References
Aach, J., Mali, P., & Church, G. M. (2014). CasFinder: Flexible algorithm for identifying specific Cas9 targets in genomes. bioRxiv , 005074. doi:10.1101/005074
Bouabe, H., Fässler, R., & Heesemann, J. (2008). Improvement of reporter activity by IRES-mediated polycistronic reporter system. Nucleic acids research, 36 (5), e28-e28. doi:10.1093/nar/gkm1119
Coates, C. J., Kaminski, J. M., Summers, J. B., Segal, D. J., Miller, A. D., & Kolb, A. F. (2005). Site-directed genome modification: derivatives of DNA-modifying enzymes as targeting tools. Trends in Biotechnology, 23 (8), 407-419. doi:https://doi.org/10.1016/j.tibtech.2005.06.009
Crawford, Y., Zhou, M., Hu, Z., Joly, J., Snedecor, B., Shen, A., & Gao, A. (2013). Fast identification of reliable hosts for targeted cell line development from a limited-genome screening using combined φC31 integrase and CRE-Lox technologies.Biotechnol Prog, 29 (5), 1307-1315. doi:10.1002/btpr.1783
Donnelly, M. L. L., Hughes, L. E., Luke, G., Mendoza, H., Ten Dam, E., Gani, D., & Ryan, M. D. (2001). The ’cleavage’ activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring ’2A-like’ sequences. J Gen Virol, 82 (Pt 5), 1027-1041. doi:10.1099/0022-1317-82-5-1027
Donnelly, M. L. L., Luke, G., Mehrotra, A., Li, X., Hughes, L. E., Gani, D., & Ryan, M. D. (2001). Analysis of the aphthovirus 2A/2B polyprotein ’cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ’skip’. J Gen Virol, 82 (Pt 5), 1013-1025. doi:10.1099/0022-1317-82-5-1013
Du, Z. W., Hu, B. Y., Ayala, M., Sauer, B., & Zhang, S. C. (2009). Cre recombination-mediated cassette exchange for building versatile transgenic human embryonic stem cells lines. Stem Cells, 27 (5), 1032-1041. doi:10.1002/stem.38
Gaidukov, L., Wroblewska, L., Teague, B., Nelson, T., Zhang, X., Liu, Y., . . . Weiss, R. (2018). A multi-landing pad DNA integration platform for mammalian cell engineering. Nucleic acids research, 46 (8), 4072-4086. doi:10.1093/nar/gky216
Geier, M., Fauland, P., Vogl, T., & Glieder, A. (2015). Compact multi-enzyme pathways in P. pastoris.Chem Commun (Camb), 51 (9), 1643-1646. doi:10.1039/c4cc08502g
Gidoni, D., Srivastava, V., & Carmi, N. (2008). Site-specific excisional recombination strategies for elimination of undesirable transgenes from crop plants. In Vitro Cellular & Developmental Biology - Plant, 44 (6), 457-467. doi:10.1007/s11627-008-9140-3
Hamaker, N. K., & Lee, K. H. (2018). Site-specific Integration Ushers in a New Era of Precise CHO Cell Line Engineering. Current opinion in chemical engineering, 22 , 152-160. doi:10.1016/j.coche.2018.09.011
Hamaker, N. K., & Lee, K. H. (2018). Site-specific Integration Ushers in a New Era of Precise CHO Cell Line Engineering. Current opinion in chemical engineering, 22 , 152-160. doi:10.1016/j.coche.2018.09.011
Kesik-Brodacka, M. (2018). Progress in biopharmaceutical development. Biotechnology and applied biochemistry, 65 (3), 306-322. doi:10.1002/bab.1617
Lai, T., Yang, Y., & Ng, S. K. (2013). Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals (Basel, Switzerland), 6 (5), 579-603. doi:10.3390/ph6050579
Lee, J. S., Kallehauge, T. B., Pedersen, L. E., & Kildegaard, H. F. (2015). Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Sci Rep, 5 (1), 8572. doi:10.1038/srep08572
Li, F., Vijayasankaran, N., Shen, A. Y., Kiss, R., & Amanullah, A. (2010). Cell culture processes for monoclonal antibody production. mAbs, 2 (5), 466-479. doi:10.4161/mabs.2.5.12720
Saraf-Levy, T., Santoro, S. W., Volpin, H., Kushnirsky, T., Eyal, Y., Schultz, P. G., . . . Carmi, N. (2006). Site-specific recombination of asymmetric lox sites mediated by a heterotetrameric Cre recombinase complex. Bioorg Med Chem, 14 (9), 3081-3089. doi:10.1016/j.bmc.2005.12.016
Schnütgen, F., Stewart, A. F., von Melchner, H., & Anastassiadis, K. (2006). Engineering Embryonic Stem Cells with Recombinase Systems. In Methods in Enzymology (Vol. 420, pp. 100-136): Academic Press.
Turan, S., Galla, M., Ernst, E., Qiao, J., Voelkel, C., Schiedlmeier, B., . . . Bode, J. (2011). Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol, 407 (2), 193-221. doi:10.1016/j.jmb.2011.01.004
Turan, S., Zehe, C., Kuehle, J., Qiao, J., & Bode, J. (2013). Recombinase-mediated cassette exchange (RMCE) - a rapidly-expanding toolbox for targeted genomic modifications.Gene, 515 (1), 1-27. doi:10.1016/j.gene.2012.11.016
Wang, B., Albanetti, T., Miro-Quesada, G., Flack, L., Li, L., Klover, J., . . . Hawley-Nelson, P. (2018). High-throughput screening of antibody-expressing CHO clones using an automated shaken deep-well system. Biotechnol Prog, 34 (6), 1460-1471. doi:10.1002/btpr.2721
West, A. G., & Fraser, P. (2005). Remote control of gene transcription. Hum Mol Genet, 14 Spec No 1 , R101-111. doi:10.1093/hmg/ddi104
Zhang, L., Inniss, M. C., Han, S., Moffat, M., Jones, H., Zhang, B., . . . Young, R. J. (2015). Recombinase-mediated cassette exchange (RMCE) for monoclonal antibody expression in the commercially relevant CHOK1SV cell line.Biotechnol Prog, 31 (6), 1645-1656. doi:10.1002/btpr.2175