References
1. Cinausero M, Aprile G, Ermacora P, Basile D, Vitale MG, Fanotto V, Parisi G, Calvetti L, Sonis ST. New frontiers in the pathobiology and treatment of cancer regimen-related mucosal injury. Front Pharmacol , 2017 8: 354.
2. Sonis ST. The pathobiology of mucositis. Nat Rev Cancer , 2004 4: 277–284.
3. Pico J, Avila‐Garavito A, Naccache P. Mucositis: Its Occurrence, Consequences, and Treatment in the Oncology Setting. Oncologist , 1998 3: 446–451.
4. Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, Bekele BN, Raber-Durlacher J, Donnelly JP, Rubenstein EB. Perspectives on cancer therapy-induced mucosal injury. Cancer , 2004 100: 1995–2025.
5. Avritscher EBC, Cooksley CD, Elting LS. Scope and epidemiology of cancer therapy-induced oral and gastrointestinal mucositis. Semin Oncol Nurs , 2004 20: 3–10.
6. Pludowski P, Holick MF, Pilz S, Wagner CL, Hollis BW, Grant WB, Shoenfeld Y, Lerchbaum E, Llewellyn DJ, Kienreich K, Soni M. Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality-A review of recent evidence. Autoimmun Rev , 2013 12: 976–989.
7. Peregrina K, Houston M, Daroqui C, Dhima E, Sellers RS, Augenlicht LH. Vitamin D is a determinant of mouse intestinal Lgr5 stem cell functions. Carcinogenesis , 2015 36: 25–31.
8. Liu W, Chen Y, Golan MA, Annunziata ML, Du J, Dougherty U, Kong J, Musch M, Huang Y, Pekow J, Zheng C, Bissonnette M, Hanauer SB, Li YC. Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis. J Clin Invest , 2013 123: 3983–3996.
9. Oosterom N, Dirks NF, Heil SG, de Jonge R, Tissing WJE, Pieters R, van den Heuvel-Eibrink MM, Heijboer AC, Pluijm SMF. A decrease in vitamin D levels is associated with methotrexate-induced oral mucositis in children with acute lymphoblastic leukemia. Support Care Cancer , 2019 27: 183–190.
10. Fink M. Vitamin D Deficiency Is a Cofactor of Chemotherapy-Induced Mucocutaneous Toxicity and Dysgeusia [Internet]. J Clin Oncol , 2011 29: e81–e82. [cited 2020 May 8] Available from: http://ascopubs.org/doi/10.1200/JCO.2010.31.5317
11. Lin YD, Arora J, Diehl K, Bora SA, Cantorna MT. Vitamin D is required for ILC3 derived IL-22 and protection from Citrobacter rodentium infection. Front Immunol , 2019 10.
12. He L, Zhou M, Li YC. Vitamin D/Vitamin D Receptor Signaling Is Required for Normal Development and Function of Group 3 Innate Lymphoid Cells in the Gut. iScience , 2019 17: 119–131.
13. Zenewicz LA. IL-22: There Is a Gap in Our Knowledge. ImmunoHorizons , 2018 2: 198–207.
14. Zhang X, Liu S, Wang Y, Hu H, Li L, Wu Y, Cao D, Cai Y, Zhang J, Zhang X. Interleukin‑22 regulates the homeostasis of the intestinal epithelium during inflammation. Int J Mol Med , 2019 43: 1657–1668.
15. Eken A, Singh AK, Oukka M. Interleukin 23 in Crohn’s disease. Inflamm Bowel Dis , 2014 20: 587-595.
16. Aparicio-Domingo P, Romera-Hernandez M, Karrich JJ, Cornelissen F, Papazian N, Lindenbergh-Kortleve DJ, Butler JA, Boon L, Coles MC, Samsom JN, Cupedo T. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J Exp Med , 2015 212: 1783–1791.
17. Eken A. IL-15 negatively regulates curdlan-induced IL-23 production by human monocyte-derived dendritic cells and subsequent Th17 response. North Clin Istanbul , 2019.
18. Eken A, Yetkin MF, Vural A, Okus FZ, Erdem S, Azizoglu ZB, Haliloglu Y, Cakir M, Turkoglu EM, Kilic O, Kara I, Altuntaş HD, Oukka M, Kutuk MS, Mirza M, Canatan H. Fingolimod alters tissue distribution and cytokine production of human and murine innate lymphoid cells. Front Immunol , 2019 10.
19. Eken A, Singh AK, Treuting PM, Oukka M. IL-23R+ innate lymphoid cells induce colitis via interleukin-22-dependent mechanism. Mucosal Immunol , 2014 7: 143–154.
20. Konya V, Czarnewski P, Forkel M, Rao A, Kokkinou E, Villablanca EJ, Almer S, Lindforss U, Friberg D, Höög C, Bergman P, Mjösberg J. Vitamin D downregulates the IL-23 receptor pathway in human mucosal group 3 innate lymphoid cells. J Allergy Clin Immunol , 2018 141: 279–292.
21. Nejatinamini S, Debenham BJ, Clugston RD, Mawani A, Parliament M, Wismer W V., Mazurak VC. Poor vitamin status is associated with skeletal muscle loss and mucositis in head and neck cancer patients. Nutrients , 2018 10.
22. Wallace G, Jodele S, Myers KC, Dandoy CE, El-Bietar J, Nelson A, Teusink-Cross A, Khandelwal P, Taggart C, Gordon CM, Davies SM, Howell JC. Single Ultra-High-Dose Cholecalciferol to Prevent Vitamin D Deficiency in Pediatric Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant , 2018 24: 1856–1860.
23. Anand A, Singh S, Sonkar AA, Husain N, Singh KR, Singh S, Kushwaha JK. Expression of Vitamin D receptor and Vitamin D status in patients with oral neoplasms and effect of Vitamin D supplementation on quality of life in advanced cancer treatment. Wspolczesna Onkol , 2017 21: 145–151.
24. Hamidieh AA, Sherafatmand M, Mansouri A, Hadjibabaie M, Ashouri A, Jahangard-Rafsanjani Z, Gholami K, Javadi MR, Ghavamzadeh A, Radfar M. Calcitriol for oral mucositis prevention in patients with fanconi anemia undergoing hematopoietic sct: A double-blind, randomized, placebo-controlled trial. Am J Ther , 2016 23: e1700–e1708.
25. Raoufinejad K, Shamshiri AR, Pezeshki S, Chahardouli B, Hadjibabaie M, Jahangard-Rafsanjani Z, Gholami K, Rajabi M, Vaezi M. Oral calcitriol in hematopoietic recovery and survival after autologous stem cell transplantation: a randomized clinical trial. DARU, J Pharm Sci , 2019 27: 709–720.
26. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA. Innate and Adaptive Interleukin-22 Protects Mice from Inflammatory Bowel Disease. Immunity , 2008 29: 947–957.
27. Qiu J, Guo X, Chen Z ming E, He L, Sonnenberg GF, Artis D, Fu YX, Zhou L. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity , 2013 39: 386–399.
28. Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, Ley R, Wakeland EK, Hooper L V. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science (80- ) , 2011 334: 255–258.