References
Bautista-Trujillo, G. U., Gutiérrez-Miceli, F. A., Mandujano-García, L., Oliva-Llaven, M. A., Ibarra-Martínez, C., Mendoza-Nazar, P., … Gutiérrez-Jiménez, J. (2020). Captive Green Iguana Carries DiarrheagenicEscherichia coli Pathotypes. Frontiers in Veterinary Science, 7(February), 1–9. https://doi.org/10.3389/fvets.2020.00099
Bélanger, L., Garenaux, A., Harel, J., Boulianne, M., Nadeau, E., & Dozois, C. M. (2011). Escherichia colifrom animal reservoirs as a potential source of human extraintestinal pathogenic E. coli.FEMS Immunology and Medical Microbiology, 62(1), 1–10. https://doi.org/10.1111/j.1574-695X.2011.00797.x
Borges, C. A., Beraldo, L. G., Maluta, R. P., Cardozo, M. V., Barboza, K. B., Guastalli, E. A. L., … Ávila, F. A. (2017). Multidrug-resistant pathogenic Escherichia coli isolated from wild birds in a veterinary hospital. Avian Pathology, 46(1), 76–83. https://doi.org/10.1080/03079457.2016.1209298
CLSI (2015). Clinical and Laboratory Standard. M100-S25 Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Fifth informational supplement.
Chapman, T. A., Wu, X. Y., Barchia, I., Bettelheim, K. A., Driesen, S., Trott, D., … Chin, J. J. C. (2006). Comparison of virulence gene profiles of Escherichia coli strains isolated from healthy and diarrheic swine. Applied and Environmental Microbiology, 72(7), 4782–4795. https://doi.org/10.1128/AEM.02885-05
Charuaud, L., Jardé, E., Jaffrézic, A., Liotaud, M., Goyat, Q., Mercier, F., & Le Bot, B. (2019). Veterinary pharmaceutical residues in water resources and tap water in an intensive husbandry area in France. Science of the Total Environment, 664(May), 605–615. https://doi.org/10.1016/j.scitotenv.2019.01.303
Cormier, A., Zhang, P. L. C., Chalmers, G., Weese, J. S., Deckert, A., Mulvey, M., … Boerlin, P. (2019). Diversity of CTX-M-positiveEscherichia coli recovered from animals in Canada. Veterinary Microbiology, 231(February), 71–75. https://doi.org/10.1016/j.vetmic.2019.02.031
Dadi, B. R., Abebe, T., Zhang, L., Mihret, A., Abebe, W., & Amogne, W. (2020). Distribution of virulence genes and phylogenetics of uropathogenic Escherichia coli among urinary tract infection patients in Addis Ababa, Ethiopia. BMC Infectious Diseases, 20(1), 1–12. https://doi.org/10.1186/s12879-020-4844-z
de Alcântara Rodrigues, I., Ferrari, R. G., Panzenhagen, P. H. N., Mano, S. B., & Conte-Junior, C. A. (2020). Antimicrobial resistance genes in bacteria from animal-based foods. In Advances in Applied Microbiology (1st ed.). https://doi.org/10.1016/bs.aambs.2020.03.001
Dolejska, M., & Literak, I. (2019). Wildlife is overlooked in the epidemiology of medically important antibiotic-resistant bacteria. Antimicrobial Agents and Chemotherapy, 63(8). https://doi.org/10.1128/AAC.01167-19
Dubreuil, J. D., Isaacson, R. E., & Schifferli, D. M. (2016). Animal enterotoxigenic Escherichia coli . EcoSal Plus, 7(1), 1-80. https://doi.org/10.1128/ecosalplus.ESP-0006-2016
ECDC (2019). European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe 2018.
Ewers, C., Bethe, A., Semmler, T., Guenther, S., & Wieler, L. H. (2012). Extended-spectrum β-lactamase-producing and AmpC-producingEscherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clinical Microbiology and Infection, 18(7), 646–655. https://doi.org/10.1111/j.1469-0691.2012.03850.x
Fernandes, M. R., Sellera, F. P., Cunha, M. P. V., Lopes, R., Cerdeira, L., & Lincopan, N. (2020). Emergence of CTX-M-27-producingEscherichia coli of ST131 and clade C1-M27 in an impacted ecosystem with international maritime traffic in South America. The Journal of Antimicrobial Chemotherapy, 75(6), 1647–1649. https://doi.org/10.1093/jac/dkaa069
Hanna, N., Sun, P., Sun, Q., Li, X., Yang, X., Ji, X., … Stålsby Lundborg, C. (2018). Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: Its potential for resistance development and ecological and human risk. Environment International, 114(March), 131–142. https://doi.org/10.1016/j.envint.2018.02.003
Hassan, R., Tantawy, M., Gouda, N. A., Elzayat, M. G., Gabra, S., Nabih, A., … Sayed, A. A. (2020). Genotypic characterization of multiple drug resistant Escherichia coli isolates from a pediatric cancer hospital in Egypt. Scientific Reports, 10(1), 1–10. https://doi.org/10.1038/s41598-020-61159-z
Hassell, J. M., Ward, M. J., Muloi, D., Bettridge, J. M., Robinson, T. P., Kariuki, S., … Fèvre, E. M. (2019). Clinically relevant antimicrobial resistance at the wildlife–livestock–human interface in Nairobi: an epidemiological study. The Lancet Planetary Health, 3(6), e259–e269. https://doi.org/10.1016/S2542-5196(19)30083-X
Himsworth, C. G., Zabek, E., Desruisseau, A., Jane Parmley, E., Reid-Smith, R., Leslie, M., … Cox, W. (2016). Avian pathogenicity genes and antibiotic resistance in Escherichia coli isolates from wild norway rats (Rattus norvegicus) in British Columbia, Canada. Journal of Wildlife Diseases, 52(2), 418–421. https://doi.org/10.7589/2015-09-238
Jalal, M. S., Islam, M. Z., Dutta, A., Dhar, P. K., Das, A., Hasan, M. M., … Ahad, A. (2019). Antibiotic resistant zoonotic bacteria in Irrawaddy squirrel (Callosciurus pygerythrus ). Veterinary Medicine and Science, 5(2), 260–268. https://doi.org/10.1002/vms3.138
Johnson, J. R., Johnston, B., Clabots, C. R., Kuskowski, M. A., Roberts, E., & DebRoy, C. (2008). Virulence genotypes and phylogenetic background of Escherichia coli serogroup O6 isolates from humans, dogs, and cats. Journal of Clinical Microbiology, 46(2), 417–422. https://doi.org/10.1128/JCM.00674-07
Johnson, J. R., Miller, S., Johnston, B., Clabots, C., & DebRoy, C. (2009). Sharing of Escherichia coli sequence type ST131 and other multidrug-resistant and urovirulent E. coli strains among dogs and cats within a household. Journal of Clinical Microbiology, 47(11), 3721–3725. https://doi.org/10.1128/JCM.01581-09
Johnson, J. R., Murray, A. C., Gajewski, A., Sullivan, M., Snippes, P., Kuskowski, M. A., & Smith, K. E. (2003). Isolation and molecular characterization of nalidixic acid-resistant extraintestinal pathogenicEscherichia coli from retail chicken products. Antimicrobial Agents and Chemotherapy, 47(7), 2161–2168. https://doi.org/10.1128/AAC.47.7.2161-2168.2003
Katouli, M. (2010). Population structure of gut Escherichia coliand its role in development of extra-intestinal infections. Iranian Journal of Microbiology, 2(2), 59–72.
Khairy, R. M., Mohamed, E. S., Ghany, H. M. A., & Abdelrahim, S. S. (2019). Phylogenic classification and virulence genes profiles of uropathogenic E. coli and diarrhegenic E. coli strains isolated from community acquired infections. PLoS ONE, 14(9), 1–10. https://doi.org/10.1371/journal.pone.0222441
Kuhnert, P., Boerlin, P., & Frey, J. (2000). Target genes for virulence assessment of Escherichia coli isolates from water, food and the environment. FEMS Microbiology Reviews, 24(1), 107–117. https://doi.org/10.1016/S0168-6445(99)00034-0
Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., … Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x
Maluta, R. P., Logue, C. M., Casas, M. R. T., Meng, T., Guastalli, E. A. L., Rojas, T. C. G., … Silveira, W. D. Da. (2014). Overlapped sequence types (STs) and serogroups of avian pathogenic (APEC) and human extra-intestinal pathogenic (ExPEC) Escherichia coli isolated in Brazil. PLoS ONE, 9(8). https://doi.org/10.1371/journal.pone.0105016
Milton, A. A. P., Agarwal, R. K., Priya, G. B., Aravind, M., Athira, C. K., Rose, L., … Kumar, A. (2019). Captive wildlife from India as carriers of shiga toxin-producing, enteropathogenic and enterotoxigenicEscherichia coli. Journal of Veterinary Medical Science, 81(2), 321–327. https://doi.org/10.1292/jvms.18-0488
Nagy, B., & Fekete, P. Z. (2005). Enterotoxigenic Escherichia coli in veterinary medicine. International Journal of Medical Microbiology, 295(6–7), 443–454. https://doi.org/10.1016/j.ijmm.2005.07.003
Nhung, N. T., Cuong, N. V., Campbell, J., Hoa, N. T., Bryant, J. E., Truc, V. N. T., … Carrique-Mas, J. (2015). High levels of antimicrobial resistance among Escherichia coli isolates from livestock farms and synanthropic rats and shrews in the mekong delta of Vietnam. Applied and Environmental Microbiology, 81(3), 812–820. https://doi.org/10.1128/AEM.03366-14
Nkogwe, C., Raletobana, J., Stewart-Johnson, A., Suepaul, S., & Adesiyun, A. (2011). Frequency of detection of Escherichia coli, Salmonella spp., and Campylobacter spp. in the faeces of wild rats (Rattus spp.) in Trinidad and Tobago. Veterinary Medicine International, 2011. https://doi.org/10.4061/2011/686923
Nowak, K., Fahr, J., Weber, N., Lübke-Becker, A., Semmler, T., Weiss, S., … Ewers, C. (2017). Highly diverse and antimicrobial susceptible Escherichia coli display a naïve bacterial population in fruit bats from the Republic of Congo. PLoS ONE, 12(7), 1–18. https://doi.org/10.1371/journal.pone.0178146
Nowakiewicz, A., Zięba, P., Gnat, S., Trościańczyk, A., Osińska, M., Łagowski, D., … Puzio, I. (2020). Bats as a reservoir of resistant Escherichia coli : A methodical view. Can we fully estimate the scale of resistance in the reservoirs of free-living animals? Research in Veterinary Science, 128(September 2019), 49–58. https://doi.org/10.1016/j.rvsc.2019.10.017
Nowakiewicz, A., Zieba, P., Ziółkowska, G., Gnat, S., Muszyńska, M., Tomczuk, K., … Trościańczyk, A. (2016). Free-living species of carnivorous mammals in Poland: Red fox, beech marten, and raccoon as a potential reservoir of Salmonella, Yersinia, Listeria spp. and coagulase-positive Staphylococcus . PLoS ONE, 11(5), 1–16. https://doi.org/10.1371/journal.pone.0155533
Osińska, M., Nowakiewicz, A., Zięba, P., Gnat, S., Łagowski, D., & Trościańczyk, A. (2020). Wildlife Carnivorous mammals as a specific mirror of environmental contamination with multidrug-resistantEscherichia coli strains in Poland. Microbial Drug Resistance, 00(00). https://doi.org/10.1089/mdr.2019.0480
Polish Veterinary Inspection (2015). Animal Health-Regulatory Commitee-presentations: Rabies-Poland, 09-10 Sept. Available at http://ec.europa.eu/food/animals/health/regulatory_committee/presentations_en.htm.
Rice, D. H., Sheng, H. Q., Wynia, S. A., & Hovde, C. J. (2003). Rectoanal mucosal swab culture is more sensitive than fecal culture and distinguishes Escherichia coli O157:H7-colonized cattle and those transiently shedding the same organism. Journal of Clinical Microbiology, 41(11), 4924–4929. https://doi.org/10.1128/JCM.41.11.4924-4929.2003
Sanches, L. A., Gomes, M. da S., Teixeira, R. H. F., Cunha, M. P. V., Oliveira, M. G. X. de, Vieira, M. A. M., … Knobl, T. (2017). Captive wild birds as reservoirs of enteropathogenic E. coli (EPEC) and Shiga-toxin producing E. coli (STEC). Brazilian Journal of Microbiology, 48(4), 760–763. https://doi.org/10.1016/j.bjm.2017.03.003
Sarowska, J., Futoma-Koloch, B., Jama-Kmiecik, A., Frej-Madrzak, M., Ksiazczyk, M., Bugla-Ploskonska, G., & Choroszy-Krol, I. (2019). Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathogens, 11(1), 1–16. https://doi.org/10.1186/s13099-019-0290-0
Smith, S., Wang, J., Fanning, S., & McMahon, B. J. (2014). Antimicrobial resistant bacteria in wild mammals and birds: A coincidence or cause for concern? Irish Veterinary Journal, 67(1), 2–4. https://doi.org/10.1186/2046-0481-67-8
Tan, C., Xu, Z., Zheng, H., Liu, W., Tang, X., Shou, J., … Chen, H. (2011). Genome sequence of a porcine extraintestinal pathogenicEscherichia coli strain. Journal of Bacteriology, 193(18), 5038. https://doi.org/10.1128/JB.05551-11
Tavakoli, M., & Pourtaghi, H. (2017). Molecular detection of virulence genes and multi-drug resistance patterns in Escherichia coli(STEC) in clinical bovine mastitis: Alborz province, Iran. Iranian Journal of Veterinary Research, 18(3), 208–211. https://doi.org/10.22099/ijvr.2017.4224
Van Elsas, J. D., Semenov, A. V., Costa, R., & Trevors, J. T. (2011). Survival of Escherichia coli in the environment: Fundamental and public health aspects. ISME Journal, 5(2), 173–183. https://doi.org/10.1038/ismej.2010.80
Velhner, M., Suvajdžić, L., Todorović, D., Milanov, D., & Kozoderović, G. (2018). Avian pathogenic Escherichia coli : diagnosis, virulence and prevention. Archives of Veterinary Medicine, 11(2), 21–31. Retrieved from https://niv.ns.ac.rs/wp-content/uploads/Arhiv/AVM-V11-BR2-3.pdf
Wasiński, B. (2019). Extra-intestinal pathogenic Escherichia coli– threat connected with food-borne infections. Annals of Agricultural and Environmental Medicine, 26(4), 532–537. https://doi.org/10.26444/aaem/111724
Wasyl, D., Zając, M., Lalak, A., Skaryńska, M., Samcik, I., Kwit, R., … Szulowski, K. (2018). Antimicrobial resistance inEscherichia coli isolated from wild animals in Poland. Microbial Drug Resistance, 24(6), 807–815. https://doi.org/10.1089/mdr.2017.0148
Legends to Tables and Figures
Table 1. Characterization of resistant E. coli strains
Profiles were created from the first letters of the names of antimicrobials to which given strains are resistant: A- ampicillin, C-ciprofloxacin, N- nalidixic acid, Nf – nitrofurantoin, S- streptomycin, G- gentamycin, T-tetracyclin, Sx- sulfamethoxazole, Ch- chloramphenicol, K-kanamycin
Table 2. Distribution of resistance genes in E. colistrains
AMP- ampicillin, CHL-chloramphenicol, CIP –ciprofloxacin, GEN- gentamycin, KAN-kanamycin, NAL-nalidixic acid, NFT – nitrofurantoin, STR-streptomycin, SUL-sulfamethoxazole, TET-tetracycline, CTX-cefotaxime
N- Number of resistant isolates
Fig. 1 Differences in the percentage of phenotypic resistance depending on the host species
* represent the statistical highest resistance to a given drug among the tested species (p < 0.05)
Table S1. Primers used in this study
Table S2. Distribution of all cultured E. coli isolates (n=80)
Growth on plate with: KAN- resistant to kanamycin, TET- resistant to tetracycline, CHL- resistant to chloramphenicol
Symbol and number of positive E.coliresistant animal (one asterisk indicates animals in which two isolates with the same resistance profile have been demonstrated using the DDM method, bold indicate animal in which identical ADSRRS profile have been demonstrated using fingerprinting method)
Table S3. Drug susceptibility of E.coli strains
AMP- ampicillin, CHL-chloramphenicol, CIP –ciprofloxacin, GEN- gentamycin, KAN-kanamycin, NAL-nalidixic acid, NFT – nitrofurantoin, STR-streptomycin, SUL-sulfamethoxazole, TET-tetracycline, CTX-cefotaxime
Fig. S1 ADSRRS-fingerprinting profiles of E. colistrains