REFERENCES
Adriaensen, F., Chardon, J. P., Blust, G. D., Swinnen, E., Villaba, S., Gulinck, H., & Matthysena, E. (2003). The application of ‘least-cost’ modelling as a functional landscape model. Landscape and Urban Planning, 64(4), 233-247. https://doi.org/10.1016/S0169-2046(02)00242-6.
Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19(9), 1655-1664. https://doi.org/10.1101/gr.094052.109.
Allison, J., Strom, B., Sweeney, J., & Mayo, P. (2019). Trap deployment along linear transects perpendicular to forest edges: impact on capture of longhorned beetles (Coleoptera: Cerambycidae). Journal of Pest Science, 92, 299-308. https://doi.org/10.1007/s10340-018-1008-7.
Akbulut, S., & Stamps, W. T. (2011). Insect vectors of the pinewood nematode: a review of the biology and ecology of Monochamusspecies. Forest Pathology, 42(2), 89-99. https://doi.org/10.1111/j.1439-0329.2011.00733.x.
Aurélie, K., Peterman, W., Eraud, C., Faivre, B., Navarro, N., & Garnier, S. (2017). Landscape genetic analyses reveal fine-scale effects of forest fragmentation in an insular tropical bird. Molecular Ecology, 26(19), 4906-4919. https://doi.org/10.1111/mec.14233.
Auton, A., & Marcketta, A. (2015). VCFtools. (software). https://vcftools.github.io/index.html.
Bai, L., Tian, C.M., Hong, C. H., Kang, F. F., Chen, J. Y., Song, D. W., & Liu, H. G. (2015). The relationship between pine forest landscape patterns and pine wilt disease in Yichang, Hubei Province. Acta Ecologica Sinica. 35(24), 8107-8116. https://doi.org/10. 5846 /stxb201406161248.
Barbosa, P., Hines, J., Kaplan, I., Martinson, H., Szczepaniec, A., & Szendrei Z. (2009). Associational Resistance and Associational Susceptibility: Having Right or Wrong Neighbors. Annual Review of Ecology, Evolution, and Systematics, 40(1), 1-20. https://doi.org/10.1146/annurev.ecolsys.110308.120242.
Bay, R. A., Harrigan, R. J., Le Underwood, V ., Gibbs, H. L., Smith, T.B., & Ruegg, K. B. (2018). Genomic signals of selection predict climate-driven population declines in a migratory bird. Science, 359(6371), 83-86. https://doi.org/10.1126/science.aan4380.
Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., & Bonhomme, F. (2004). GENETIX4. 05, logiciel sous Windows TM pour la génétiquedes populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000: Université de Montpellier II, Montpellier (France). http://www.univ-montp2.fr/~genetix/genetix/genetix.htm.
Beyer, H. L. (2015) . Geospatial Modelling Environment (Version 0.7.4.0). (software). http//www.spatialecology.com/gme
Butler, S. J., Vickery, J. A., & Norris, K. (2007). Farmland Biodiversity and the Footprint of Agriculture. Science, 315(5810), 381-384. https://doi.org/10.1126/science.1136607.
Caspersen, O. H., & Olafsson, A.S. (2010). Recreational mapping and planning for enlargement of the green structure in greater Copenhagen. Urban Forestry & Urban Greening, 9(2), 101-112. https://doi.org/10.1016/j.ufug.2009.06.007.
Clarke, R. T., Rothery, P., & Raybould, A. F. (2002). Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. Journal of agricultural biological & environmental statistics, 7(3), 361-372.https://doi.org/10.1198/108571102320.
Cleary, K. A., Waits, L. P., & Finegan, B. (2017). Comparative landscape genetics of two frugivorous bats in a biological corridor undergoing agricultural intensification. Molecular Ecology, 26(18), 4306-4317. https://doi.org/10.1111/mec.14230.
Damien, M., Jactel, H., Meredieu, C.Régolini, M., Halder, I.V & Castagneyrol, B. (2016). Pest damage in mixed forests: Disentangling the effects of neighbor identity, host density and host apparency at different spatial scales. Forest Ecology & Management, 378, 103-110. https://doi.org/10.1016/j.foreco.2016.07.025.
David, G., Giffard, B., Piou, D., & Jactel, H. (2014). Dispersal capacity of Monochamus galloprovincialis , the European vector of the pine wood nematode, on flight mills. Journal of Applied Entomology, 138(8), 566–576. https://doi.org/10.1111/jen.12110.
David, G., Giffard, B., Piou, D., Roques, A., & Jactel, H.(2016). Potential effects of climate warming on the survivorship of adultMonochamus galloprovincialis. Agricultural & Forest Entomology, 19(2), 192-199. https://doi.org/10.1111/afe.12200.
David, G. (2014). Étude des capacités de dispersion de Monochamus galloprovincialis vecteur du nématode du pin Bursaphelenchus xylophilus (PhD thesis). Université de Bordeaux, France. 159 pp. https://tel.archives-ouvertes.fr/tel-01243203.
Damien, M., Jactel, H., Meredieu, C., Régolini, M., Halder I.V., & Castagneyrol, B. (2016) . Pest damage in mixed forests: Disentangling the effects of neighbor identity, host density and host apparency at different spatial scales. Forest Ecology & Management, 378, 103-110. https://doi.org/10.1016/j.foreco.2016.07.025.
Ding, Y. Z., Lv, C. H., Han, B., Pu, H. P., & Wu, M. L. (2011). Relationship between growth potential of pine, population density ofMonochamus alternatus and pathogenicity of Bursaphlenchus xyloophilus .Chinese journal of applied ecology, 12(3), 351-354. https://doi.org/10.1007/s11769-001-0027-z.
Excoffier, L., Laval, G., & Schneider, S. (2004). ARLEQUIN ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary bioinformatics, 1, 47-50. http://cmpg.unibe.ch/software/arlequin3.
Foley, J. A. (2005). Global consequences of land use. Science, 309(5734), 570-574. https://doi.org/10.1126/science.1111772.
Fontaine, B., Bergerot, B., Le Viol, I., & Julliard, R. (2016). Impact of urbanizaton and gardening practces on common buterfly communites in France. Ecology and Evoluton, 6(22): 8174-8180. https://doi.org/10.1002/ece3.2526.
Garcia-Gonzalez, C., Campo, D., Pola, I. G., & Garcia-Vazquez, E.(2012). Rural road networks as barriers to gene flow for amphibians: Species-dependent mitigation by traffic calming. Landscape & Urban Planning, 104(2):0-180. https://doi.org/10.1016/j.landurbplan.2011.10.012.
Ge, F., Ou, Y. F., & Men, X. Y. (2007). Ecological Effects of Regional Agricultural Landscape on Insect and Its Prospect. Bulletin of the Chinese academy of sciences, 32(8), 32-37. https://doi.org/10.16418/j.issn.1000-3045.2017.08.004.
Goslee, S. C., & Urban, D. L. (2007). The ecodist package for dissimilarity-based analysis of ecological data. Journal of statal software, 22(7), 1-19. https://doi.org/10.18637/jss.v022.i07.
Gurka, M. J. (2006). Selecting the best linear mixed model under REML. The American Statistician, 60, 19-26. https://doi.org/10.2307/27643722.
Haack, R. A. (2006). Exotic bark- and wood-boring Coleoptera in the United States: recent establishments and interceptions. Revue Canadienne De Recherche Forestière, 36(2), 269-288. https://doi.org/10.1139/x05-249.
Hao, D. J., Zhang, Y. H., Dai, H. G., & Wan, Y. (2005). Oviposition preference of Monochamus alternatus Hope ( Coleoptera:Cerambycidae) to host plants. Acta Entomologica Sinica, 48(3), 460-464. https://doi.org/10.16380/j.kcxb.2005.03.024.
Haran, J., Jérôme, R., Tellez, D., & Roques, A. (2017). Phylogeography of Monochamus galloprovincialis , the European vector of the pinewood nematode. Journal of Pest Science, 7, 1-11. https://doi.org/10.1007/s10340-017-0878-4.
Haran, J., Roques, A., Barnard, A., Robinet, C., & Roux, G. (2015). Altitudinal barrier to the spread of an invasive species: could the Pyrenean chain slow the natural spread of the pine wood nematode? PLOS ONE, 10(7):e0134126. https://doi.org/ 10.1371/journal.pone.0134126.
Haran, J., Rossi, J. P., Pajares, J., Bonifacio, L., Naves, P., Roques, A., & Roux, G. (2017). Multi-scale and multi-site resampling of a study area in spatial genetics: Implications for flying insect species. PeerJ, 5(7), 5:e4135. https://doi.org/10.7717/peerj.4135.
Harri, V., Koricheva, J., & Kai, R. (2007). Tree species diversity influences herbivore abundance and damage: meta-analysis of long-term forest experiments. Oecologia, 2007, 152(2), 287-298. https://doi.org/10.2307/40210897.
Hartmann, S. A., Steyer, K., Kraus, R. H. S., Segelbacher, G., & Nowak, C. (2013). Potential barriers to gene flow in the endangered European wildcat (Felis silvestris). Conservation Genetics, 14(2), 413-426. https://doi.org/10.1007/s10592-013-0468-9.
Hu, S. J., Ning, T., Fu, D.Y., & Haack, R.(2013). Dispersal of the Japanese Pine Sawyer, Monochamus alternatus (Coleoptera: Cerambycidae), in Mainland China as Inferred from Molecular Data and Associations to Indices of Human Activity. PLOS ONE, 8(2), e57568. https://doi.org/10.1371/journal.pone.0057568.
Javal, M., Lombaert, E., Tsykun, T., Courtin, C., Kerdelhué, C., Prospero, S., Roques, A., & Roux, G. (2019). Deciphering the worldwide invasion of the Asian long-horned beetle: a recurrent invasion process from the native area together with a bridgehead effect. Molecular Ecology, 28(5), 951-967. https://doi.org/10.1111/mec.15030.
Javal, M., Roques, A., Haran, J., Hérard, F., Keena, M., & Roux, G. (2017). Complex invasion history of the Asian long-horned beetle: fifteen years after first detection in Europe. Journal of Pest Science, 92, 173-187. https://doi.org/10.1007/s10340-017-0931-3.
Jactel, H., Barbaro, L., Battisti, A., Bosc, A., Branco, M., Brockerhoff, E., Castagneyrol, B., Dulaurent, A. M., Hódar, J.A., Jacquet, J. S., Mateus, E., Paiva, M. R., Roques, A.,Samalens, J. C., Santos, H., & Schlyter, F. (2015). Processionary moths and climate change: An update, spp, 265-310. https://doi.org/ 10.1007/978-94-017-9340-7_6.
Jactel, H., & Brockerhoff, E. G. (2007). Tree diversity reduces herbivory by forest insects. Ecology Letter, 10(9), 835-848.https://doi.org/10.1111/j.1461-0248.2007.01073.x.
Jactel, H., Goulard, M., Menassieu, P., & Goujon, G. (2002). Habitat diversity in forest plantations reduces infestations of the pine stem borer Dioryctria sylvestrella. Journal of Applied Ecology, 39(4), 618-628. https://doi.org/10.1046/j.1365-2664.2002.00742.x.
Jeffries, D. L., Copp, G. H., Handley, L. L, Olsén, H., Sayer, C. D., & Hänfling, B. (2016). Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius , L. Molecular Ecology, 25(13), 2997-3018. https://doi.org/10.1111/mec.13613.
Jiang, X. H., Wan, Z. C., Yao, J. F., Xu, C. F., & Li, Y. L. (2020). Correspondence analysis of quantitative distribution of Monochamus alternatus and
environmental factors at middle and low elevation area of Mount Huangshan. Forest Pest and Disease, 39(2), 16-19. https://doi.org/10.19688/ j.cnki.issn1671-0886.20200003.
Johnson, M. T. J., &, Munshi-South, J. (2017). Evolution of life in urban environments. Science, 358(6363), 607-607.https://doi.org/10.1126/science.aam8327.
Kawai, M., Shoda-Kagaya, E., Maehara, T., Zhou, Z. H., Lian, C. L., Iwata, R., Yamane, A., & Hogetsu, T. (2006). Genetic structure of pine sawyer Monochamus alternatus (Coleoptera: Cerambycidae) populations in northeast Asia: consequences of the spread of pine wilt disease. Environmental Entomology, 35(2), 569-579. https://doi.org/10.1603/0046-225X-35.2.569.
Keller, D., Strien, M. J. V., & Holderegger, R. (2012). Do landscape barriers affect functional connectivity of populations of an endangered damselfly? Freshwater Biology, 57(7), 1373-1384. https://doi.org/10.1111/j.1365-2427.2012.02797.x.
Koutroumpa, F. A., Rougon, D., Bertheau, C., Lieutier, F., & Roux, G. (2013). Evolutionary relationships within European Monochamus(Coleoptera: Cerambycidae) highlight the role of altitude in species delineation. Biological Journal of the Linnean Society, 109(2), 354-376. https://doi.org/10.1111/bij.12042.
Lane-Degraaf, K. E., Fuentes, A., & Hollocher, H. (2014). Landscape genetics reveal fine-scale boundaries in island populations of Indonesian long-tailed macaques. Landscape Ecology, 29(9), 1505-1519. https://doi.org/10.1007/s10980-014-0069-0.
Lapolla, V. (1993). Effects of corridor width and presence on the population dynamics of the meadow vole (Microtus pennsylvanicus). Landscape Ecology, 8(1), 25-37. https://doi.org/10.1007/BF00129865.
Legendre, P., & Anderson, M. J. (1999). Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecological Monographs, 69(1), 1-24. https://doi.org/10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2.
Lengyel, A., Podani, J. (2015). Assessing the relative importance of methodological decisions in classifications of vegetation data. Journal of Vegetation Science, 26(4), 804-815. https://doi.org/10.1111/jvs.12268.
Lian, J., & Zhang, X. Y. (2005). Forest pest ecological control. Scientia Silvae Sinicae, 41(4), 168-176. https://doi.org/10.3321/j.issn:1001-7488.2005.04.029.
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760.https://doi.org/10.1093/bioinformatics/btp324.
Li, H., Handsaker, B., Wysoker, A., Alec, W., Tim, F., & Jue, R. (2009). The Sequence Alignment-Map format and SAMtools . Bioinformatics, 25(16), 2078-2079. https://doi.org/10.1093/bioinformatics/btp352.
Li, R. J., Xu, F. Y., & Zhang, P. (2003). Host Preference byMonochamus alternatus (Hope) during Maturation Feeding on Pine Species and Masson Pine Provenances. Chinese Forestry Science & Technology, 4, 95-102. https://doi.org/CNKI:SUN:ZGLK.0.2003-04-012.
Liu, Y., Chen, L., Duan, X. Z., Zhao, D. S., Sun, J. T & Hong, S. Y. (2019). Genome-Wide Single Nucleotide Polymorphisms are robust in resolving fine-Scale population genetic structure of the small brown planthopper, Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae). Journal of Economic Entomology, 112(5), 2362-2368. https://doi.org/10.1093/jee/toz145.
López-Cortegano, E., Pérez-Figueroa, A., & Caballero, A.(2019). Metapop2: re-implementation of software for the analysis and management of subdivided populations using gene and allelic diversity. Molecular Ecology Resources, 19(4), 1095-1100. https://doi.org/10.1111/1755-0998.13015.
Lu, M., Wingfield, M. J., Gillette, N., & Sun J. (2011). Do novel genotypes drive the success of an invasive bark beetle–fungus complex? Implications for potential reinvasion. Ecology, 92(11), 2013-2019. https://doi.org/10.1890/11-0687.1.
Maehara, N., & Futai, K. (1997). Effect of fungal interactions on the numbers of the pinewood nematode, Bursaphelenchus xylophilus(Nematoda: Aphelenchoididae), carried by the Japanese pine sawyer,Monochamus alternatus (Coleoptera: Cerambycidae. Fundamental & applied nematology, 20(6), 611–617. https://doi.org/10.1159/000157256.
Mack, R., Simberloff, D., Lonsdale, W. M., Evans, H., Clout, M., & Bazzaz, F. A.. Biotic invasions: causes,epodemiology, global consequences, and control. Ecological Applications, 10(3), 689-710. https://doi.org/10.2307/2641039.
Mamiya, Y., & Shoji, T. (2009). Pathogenicity of the pinewood nematode,Bursaphelenchus xylophilus , to Japanese larch, Larix kaempferi, seedlings. Journal of Nematology, 41(2), 157-162. https://doi.org/10.1111/j.1600-0684.2009.00342.x.
Manel, S., Schwartz, M. K., Luikart, G., & Taberlet, P. (2003). Landscape genetics: Combining landscape ecology and population genetics. Trends in Ecology & Evolution, 18(4), 189-197. https://doi.org/10.1016/S0169-5347(03)00008-9.
McCulloch, E. S., Tello, J. S., Whitehead, A., Rolón-Mendoza, C. M. J., Maldonado-Rodríguez, M. C. D., & Stevens, R. D. (2013). Fragmentation of Atlantic Forest has not affected gene flow of a widespread seed-dispersing bat. Molrecular Ecology, 22(18), 4619-4633. https://doi.org/10.1111/mec.12418.
Mota, M. M., & Vieira, P. (2008). Pine Wilt Disease: A Worldwide Threat to Forest Ecosystems. Springer Netherlands. https://doi.org/10.1007/978-1-4020-8455-3.
Nakamura, K., Togashi, K., & Takahashi, F. (1997). Distance effect of co-occurring tree species on pine wilt disease incidence inPinus densifloraseedlings inoculated with Bursaphelenchus xylophilus . Ecological Research, 1997, 12(3), 265-275. https://doi.org/10.1007/bf02529456.
Nancy, M. E. H., Schmidt, T. L., Chung, J., Rooyen, A. V., Weeks, A. R., & Hoffmann, A. A. (2020). Heterogeneous genetic invasions of three insecticide resistance mutations in Indo‐Pacific populations ofAedes aegypti (L.). Molrecular Ecology. https://doi.org/10.1111/mec.15430.
Naves, P. M., Camacho, S., Sousa, E., & Quartau, J. A. (2007). Transmission of the pine wood nematode Bursaphelenchus xylophilus through oviposition activity ofMonochamus galloprovincialis (Col., Cerambycidae). Journal of Applied Entomology, 131(1), 21-25. https://doi.org/10.1111/j.1439-0418.2006.01111.x.
Nicholls, C. I., Parrella, M., & Altieri, M. A. (2001). The effects of a vegetational corridor on the abundance and dispersal of insect biodiversity within a northern California organic vineyard. Landscape Ecology, 16(2), 133-146. https://doi.org/10.1023/a:1011128222867.
Ortego, J., Bonal, R., & Muñoz, A. (2010). Genetic Consequences of Habitat Fragmentation in Long-Lived Tree Species: The Case of the Mediterranean Holm Oak (Quercus ilex, L.). Journal of Heredity, 101(6), 717-726. https://doi.org/10.1093/jhered/esq081.
Quayle, D., Regniere, J., Cappuccino, N., & Dupont, A. (2003). Forest composition, host-population density, and parasitism of spruce budworm Choristoneura fumiferana eggs by Trichogramma minutum. Entomologia Experimentalis et Applicata, 107(3), 215-227. https://doi.org/10.1046/j.1570-7458.2003.00056.x.
Rašić, G., Filipović, I., Weeks, A. R., & Hoffmann, A. A. (2014). Genome-wide SNPs lead to strong signals of geographic structure and relatedness patterns in the major arbovirus vector, Aedes aegypti. BMC Genomics, 15(1), 1-12. https://doi.org/10.1186/1471-2164-15-275.
Rellstab, C., Gugerli, F., Eckert, A.J., Hancock, A. M., & Holderegger, R. (2015) .A practical guide to environmental association analysis in landscape genomics. Molecular Ecology, 24(17), 4348-4370. https://doi.org/10.1111/mec.13322.
Robinet, C., David, G., & Jactel, H. (2019). Modeling the distances traveled by flying insects based on the combination of flight mill and mark-release-recapture experiments. Ecological Modelling, 402, 85-92. https://doi.org/10.1016/j.ecolmodel.2019.04.006.
Rod, P., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537-9. https://doi.org/10.1093/bioinformatics/bts460.
Rousset, F. (2008). GENEPOP ’ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources, 8(1), 103-106. https://doi.org/10.1111/j.1471-8286.2007.01931.x.
Ruell, E. W., Riley, S. P. D., Douglas, M. R., Antolin, M. F., Pollinger, J. R., Tracey, J. A., Lyren, L. M., Boydston, E. E., Fisher, R. N., & Crooks, K. R. (2012). Urban Habitat Fragmentation and Genetic Population Structure of Bobcats in Coastal Southern California. American Midland Naturalist, 168(2), 265-280. https://doi.org/10.1674/0003-0031-168.2.265.
Shoda-Kagaya, E. (2007). Genetic differentiation of the pine wilt disease vector Monochamus alternatus (Coleoptera: Cerambycidae) over a mountain range revealed from microsatellite DNA markers. Bulletin of Entomological Research 97(2), 167–174. https://doi.org/10.1017/S000748530700483X.
Soliman, T., Mourits, M. C. M., Van der Werf, W., Hengeveld G. M., Robinet, C., & Lansik, A. O. (2012). Framework for modeling economic impacts of invasive species, applied to pine wood nematode in Europe. PLoS ONE, 7(9), e45505. https://doi.org/10.1371/journal.pone.0045505.
Sonoda, S., Izumi, Y., Kohara, Y., Koshiyama, Y., & Yoshida, H. (2011) . Effects of pesticide practices on insect biodiversity in peach orchards. Applied Entomology & Zoology, 46(3), 335-342. https://doi.org/10.1007/s13355-011-0041-2.
Sousa, E., Bravo, M. A., Pires, J., Naves, P., Penas, A.C., Bonifacio, L., & Mota, L . (2001). Bursaphelenchus xylophilus (Nematoda; Aphelenchoididae) associated with Monochamus galloprovincialis(Coleoptera; Cerambycidae) in Portugal. Nematology, 3(1), 89-91. https://doi.org/10.1163/156854101300106937.
Spear, S. F., Balkenhol, N., Fortin, M. J., Mcrae, B. H., & Scribner, K. (2010). Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Molecular Ecology, 19(17), 3576-3591. https://doi.org/10.1111/j.1365-294X.2010.04657.x.
Strien, M. J. V., Keller, D., & Holderegger, R. (2012). A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models. Molecular Ecology, 21(16), 4010-4023. https://doi.org/10.1111/j.1365-294x.2012.05687.x.
Sudhir, K., Glen, S., & Koichiro, T. (2016). MEGA7: Molecular Evolutionary Genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 3(7), 1870-1874. https://doi.org/10.1093/molbev/msw054.
Sun, J. H., Yuan, D. C., & Ou, Y. H. (2002). Exotic forest pest invasion:A threat to forest ecosystems in China. Forest Pest And Disease, 21(6), 32-35. https://doi.org/10.3969/j.issn.1671-0886.2002.06.011.
Szpiech, Z.A., Jakobsson, M., & Rosenberg, N.A. (2008). ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics Oxford, 24, 2498-2504. https://doi.org/10.1093/bioinformatics/btn478.
Takasu, F., Yamamoto, N., Kawasaki, K., Togashi, K., Kishi, Y., & Shigesada, N. (2000). Modeling the expansion of an introduced tree disease. Biological Invasions, 2, 141-150. https://doi.org/10.1023/A:1010048725497.
Togashi, K., Aida, K., Nakamura, K., Horikoshi, T., & Takahashi, F. (1997). Different development of pine wilt disease in artificially infected Pinus thunbergii seedlings potted together with different tree species. Journal of Forest Research, 2(1), 39-43. https://doi.org/10.1007/BF02348261.
Tsykun, T., Javal, M., Hölling, D., Roux, G., & Prospero, S. (2019). Fine-scale invasion genetics of the quarantine pest, Anoplophora glabripennis , reconstructed in single outbreaks. Scienfific Repots, 9, 19436. https://doi.org/10.1038/s41598-019-55698-3.
Turner, M. G . (1989). Landscape Ecology: The effect of pattern on process. Annual Review of Ecology & Systematics, 20(1), 171-197. https://doi.org/10.1146/annurev.ecolsys.20.1.171.
Tu, Y. G., Li, Y., Yu, A. L., Xiong, D. Y., Que, S. Q., Wan, W. H., & Jin, M. X. (2019). Feeding and oviposition preferences ofMonochamus alternatus adults among different host plants. China Plant Protection, 39(5), 50-52. https://doi.org/10.3969/j.issn.1672-6820.2019.05.009.
Underwood, N., Inouye, B. D., & Hambäck, P. A. (2014). A Conceptual Framework for Associational Effects: When Do Neighbors Matter and How Would We Know? Quarterly Review of Biology, 89(1):1-19. https://doi.org/10.1086/674991.
Van Etten, J. (2014). gdistance : distances and routes on geographical grids. R package version 1.1-5. http://CRAN.R-project.org/package=gdistance.
Walker, B. H., & Steffen, W. (1996). An Overview of the implications of global change for natural and managed terrestrial ecosystems. Ecology And Scociety, 1(2), https://doi.org/10.5751/ES-00028-010202.
Weir, B. C., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population Structure. Evolution, 38(6), 1358-1370. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x.
Wu, S. Q., Yuan, W. M., Tian, X. J., Fan, B., Ye, J. R., & Ding, X. L. (2013). Specific and functional diversity of endophytic bacteria from pine wood nematode Bursaphelenchus Xylophilus with different virulence. International Journal of Biological Sciences, 9(1), 34-44. https://doi.org/10.7150/ijbs.5071.
Yadav, S., Stow, A.J., & Dudaniec, R.Y. (2019). Detection of environmental and morphological adaptation despite high landscape genetic connectivity in a pest grasshopper (Phaulacridium vittatum), Molecular Ecology, 28(14), 3995-3412. https://doi.org/10.1111/mec.15146.
Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: a tool for genome-widecomplex trait analysis. Am J Hum Genet, 88(1), 76-82. https://doi.org/10.1016/j.ajhg.2010.11.011.
Ye, J. R. (2019). Episemic status of pine wilt disease in China and its prevention and control techniques and counter measures. Scientia Silvae Sinicae, 55(9), 1-10. https://doi.org/10.11707/j.1001-7488.20190901.
Zhao, B. G., Futai, K., Sutherland, J.R., & Takeuchi, Y. (2008). Pine wilt disease. Springer Japan. https://doi.org/10.1007/978-4-431-75655-2.
Zhao, L. L., Mota, M., Vieira, P., Butcher, R. A., & Sun, J. H. (2013) .Interspecific communication between pinewood nematode, its insect vector, and associated microbes.Trends in parasitology, 30(6), 299-308. https://doi.org/10.1016/j.pt.2014.04.007.
Zhen, Y., Harrigan, R. J., Ruegg, K. C., Anderson, E. C., Ng, T. C., Lao, S., Lohmueller, K. E., & Smith, T. B. (2017). Genomic divergence across ecological gradients in the Central African rainforest songbird (Andropadus virens). Molecular Ecology, 26(19), 4966-4977. https://doi.org/10.1111/mec.14270.