
https://doi.org/10.1016/j.apm.2011.04.036
Bernatek-Jakiel, A., & Poesen, J. (2018). Subsurface erosion by soil
piping: significance and research needs. Earth-Science Reviews, 185,
1107-1128. https://doi.org/10.1016/j.earscirev.2018.08.006
Bonelli, S., & Brivois, O. (2008).
The scaling law in the hole erosion test with a constant pressure
drop. International Journal for Numerical and Analytical Methods in
Geomechanics, 32(13), 1573-1595. https://doi.org/10.1002/nag.683
Bonelli, S., Brivois, O., Borghi, R., & Benahmed, N. (2006). On the
modelling of piping erosion. Comptes Rendus Mécanique, 334(8-9),
555-559. https://doi.org/10.1016/j.crme.2006.07.003
Briaud, J. L., Ting, F. C. K., Chen, H. C., Cao, Y., Han, S. W., &
Kwak, K. W. (2001). Erosion function apparatus for scour rate
predictions. Journal of geotechnical and geoenvironmental
engineering, 127(2), 105-113.
https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(105)
Chang, D., Zhang, L. M., Xu, Y., & Huang, R. (2011). Field testing of
erodibility of two landslide dams triggered by the 12 May Wenchuan
earthquake. Landslides, 8(3), 321-332. https://10.1007/s10346-011-0256-x
Chang, D. S., & Zhang, L. M. (2013). Extended internal stability
criteria for soils under seepage. Soils and Foundations, 53(4),
569–583. https://doi.org/10.1016/j.sandf.2013.06.008
Cividini, A., & Gioda, G. (2004). Finite-element approach to the
erosion and transport of fine particles in granular soils. International
Journal of Geomechanics, 4(3), 191-198.
https://doi.org/10.1061/(ASCE)1532-3641(2004)4:3(191)
Cividini, A., Bonomi, S., Vignati, G. C., & Gioda, G. (2009).
Seepage-induced erosion in granular soil and consequent
settlements. International Journal of Geomechanics, 9(4), 187-194.
https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(187)
Dumberry, K., Duhaime, F., & Ethier, Y.A. (2017). Erosion monitoring
during core overtopping using a laboratory model with digital image
correlation and x-ray microcomputed tomography. Canadian Geotechnical
Journal, cgj-2016-0684. https://doi.org/10.1139/cgj-2016-0684
Elkholy, M., Sharif, Y. A., Chaudhry, M. H., & Imran, J. (2015). Effect
of soil composition on piping erosion of earthen levees. Journal of
Hydraulic Research, 53(4), 478–487.
http://dx.doi.org/10.1080/00221686.2015.1026951
Fattahi, S. M., Soroush, A., & Shourijeh, P. T. (2017). The Hole
Erosion Test: A Comparison of Interpretation Methods. Geotechnical
Testing Journal, 40(3), 494-505. https://doi.org/10.1520/GTJ20160069
Fell, R., Wan, C. F., Cyganiewicz, J., & Foster, M. (2003). Time for
development of internal erosion and piping in embankment dams. Journal
of geotechnical and geoenvironmental engineering, 129(4), 307-314.
https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(307)
Foster, M., Fell, R., & Spannagle, M. (2000). The statistics of
embankment dam failures and accidents. Canadian Geotechnical
Journal, 37(5), 1000-1024. https://doi.org/10.1139/t00-030
Foster, M., Fell, R., & Spannagle, M. (2002). A method for assessing
the relative likelihood of failure of embankment dams by piping:
reply. Canadian Geotechnical Journal, 39(2),
497-500. https://doi.org/10.1139/t01-109
Haghighi, I., Chevalier, C., Duc, M., Guédon, S., & Reiffsteck, P.
(2013). Improvement of Hole Erosion Test and Results on Reference Soils.
Journal of Geotechnical and Geoenvironmental Engineering, 139(2),
330–339. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000747
Hicher, P.-Y. (2013). Modelling the impact of particle removal on
granular material behaviour. Géotechnique, 63(2), 118–128.
http://dx.doi.org/10.1680/geot.11.P.020
Indiketiya, S., Jegatheesan, P., Rajeev, P., & Kuwano, R. (2019). The
influence of pipe embedment material on sinkhole formation due to
erosion around defective sewers. Transportation Geotechnics, 19,
110–125. https://doi.org/10.1016/j.trgeo.2019.03.001
Indraratna, B., Muttuvel, T., Khabbaz, H., & Armstrong, R. (2008).
Predicting the erosion rate of chemically treated soil using a process
simulation apparatus for internal crack erosion. Journal of Geotechnical
and Geoenvironmental Engineering, 134(6), 837-844.
https://doi.org/10.1061/(ASCE)1090-0241(2008)134:6(837)
Indraratna, B., Muttuvel, T., & Khabbaz, H. (2009). Modelling the
erosion rate of chemically stabilized soil incorporating tensile force
– deformation characteristics. Canadian Geotechnical Journal, 46(1),
57–68. https://doi.org/10.1139/t08-103
Jiang, N.-J., & Soga, K. (2019). Erosional behavior of gravel-sand
mixtures stabilized by microbially induced calcite precipitation (MICP).
Soils and Foundations, 59, 699–709.
https://doi.org/10.1016/j.sandf.2019.02.003
Khanal, A., Klavon, K. R., Fox, G. A., & Daly, E. R. (2016). Comparison
of linear and nonlinear models for cohesive sediment detachment: rill
erosion, hole erosion test, and streambank erosion studies. Journal of
Hydraulic Engineering, 142(9), 04016026.1-04016026.12.
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001147
Lachouette, D., Golay, F., & Bonelli, S. (2008). One-dimensional
modeling of piping flow erosion. Comptes Rendus Mécanique, 336(9),
731-736. https://doi.org/10.1016/j.crme.2008.06.007
Marot, D., Sail, Y., & Alexis, A. (2010). Experimental Bench for Study
of Internal Erosion in Cohesionless Soils. International Conference on
Scour & Erosion. https://doi.org/10.1061/41147(392)40
Nadal-Romero, E., Verachtert, E., Maes, R., & Poesen, J. (2011).
Quantitative assessment of the piping erosion susceptibility of
loess-derived soil horizons using the pinhole
test. Geomorphology, 135(1-2), 66-79.
https://doi.org/10.1016/j.geomorph.2011.07.026
Nguyen, T. T., & Indraratna, B. (2020). The energy transformation of
internal erosion based on fluid-particle coupling. Computers and
Geotechnics, 121, 103475.
https://doi.org/10.1016/j.compgeo.2020.103475
Nieber,
J. L., Wilson, G. V., & Fox, G. A. (2019). Modeling Internal Erosion
Processes in Soil Pipes: Capturing Geometry Dynamics. Vadose Zone
Journal, 18(1). https://10.2136/vzj2018.09.0175
Onate, E., Celigueta, M. A., Idelsohn, S., Salazar, F., & Suarez, B.
(2011). Possibilities of the particle finite element method for
fluid—soil—structure interaction problems. Computational
Mechanics, 48(3), 307-318. https://10.1007/s00466-011-0617-2
Ouyang, M., & Takahashi, A. (2016). Influence of initial fines content
on fabric of soils subjected to internal erosion. Canadian Geotechnical
Journal, 53(2), 299–313. https://doi.org/10.1139/cgj-2014-0344
Parron Vera, M. A., Yakhlef, F., Rubio Cintas, M. D., Castillo Lopez,
O., Dubujet, P., Khamlichi, A., & Bezzazi, M. (2014). Analytical
solution of coupled soil erosion and consolidation equations by
asymptotic expansion approach. Applied Mathematical Modelling,
38(15-16), 4086–4098. http://dx.doi.org/10.1016/j.apm.2014.02.006
Pereyra, M. A., Fernández, D. S., Marcial, E. R., & Puchulu, M. E.
(2019). Agricultural land degradation by piping erosion in Chaco Plain,
Northwestern Argentina. CATENA, 104295.
https://doi.org/10.1016/j.catena.2019.104295
Říha, J., & Jandora, J. (2015). Pressure conditions in the hole erosion
test. Canadian Geotechnical Journal, 52(1), 114-119.
https://doi.org/10.1139/cgj-2013-0474
Sang, J., Allen, P., Dunbar, J., & Hanson, G. (2015). Development of
semi-physically based model to predict erosion rate of kaolinite clay
under different moisture content. Canadian Geotechnical Journal, 52(5),
577–586. https://doi.org/10.1139/cgj-2012-0274
Sato, M., & Kuwano, R. (2018). Laboratory testing for evaluation of the
influence of a small degree of internal erosion on deformation and
stiffness. Soils and Foundations, 58(3), 547–562.
https://doi.org/10.1016/j.sandf.2018.01.004
Sterpi, D. (2003). Effects of the Erosion and Transport of Fine
Particles due to Seepage Flow. International Journal of Geomechanics,
3(1), 111–122. https://doi.org/10.1061/(asce)1532-3641(2003)3:1(111)
Tomlinson, S. S., & Vaid, Y. P. (2000). Seepage forces and confining
pressure effects on piping erosion. Canadian Geotechnical
Journal, 37(1), 1-13. https://doi.org/10.1139/t99-116
Wan, C. F., & Fell, R. (2004a). Investigation of rate of erosion of
soils in embankment dams. Journal of geotechnical and geoenvironmental
engineering, 130(4), 373-380.
https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(373)
Wan, C. F., & Fell, R. (2004b). Laboratory tests on the rate of piping
erosion of soils in embankment dams. Geotechnical testing
journal, 27(3), 295-303. https://doi.org/10.1520/GTJ11903
Wilson, G. V. (2009). Mechanisms of ephemeral gully erosion caused by
constant flow through a continuous soil-pipe. Earth Surface Processes
and Landforms, 34(14), 1858-1866. https://doi.org/10.1002/esp.1869
Wilson, G. V., & Fox, G. A. (2013). Pore-water pressures associated
with clogging of soil pipes: Numerical analysis of laboratory
experiments. Soil Science Society of America Journal, 77(4), 1168-1181.
https://doi.org/10.2136/sssaj2012.0416
Wilson, G. V., Nieber, J. L., Sidle, R. C., & Fox, G. A. (2013).
Internal Erosion during Soil Pipeflow: State of the Science for
Experimental and Numerical Analysis. Transactions of the ASABE, 56(2),
465-478. https://10.13031/2013.42667
Wilson, G. V., Wells, R. R., Kuhnle, R. A., Fox, G. A., & Nieber, J. L.
(2018). Sediment detachment and transport processes associated with
internal erosion of soil pipes. Earth Surface Processes and Landforms,
43(1), 45-63. https://doi.org/10.1002/esp.4147
Xie, L., Liang, X., & Su, T.-C. (2018). Measurement of pressure in
viewable hole erosion test. Canadian Geotechnical Journal,
1–8. http://dx.doi.org/10.1139/cgj-2017-0292
Yang, J., Yin, Z.-Y., Laouafa, F., & Hicher, P.-Y. (2020).
Hydromechanical modeling of granular soils considering internal
erosion. Canadian Geotechnical Journal, 57(2), 157–172.
https://doi.org/10.1139/cgj-2018-0653
Zhang, D.-M., Du, W.-W., Peng, M.-Z., Feng, S.-J., & Li, Z.-L.
(2020). Experimental and numerical study of internal erosion around
submerged defective pipe. Tunnelling and Underground Space Technology,
97, 103256. https://doi.org/10.1016/j.tust.2019.103256