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Abstract

In this paper, we investigate the numerical approximation of stochastic convection-
reaction-diffusion equations using two explicit exponential integrators. The stochas-
tic partial differential equation (SPDE) is driven by additive Wiener process. The
approximation in space is done via a combination of the standard finite element
method and the Galerkin projection method. Using the linear functional of the noise,
we construct two accelerated numerical methods, which achieve higher convergence
orders. In particular, we achieve convergence rates approximately 1 for trace class
noise and 1

2 for space-time white noise. These convergences orders are obtained
under less regularities assumptions on the nonlinear drift function than those used in
the literature for stochastic reaction-diffusion equations. Numerical experiments to
illustrate our theoretical results are provided.
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1 INTRODUCTION

This article is devoted to the space-time approximation of the following seimlinear parabolic SPDEs

dX(t) = [AX(t) + f (x,X(t))]dt + dW (t), t ∈ (0, T ], x ∈ Λ (1)

with initial value X(0) = X0 and Dirichlet boundary conditions or Robin boundary conditions. In (1), Λ is a bounded domain
of ℝd (d = 1, 2, 3) with smooth boundary or is a convex polygon. T > 0 is a fixed final time. The linear operator A is given by

A =
d
∑

i,j=1

)
)xi

(

qij(x)
)
)xj

)

−
d
∑

j=1
qj(x)

)
)xj

, (2)

where qij , qj ∈ L∞(Λ) and qi,j satisfies the following ellipticity condition
d
∑

i,j=1
qij(x)�i�j ≥ c|�|2, x ∈ Λ, (3)
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where c > 0 is a uniform constant. Precise conditions on the nonlinear f will be given in the next section. Let us introduce the
Nemytskij operator F ∶ L2(Λ) ←→ L2(Λ) associated to f in (1), defined by

F (u)(x) = f (x, u(x)), x ∈ Λ, u ∈ L2(Λ). (4)

We denote by (Ω, ,ℙ) a probability space with a filtration (t)t∈[0,T ] ⊂  that fulfills the usual conditions, see
e.g.,16, Definition 2.1.11. The noise termW (t) in (1) is assumed to be a Q-Wiener process defined on the filtered probability space
(Ω, ,ℙ, {t}t∈[0,T ]), with covariance operator Q ∶ L2(Λ) ←→ L2(Λ), which is assumed to be linear, self-adjoint and positive
definite. It is well known (see e.g.,16) that the noiseW (t) can be represented as follows

W (t, x) =
∞
∑

i=0

√

qiei(x)�i(t), (5)

where (qi, ei)i∈ℕ are the eigenvalues and eigenfunctions of the covariance operatorQ, and (�i)i∈ℕ are independent and identically
distributed standard Brownian motions. It is well known that the linear operatorA generates an analytic semi-group S(t) =∶ eAt,
t ≥ 0; see e.g.1,16,15,2. Under the hypothesis that F is Lipschitz continuous and X0 ∈ L2(Ω, L2(Λ)), the SPDE (1) has up to
modifications a unique mild solution X ∶ [0, T ] × Ω ←→ , which takes the following form, see e.g.16,15

X(t) = S(t)X0 +

t

∫
0

S(t − s)F (X(s))ds +

t

∫
0

S(t − s)dW (s), ℙ − a.s. (6)

SPDEs of type (1) are used to model many real world phenomena such as convection-reaction-diffusion processes. Since explicit
solutions of many SPDEs are usually unknown, numerical approaches are good alternatives to provide their realistic approxi-
mations. Having a numerical approximation in hand one main question is whether it converges toward the mild solution or not.
Another interesting information is to know the rate with which it converges to the true solution. There are mainly two types of
convergence: namely strong convergence and weak convergence. Our interest here is on strong convergence. There are numerous
numerical methods designed to approximate (1) with linear self-adjoint operator, see e.g.6,7,8,9. To classify a numerical method,
one also takes in consideration the rate of convergence. In7, an exponential Euler scheme achieving higher convergence order by
exploiting the linear functional of the noise was introduced for semilinear SPDEs driven by space-time white noise. However,
assumptions made in7 to achieve higher convergence order are too restrictive and exclude many nonlinear operators such as
F (v) = 1−v

1+v2
, v ∈  ∶= L2(Λ), see the introduction of8 for more details. In8, a modified version of the above mentioned expo-

nential Euler scheme which achieves higher convergence order under more relaxed conditions on F was introduced. In18, an
accelerated exponential integrator was investigated and proved to achieve convergence order 1 for trace class noise under more
relaxed assumptions than in8. Note that the works in8,7,18 are only for stochastic diffusion-reaction equations and heavily use the
fact that the linear operator A is self-adjoint. Also, such schemes are numerically implementable only if the linear operator is
self-adjoint. Here, we are interested in the case of stochastic convection-reaction-diffusion equations, which are more realistic
and plays a key role in subsurface processes. For such SPDEs, we are interested on building alternative stable numerical schemes
achieving higher convergence order. Recently in3,4 some exponential integrators and implicit schemes achieving convergence
order 1 in time were introduced for stochastic convection-reaction-diffusion equations. The idea behind such schemes, consists
on keeping the convection term in the nonlinear part F . As a consequence, these schemes may lose their stability if the veloc-
ity field is very high. Moreover, the convergence results in3,4 exclude the space-time white noise case. Here, we propose novel
numerical schemes for stochastic convection-diffusion-reaction equations with general noise (including space-time white noise),
which achieve higher convergence order. The idea behind our novel numerical schemes consists on splitting the semi-group
appearing in the noise component in two semi-groups, one semi group generated by the self adjoint part and another semi group
generated by the advection part (see Section 2 for details). For the convergence proofs of our numerical schemes toward the mild
solution, one key argument consists of using an argument based on Miyadera-Voigt perturbation Theorem1, Chapter III, Corollary 3.16.
In addition, we use relaxed conditions on the nonlinear function F than the ones used in3,4 and in the literature for stochastic
reaction diffusion equations.
The rest of this paper is structured as follows. In Section 2, the well posedness and the numerical schemes are introduced. In

Section 3 we prove the strong convergence of our fully discrete schemes toward the mild solution. In Section 4 we provide some
numerical experiments to illustrate our results.
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2 MATHEMATICAL SETTINGS AND NUMERICAL SCHEMES

2.1 Notations and main assumptions
We denote by ⟨., .⟩ the inner product in the Hilbert space  = L2(Λ,ℝ) =∶ L2(Λ). We denote by ‖.‖ the norm associated
to the inner product ⟨., .⟩. For all p ≥ 2, Lp(Ω,) stands for the Banach space of all equivalence classes of p integrable -
valued random variables. Let () be the space of bounded linear mappings on  endowed with the usual operator norm
‖.‖(). The space of Hilbert-Schmidt operators from to is denoted by 2() ∶= HS() and is equipped with the norm

‖l‖22() ∶=
∞
∑

i=1
‖lei‖2, l ∈ 2(), where (ei)∞i=1 is an orthonormal basis of. Let 02 be the space of Hilbert Schmidt operator

from Q
1
2 () to . For an 02-valued predictable stochastic process � ∶ [0, T ] × Ω ←→ 02 such that

t

∫
0

E‖�(s)Q
1
2
‖

2
2()

ds <∞, t ∈ [0, T ],

the following relation called Itô isometry holds16,15

E‖

t

∫
0

�(s)dW (s)‖2 =

t

∫
0

E‖�(s)‖202
ds =

t

∫
0

E‖�(s)Q
1
2
‖

2
2()

ds, t ∈ [0, T ], (7)

For the seek of the convergence analysis of our numerical schemes, we make the following assumptions.

Assumption 2.1. The initial data X0 ∶ Ω ←→  is assumed to be measurable and X0 ∈ L2
(

Ω,
(

(−A)
�
2

))

, 0 ≤ � ≤ 2.
We assume the covariance operator Q to satisfy the following estimate

‖(−A)
�−1
2 Q

1
2
‖2() <∞. (8)

The nonlinear function F is assumed to be differentiable and there exist C ≥ 0 and � ∈
(

3
4
, 1
)

such that

‖F ′(u)v‖ ≤ C‖v‖, ‖

‖

‖

(−A)−�
(

F ′(u) − F ′(v)
)

‖

‖

‖()
≤ C‖u − v‖, u, v ∈ .

As a consequence, F satisfies the following Lipschitz condition

‖F (u) − F (v)‖ ≤ C‖u − v‖, ‖F (u)‖ ≤ C(1 + ‖u‖), u, v ∈ .

Remark 1. Let A1 and A2 be respectively the self-adjoint and the non self-adjoint parts of A. Using the equivalence of norms
(see e.g.11,2 or12, (3.3)), ‖(−A)
v‖ ≈ ‖(−A1)
v‖ for all 
 ∈ [−1, 1] and v ∈ ((−A)
 ), it follows that (8) remains true if A is
replaced by A1. The following equivalence of norms holds

‖(−A)


2 v‖ ≈ ‖(−A2)
v‖, 
 ∈ [−1, 1], v ∈ ((−A)



2 ).

Proposition 1. Under the hypothesis that the function f in (1) is differentiable and there exists a constant C ≥ 0 such that

|f ′(z, x) − f ′(z, y)| ≤ C|x − y|, x, y ∈ ℝ, z ∈ Λ, (9)

the Nemystkii operator F satisfies the desired properties in Assumption 2.1. Note the the derivation in (9) is respect to the second
variable.

Proof. We only prove that ‖‖
‖

(−A)−�
(

F ′(u) − F ′(v)
)

‖

‖

‖()
≤ C‖u − v‖, u, v ∈ , since proofs of others estimates are similar.

The derivative of F is given by

(F ′(u)(v))(z) = f ′(z, u(y)).v(z), z ∈ Λ, u, v ∈ .
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Hence, for w ∈ , from the definition of the norm ‖.‖L1(Λ,ℝ), using (9), Hölder inequality and the fact that Λ is bounded, it
follows that

‖

(

F ′(u) − F ′(v)
)

w‖L1(Λ,ℝ) = ∫
Λ

|

(

F ′(u) − F ′(v)
)

w(x)|dx = ∫
Λ

|

|

f ′(x, u(x)) − f ′(x, v(x))|
|

|w(x)|dx

≤ C ∫
Λ

|u(x) − v(x)||w(x)|dx ≤ C
⎛

⎜

⎜

⎝

∫
Λ

|u(x) − v(x)|2dx
⎞

⎟

⎟

⎠

1
2
⎛

⎜

⎜

⎝

∫
Λ

|w(x)|2dx
⎞

⎟

⎟

⎠

1
2

= C‖u − v‖‖w‖. (10)

Using Hölder’s inequality, the Sobolev embedding  (A−�) → L∞(Λ,ℝ) for � > d
4
, yields

‖

‖

‖

A−�
(

F ′(u) − F ′(v)
)

w‖‖
‖

= sup
‖w1‖≤1

|

|

|

⟨

A−�
(

F ′(u) − F ′(v)
)

w,w1
⟩

|

|

|

= sup
‖w1‖≤1

|

|

|

⟨(

F ′(u) − F ′(v)
)

w, (A∗)−�w1
⟩

|

|

|

≤ ‖

‖

‖

(

F ′(u) − F ′(v)
)

w‖‖
‖L1(Λ,ℝ)

sup
‖w1‖≤1

‖

‖

(A∗)−�w1
‖

‖L∞(Λ,ℝ)

≤ K1
‖

‖

‖

(

F ′(u) − F ′(v)
)

w‖‖
‖L1(Λ,ℝ)

sup
‖w1‖≤1

‖

‖

A�(A∗)−�w1
‖

‖

. (11)

Using (10) and17, Lemma 3.1, it follows from (11) that
‖

‖

‖

A−�
(

F ′(u) − F ′(v)
)

w‖‖
‖

≤ C‖u − v‖‖w‖ sup
‖w1‖≤1

‖w1‖ ≤ ‖u − v‖‖w‖.

Therefore.
‖

‖

‖

(−A)−�
(

F ′(u) − F ′(v)
)

‖

‖

‖()
≤ C‖u − v‖, u, v ∈ .

2.2 Fully discrete schemes and main results
Let ℎ be a set of disjoint intervals of Λ (for d = 1), a triangulation of Λ (for d = 2) or a set of tetrahedra (for d = 3) satisfying
the standard regularity assumptions (see2). Let Vℎ ⊂ V denotes the space of continuous functions that are piecewise linear over
the triangulation ℎ. To discretize in space we introduce two projections. Our first projection operator Pℎ is the L2(Λ) projection
onto Vℎ defined for u ∈ L2(Λ) by

⟨Pℎu, �⟩ = ⟨u, �⟩, � ∈ Vℎ.

Then Aℎ ∶ Vℎ → Vℎ is the discrete analogue of A defined by

⟨Aℎ', �⟩ = a(', �), ', � ∈ Vℎ, (12)

where a(., .) is the corresponding bilinear form associated to the operator A. We denote by Sℎ the semigroup generated by Aℎ.
The second projection PN ,N ∈ ℕ is the projection onto a finite number of spectral modes ei1 defined for u ∈ L2(Λ) by

PNu =
∑

i∈N

⟨ei, u⟩ei, where N = {1, 2, ..., N}d .

The semi–discrete version of the problem (1) consists of finding Xℎ(t) = Xℎ(., t) ∈ Vℎ such that for t ∈ [0, T ],

dXℎ = (AℎXℎ + PℎF (Xℎ))dt + PℎPNdW , Xℎ(0) = PℎX0. (13)

The mild solution of (13) is given by

Xℎ(t) = Sℎ(t)Xℎ(0) +

t

∫
0

Sℎ(t − s)F (Xℎ(s))ds +

t

∫
0

Sℎ(t − s)PℎPNdW . (14)

Let S1(t) =∶ eA1t the semi-group generated by A1 and S2(t) =∶ eA2t the semi-group generated by A2. Let A1ℎ and A2ℎ be the
semi-discrete versions of A1 and A2 respectively, defined as in (12). We denote by S1ℎ(t) and S2ℎ(t) the semi-groups generated

1Eigenfunctions of the operator A1 in our case
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A1ℎ and A2ℎ respectively. The semi-groups S1(t), S2(t), S1ℎ(t) and S2ℎ(t) satisfy the smoothing properties of13, Proposition 2.2, see
also11,2. We introduce the following stochastic convolutions

Om
ℎ,N ∶=

tm+1

∫
tm

Sℎ(tm+1 − s)PℎPNdW (s), Om ∶=

tm+1

∫
tm

S(tm+1 − s)dW (s), Oℎ,N
k = S2ℎ(Δt)PℎPN

tk+1

∫
tk

S1(tk+1 − s)dW (s). (15)

To build our numerical schemes, we use the following approximation of the noise: Om
ℎ,N ≈ Oℎ,N

m . To build our first numer-
ical scheme, we use the approximation F (Xℎ(s)) ≈ F (Xℎ(tm)), for s ∈ [tm, tm+1). This yields the following scheme, called
accelerated SETD1 (ASETD1): Xℎ

0 = PℎX0 and recursively by

Xℎ
m = Sℎ(Δt)PℎXm−1 +

tm

∫
tm−1

Sℎ(tm − s)PℎF (Xℎ
m−1)ds + S2ℎ(Δt)PℎPN

tm

∫
tm−1

S1(tm − s)dW (s), m ≥ 1. (16)

Note that the numerical method (16) can be written in the following form, efficient for simulation

Xℎ
m = X

ℎ
m−1 + Δt'1(ΔtAℎ)

(

AℎX
ℎ
m−1 + PℎF (X

ℎ
m−1)

)

+ Oℎ,N
m−1, m ≥ 1, (17)

where the linear operator '1 is given by (20). To obtain our second numerical scheme, we use the approximation
e(tm−s)AℎPℎF (Xℎ(s)) ≈ eΔtAℎPℎF (Xℎ(tm−1)) for s ∈ [tm−1, tm). This yields the following scheme, called accelerated SETD0
(ASETD0) Y ℎ0 = PℎX0.

Y ℎm = Sℎ(Δt)PℎYm−1 +

tm

∫
tm−1

Sℎ(Δt)PℎF (Y ℎm−1)ds + S2ℎ(Δt)PℎPN

tm

∫
tm−1

S1(tm − s)dW (s), m ≥ 1. (18)

The numerical method (18) can be written in the following equivalent form, efficient for simulation

Y ℎm = '0(ΔtAℎ)
(

Xℎ
m−1 + ΔtF (Y

ℎ
m−1)

)

+ Oℎ,N
m−1, m ≥ 1. (19)

The linear operators '0 and '1 are given respectively by

'0(ΔtAℎ) ∶= eAℎΔt, '1(ΔtAℎ) ∶=
1
Δt

Δt

∫
0

eAℎ(Δt−s)ds. (20)

Note that ASETD1 and ASETD0 are the analogue schemes in3 that we are improving their stability in this paper.
The following theorem is the main result of this paper.

Theorem 1. [Main results] Let X(tm) be the mild solution given by (6) and �ℎm the numerical approximation (with �ℎm = Xℎ
m

for ASETD1 and �ℎm = Y
ℎ
m for ASETD0). If Assumption 2.1 is fulfiled, the following strong convergence estimate holds

‖X(tm) − �ℎm‖L2(Ω,) ≤ C

[

ℎ�−� +
(

inf
j∈ℕd⧵N

�j

)− �
2
+�

+ Δtmin(�−�,1)
]

,

where � is given in Assumption 2.1 and � ∈ (0, �) is any positive number, small enough.

Remark 2. Remember that as in3 to simulate our accelerated schemes, the eigenfunctions of the linear operator A should be the
same as that of the covariance operatorQ 2, if not, the projection of the eigenfunctions ofQ onto the eigenfunction of A should
be done. This is indeed the drawback of the accelerated schemes as in general the projection is costly.

3 PROOF OF THE MAIN RESULTS

The proofs of the main results need some preliminaries results.

2This helps in the computation of Oℎ,N
m−1
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3.1 Preparatory results
Lemma 1. Let 0 ≤ � ≤ 1 and u ∈ . Then the following sharp integral estimates hold

t2

∫
t1

‖(−A)
�
2S(t2 − r)‖2()dr ≤ C(t2 − t1)1−�, ‖(−A)�

t2

∫
t1

S(t2 − r)udr‖ ≤ C(t2 − t1)1−�‖u‖, 0 ≤ t1 ≤ t2 ≤ T .

Proof. The proof of the first estimate can be found in14, Lemma 2.1. The proof of the second estimate is similar to10, Lemma 3.2 (iv),
since this is general and does not use the fact that A is self-adjoint.

Lemma 2. The following sharp time and space regularities holds

‖X(t2) −X(t1)‖L2(Ω,) ≤ C(t2 − t1)
min

(

1
2
, �
2

)

, ‖(−A)
�
2X(t1)‖L2(Ω,) ≤ C, 0 ≤ t1 ≤ t2 ≤ T . (21)

Proof. First of all as in5, Lemma 2.7, it holds that ‖X(t2) −X(t1)‖L2(Ω,) ≤ C(t2 − t1)
min

(

�
2
, 1
�
−�

)

. Similarly to5, Theorem 2.6 we have
‖(−A)

�
2X(t)‖L2(Ω,) < C for � ∈ [0, 2). For � = 2 we have

AX(t) = S(t)AX0 +

t

∫
0

AS(t − s)F (X(t))ds +

t

∫
0

AS(t − s) (F (X(s) − F (X(t)) ds +

t

∫
0

AS(t − s)dW (s). (22)

Taking the norm in both sides of (22) and using Assumption 2.1, Lemma 2 and the stability properties of the semi-group yields

‖AX(t)‖L2(Ω,) ≤ ‖S(t)AX0‖L2(Ω,) + ‖

t

∫
0

AS(t − s)F (X(t))ds‖L2(Ω,)

+

t

∫
0

‖AS(t − s)‖()‖F (X(s)) − F (X(t))‖L2(Ω,)ds + ‖

t

∫
0

AS(t − s)dW (s)‖L2(Ω,)

≤ C‖AX0‖L2(Ω,) + C‖F (X(t))‖L2(Ω,) + C

t

∫
0

(t − s)−1‖X(t) −X(s)‖L2(Ω,)ds

+ ‖

t

∫
0

AS(t − s)dW (s)‖L2(Ω,). (23)

Using the Itô isometry and Assumption 2.1 yields

‖

t

∫
0

AS(t − s)dW (s)‖2L2(Ω,) =

t

∫
0

‖AS(t − s)Q
1
2
‖2()ds ≤

t

∫
0

‖(−A)
1
2S(t − s)‖2()‖(−A)

1
2Q

1
2
‖

2
2()

ds

≤ C

t

∫
0

‖(−A)
1
2S(t − s)‖2()ds ≤ C. (24)

Substituting (24) in (23) yields

‖AX(t)‖L2(Ω,) ≤ C + C

t

∫
0

(t − s)−1(t − s)min
(

�
2
, 1
�
−�

)

ds ≤ C.

Using the second estimate of (21) one can readily prove that ‖X(t2) −X(t1)‖L2(Ω,) ≤ C(t2 − t1)
min

(

1
2
, �
2

)

.
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3.2 Proof of Theorem 1
We only give the proof for ASETD1, since the case of ASETD0 is similar. Iterating the mild solution (6) yields

X(tm) = S(tm)X0 +
m−1
∑

k=0

tk+1

∫
tk

S(tm − s)F (X(s))ds +
m−1
∑

k=0

tk+1

∫
tk

S(tm − s)dW (s). (25)

Iterating the numerical scheme (16) yields

Xℎ
m = Sℎ(tm)PℎX0 +

m−1
∑

k=0

tk+1

∫
tk

Sℎ(tm − s)PℎF (Xℎ
k )ds +

m−1
∑

k=0
Sℎ(tm−k−1)O

ℎ,N
k . (26)

Subtracting (26) from (25) yields

X(tm) −Xℎ
m = S(tm)X0 − Sℎ(tm)PℎX0 +

m−1
∑

k=0

tk+1

∫
tk

[

S(tm − s)F (X(s)) − Sℎ(tm − s)PℎF (Xℎ
k )
]

ds

+
m−1
∑

k=0

tk+1

∫
tk

S(tm − s)dW (s) −
m−1
∑

k=0
Sℎ(tm−k−1)O

ℎ,N
k

=∶ II1 + II2 + II3. (27)

Using Lemma 7 in13 with r = � = �, it holds that

‖II1‖L2(Ω,) ≤ ‖

(

S(tm) − Sℎ(tm)Pℎ
)

X0‖L2(Ω,) ≤ Cℎ�‖X0‖L2(Ω,̇� ) ≤ Cℎ� . (28)

We can split II2 in three terms as follows

II2 =
m−1
∑

k=0

tk+1

∫
tk

[

S(tm − s)F (X(s)) − S(tm − s)F (X(tk))
]

ds +
m−1
∑

k=0

tk+1

∫
tk

[

S(tm − s)F (X(tk)) − Sℎ(tm − s)PℎF (X(tk))
]

ds

+
m−1
∑

k=0

tk+1

∫
tk

[

Sℎ(tm − s)PℎF (X(tk)) − Sℎ(tm − s)PℎF (Y ℎk )
]

ds

=∶ II21 + II22 + II23. (29)

We start with the estimates of II22 and II23, since they are easier than that of II21. Using triangle inequality, Lemma 7 in13

with r = min(�, 2 − �) and � = 0, Assumption 2.1, it holds that

‖II22‖ ≤
m−1
∑

k=0

tk+1

∫
tk

‖

‖

‖

(

S(tm − s) − Sℎ(tm − s)Pℎ
)

F (X(tk))
‖

‖

‖L2(Ω,)
ds

≤ Cℎmin(�,2−�)
m−1
∑

k=0

tk+1

∫
tk

(tm − s)
min

(

− �
2
,−1+ �

2

)

‖F (X(tk))‖L2(Ω,)ds

≤ Cℎmin(�,2−�)
m−1
∑

k=0

tk+1

∫
tk

(tm − s)
min

(

− �
2
,−1+ �

2

)

ds = Cℎmin(�,2−�)
tm

∫
0

(tm − s)
min

(

− �
2
−1+ �

2

)

ds ≤ Cℎmin(�,2−�). (30)

Using Assumption 2.1 and the smoothing properties of the semigroup yields

‖II23‖L2(Ω,) ≤
m−1
∑

k=0

tk+1

∫
tk

‖

‖

‖

Sℎ(tm − s)Pℎ
(

F (X(tk)) − F (Y ℎk )
)

‖

‖

‖L2(Ω,)
ds ≤ CΔt

m−1
∑

k=0
‖X(tk) − Y ℎk ‖L2(Ω,). (31)



8 Tambue A, Mukam J D.

Let us now estimate II21. Using Taylor’s formula in Banach space yields

F (X(s)) − F (X(tk)) =
⎛

⎜

⎜

⎝

1

∫
0

F ′
(

X(tk) + �
(

X(s) −X(tk)
))

d�
⎞

⎟

⎟

⎠

(

X(s) −X(tk)
)

. (32)

From the mild solution we have

X(s) −X(tk) =
(

S(s − tk) − I
)

X(tk) +

s

∫
tk

S(s − r)F (X(r))dr +

s

∫
tk

S(s − r)dW (r). (33)

Substituting (33) in (32) yields

F (X(s)) − F (X(tk)) = Ik,s
(

S(s − tk) − I
)

X(tk) + Im,k,s

s

∫
tk

S(s − r)F (X(r))dr + Ik,s

s

∫
tk

S(s − r)dW (r), (34)

where Ik,s is given by

Ik,s ∶=

1

∫
0

F ′
(

X(tk) + �
(

X(s) −X(tk)
))

d�, tk ≤ s ≤ tk+1. (35)

Note that using Assumption 2.1, one easily check that

‖Ik,s‖() ≤ C, tk ≤ s ≤ tk+1, k ∈ {0, 1,⋯ ,M}. (36)

Substituting (34) in the expression of II21 yields

II21 =
m−1
∑

k=0

tk+1

∫
tk

S(tm − s)Ik,s
(

S(s − tk) − I
)

X(tk)ds +
m−1
∑

k=0

tk+1

∫
tk

S(tm − s)Ik,s

s

∫
tk

S(s − r)F (X(r))drds

+
m−1
∑

k=0

tk+1

∫
tk

S(tm − s)Ik,s

s

∫
tk

S(s − r)dW (r)ds

=∶ II (1)21 + II
(2)
21 + II

(3)
21 . (37)

Using Lemma 2, (36), Assumption 2.1 and the stability of the semi-group yields

‖II (1)21 ‖L2(Ω,) ≤
m−1
∑

k=0

tk+1

∫
tk

‖S(tm − s)Ik,s
(

S(s − tk) − I
)

(−A)−
�
2 (−A)

�
2X(tk)‖L2(Ω,)ds

≤ C
m−1
∑

k=0
‖(S(s − tk) − I)(−A)−

�
2
‖()‖(−A)

�
2X(tk)‖L2(Ω,)ds ≤ CΔt

�
2 . (38)

In view of Assumption 2.1, one can easily get

‖II (2)21 ‖L2(Ω,) ≤ CΔt. (39)

To estimate II (3)21 we recast it as follows

II (3)21 =
m−1
∑

k=0

tk+1

∫
tk

S(tm − s)Ik,tk

s

∫
tk

S(s − r)dW (r)ds +
m−1
∑

k=0

tk+1

∫
tk

S(tm − s)
(

Ik,s − Ik,tk
)

s

∫
tk

S(s − r)dW (r)ds

=∶ II (31)21 + II (32)21 . (40)

Along the same lines as18, (3.13) we obtain

‖II (31)21 ‖

2
L2(Ω,) ≤ CΔtmin(1+�,2). (41)
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Using triangle inequality, Hölder inequality and Itô isometry yields

‖II (32)21 ‖L2(Ω,) ≤
m−1
∑

k=1

‖

‖

‖

‖

‖

‖

‖

tk+1

∫
tk

S(tm − s)
(

Ik,s − Ik,tk
)

s

∫
tk

S(s − r)dW (r)ds
‖

‖

‖

‖

‖

‖

‖L2(Ω,)

=
m−1
∑

k=1

⎡

⎢

⎢

⎢

⎣

E
‖

‖

‖

‖

‖

‖

‖

tk+1

∫
tk

s

∫
tk

S(tm − s)
(

Ik,s − Ik,tk
)

S(s − r)dW (r)
‖

‖

‖

‖

‖

‖

‖

2

ds

⎤

⎥

⎥

⎥

⎦

1
2

≤ CΔt
1
2

m−1
∑

k=1

⎡

⎢

⎢

⎢

⎣

tk+1

∫
tk

E
‖

‖

‖

‖

‖

‖

‖

s

∫
tk

S(tm − s)
(

Ik,s − Ik,tk
)

S(s − r)dW (r)
‖

‖

‖

‖

‖

‖

‖

2

ds

⎤

⎥

⎥

⎥

⎦

1
2

≤ CΔt
1
2

m−1
∑

k=1

⎡

⎢

⎢

⎣

tk+1

∫
tk

s

∫
tk

E ‖

‖

‖

S(tm − s)Pℎ
(

Ik,s − Ik,tk
)

S(s − r)Q
1
2
‖

‖

‖

2

2()
drds

⎤

⎥

⎥

⎦

1
2

. (42)

Using Assumption 2.1 and the stability properties of the semi-group yields

E ‖

‖

‖

S(tm − s)
(

Ik,s − Ik,tk
)

S(s − r)Q
1
2
‖

‖

‖

2

2()

≤ ‖

‖

S(tm − s)(−A)�‖‖
2
() E

‖

‖

‖

(−A)−�
(

Ik,s − Ik,tk
)

‖

‖

‖

2

L2(Ω,)
‖

‖

‖

S(s − r)(−A)
1−�
2 (−A)

�−1
2 Q

1
2
‖

‖

‖

2

2()

≤ ‖

‖

S(tk+1 − s)‖‖
2
()

‖

‖

S(tm − tk+1)(−A)�‖‖
2
() E

‖

‖

‖

(−A)−�
(

Ik,s − Ik,tk
)

‖

‖

‖

2

()
‖

‖

‖

S(s − r)(−A)
1−�
2
‖

‖

‖

2

()
‖

‖

‖

(−A)
�−1
2 Q

1
2
‖

‖

‖

2

2()

≤ Ct−2�m−k−1(s − r)
min(0,�−1)E ‖

‖

‖

(−A)−�
(

Ik,s − Ik,tk
)

‖

‖

‖

2

()
. (43)

Using the definition of Iℎm,k,s, Assumption 2.1 and Lemma 2 we arrive at

‖(−A)−�
(

Ik,s − Ik,tk
)

‖() ≤

1

∫
0

‖

‖

‖

(−A)−
�
2
(

F ′
(

X(ttk) + �
(

X(s) −X(tk)
))

− F ′
(

X(tk)
))

‖

‖

‖()
d�

≤

1

∫
0

‖

‖

‖

(−A)−�
(

F ′
(

X(tk) + �
(

X(s) −X(tk)
))

− F ′
(

X(tk)
))

‖

‖

‖()
d�

≤ C

1

∫
0

�‖X(s) −X(tk)‖d� ≤ C‖X(s) −X(tk)‖. (44)

Substituting (44) in (43) and Lemma 2 yields

E ‖

‖

‖

S(tm − s)
(

Im,k,s − Im,k,tk
)

S(s − r)Q
1
2
‖

‖

‖

2

2()
≤ Ct−2�m−k−1(s − r)

min(0,�−1)E‖X(s) −X(tk)‖2

≤ Ct−2�m−k−1(s − r)
min(0,�−1)(s − tk)min(1,�). (45)
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Substituting (45) in (42) yields

‖II (32)21 ‖L2(Ω,) ≤ CΔt
1
2

m−1
∑

k=1

⎡

⎢

⎢

⎣

tk+1

∫
tk

s

∫
tk

t−2�m−k−1(s − r)
min(0,�−1)(s − tk)min(1,�)drds

⎤

⎥

⎥

⎦

1
2

≤ CΔt
1
2

m−1
∑

k=1

⎡

⎢

⎢

⎣

tk+1

∫
tk

t−2�m−k−1

s

∫
tk

(s − tk)min(1,2�−1)drds
⎤

⎥

⎥

⎦

1
2

≤ CΔt
1
2

m−1
∑

k=1

⎡

⎢

⎢

⎣

tk+1

∫
tk

t−2�m−k−1(s − tk)
min(2,2�)ds

⎤

⎥

⎥

⎦

1
2

≤ CΔtmin(1,�)Δt
1
2

m−1
∑

k=1

⎡

⎢

⎢

⎣

tk+1

∫
tk

t−2�m−k−1ds
⎤

⎥

⎥

⎦

1
2

≤ CΔtmin(1,�)
m−1
∑

k=1
Δt t−�k ≤ CΔtmin(1,�). (46)

Substituting (46) and (41) in (40) yields

‖II (3)21 ‖L2(Ω,) ≤ CΔtmin(1,�). (47)

Substituting (47), (39) and (38) in (37) yields

‖II21‖L2(Ω,) ≤ CΔtmin(1,�). (48)

Substituting (48), (31) and (30) in (29) yields

‖II2‖L2(Ω,) ≤ C
(

ℎmin(�,2−�) + Δtmin(�,1)
)

+ CΔt
m−1
∑

k=0
‖X(tk) −Xℎ

k‖L2(Ω,). (49)

Using triangle inequality, we split II3 as follows

II3 =
m−1
∑

k=0

tk+1

∫
tk

S(tm − s)dW (s) −
m−1
∑

k=0

tk+1

∫
tk

Sℎ(tm − tk+1)PℎS(tk+1 − s)dW (s)

+
m−1
∑

k=0

tk+1

∫
tk

Sℎ(tm − tk+1)Pℎ
[

S(tk+1 − s) − S1(tk+1 − s)
]

dW (s) +
m−1
∑

k=0

tk+1

∫
tk

Sℎ(tm − tk+1)Pℎ
(

I − PN
)

S1(tk+1 − s)dW (s)

+
m−1
∑

k=0

tk+1

∫
tk

Sℎ(tm − tk+1)
(

I − S2ℎ(Δt)
)

PℎPNS1(tk+1 − s)dW (s)

=∶ II31 + II32 + II33 + II34. (50)

Note that the term II31 can be written as follows

II31 =
m−1
∑

k=0

tk+1

∫
tk

[

S(tm − tk+1) − Sℎ(tm − tk+1)Pℎ
]

S(tk+1 − s)dW (s)

=

tm

∫
tm−1

(I − Pℎ)S(tm − s)dW (s) +
m−2
∑

k=0

tk+1

∫
tk

[

S(tm − tk+1) − Sℎ(tm − tk+1)Pℎ
]

S(tk+1 − s)dW (s) = II (1)31 + II
(2)
31 . (51)

Let us recall that for any 
 ∈ [0, 1], the following estimate holds, see e.g.2

‖(I − Pℎ)(−A)−
‖() ≤ Cℎ2
 . (52)
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Using the Itô isometry, (52), Assumption 2.1 and Lemma 1 yields

‖II (1)31 ‖
2
L2(Ω,) =

tm

∫
tm−1

‖(I − Pℎ)S(tm − s)Q
1
2
‖

2
2()

ds ≤

tm

∫
tm−1

‖(I − Pℎ)(−A)
− �
2S(tm − s)(−A)

1
2
‖

2
()‖(−A)

�−1
2 Q

1
2
‖

2
2()

ds

≤

tm

∫
tm−1

‖(I − Pℎ)(−A)
− �
2
‖

2
()‖S(tm − s)(−A)

1
2
‖

2
()‖(−A)

�−1
2 Q

1
2
‖

2
2()

ds

≤ Cℎ2�
tm

∫
tm−1

‖S(tm − s)(−A)
1
2
‖

2
()ds ≤ Cℎ2� . (53)

Using the Itô isometry, Assumption 2.1, the stability properties of the semigroup and13, Lemma 7 with r = �−� and � = max(0, �−
1) yields

‖II (2)31 ‖
2
L2(Ω,) =

m−2
∑

k=0

tk+1

∫
tk

‖

‖

‖

[

S(tm − tk+1) − Sℎ(tm − tk+1)Pℎ
]

S(tk+1 − s)Q
1
2
‖

‖

‖

2

2()
ds

≤ Cℎ2�−2�
m−2
∑

k=0

tk+1

∫
tk

t−1+�m−k−1
‖

‖

‖

A
�−1
2 S(tk+1 − s)Q

1
2
‖

‖

‖

2

2()
ds

≤ Cℎ2�−2�
m−2
∑

k=0

tk+1

∫
tk

t−1+�m−k−1
‖

‖

S(tk+1 − s)‖‖
2
()

‖

‖

‖

A
�−1
2 Q

1
2
‖

‖

‖

2

2()
ds ≤ Cℎ2�−2�

m−2
∑

k=0
Δt t−1+�m−k−1 ≤ Cℎ2�−2� . (54)

Substituting (54) and (53) in (51) yields

‖II31‖L2(Ω,) ≤ Cℎ�−� . (55)

Using the Itô isometry and the stability properties of the semi-group, it holds that

II32 =
m−1
∑

k=0

tk+1

∫
tk

‖

‖

‖

Sℎ(tm − tk+1)Pℎ
[

S(tk+1 − s) − S1(tk+1 − s)
]

Q
1
2
‖

‖

‖

2

2()

≤ C
m−1
∑

k=0

tk+1

∫
tk

‖

‖

‖

[

S(tk+1 − s) − S1(tk+1 − s)
]

Q
1
2
‖

‖

‖

2

()
ds. (56)

Using the Perturbation theorem of Miyadera-Voigt (1, Theorem 3.14, Chapter III, (3.22))

S(tk+1 − s) − S1(tk+1 − s) =

tk+1

∫
s

S(r)A2S1(tk+1 − r)dr. (57)

Note that one can easily check that conditions on applying Miyadera-Voigt theorem are fulfilled. This is due
to1, Chapter III, Corollary 3.16.
Inserting Q

1
2 in (57) yields

(

S(tk+1 − s) − S1(tk+1 − s)
)

Q
1
2 =

tk+1

∫
s

S(r)A2S1(tk+1 − r)(−A)
1−�
2 (−A)

�−1
2 Q

1
2 dr. (58)
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Taking the norm in both sides of (58), using Assumption 2.1 and the stabilities properties of the semigroup, it follows that

‖

‖

‖

(

S(tk+1 − s) − S1(tk+1 − s)
)

Q
1
2
‖

‖

‖2()

≤

tk+1

∫
s

‖

‖

‖

S(r)(−A)
1
2
−�‖
‖

‖()
‖

‖

‖

A−
1
2
+�A1−�2

‖

‖

‖()
‖

‖

A�2A
−�
‖

‖()
‖

‖

‖

A�S1(tk+1 − r)(−A)
1−�
2
‖

‖

‖()
‖

‖

‖

(−A)
�−1
2 Q

1
2
‖

‖

‖2()
dr

≤ C

tk+1

∫
s

r−
1
2
+�(tk+1 − r)

min
(

0, −1+�
2
−�

)

dr ≤ Cs−
1
2
+�

tk+1

∫
s

(tk+1 − r)
min

(

0, −1+�
2
−�

)

dr ≤ Cs−
1
2
+�(tk+1 − s)

min
(

1, �+1
2
−�

)

. (59)

Substituting (59) in (56) yields

‖II32‖
2
L2(Ω,) ≤ C

Δt

∫
0

s−1+2�(Δt − s)min(1+�−2�,2)ds + C
m−1
∑

k=1

tk+1

∫
tk

s−1+�(tk+1 − s)min(2,1+�−2�)ds

≤ CΔtmin(1+�−�,2) + C
m−1
∑

k=1
t−1+�k

tk+1

∫
tk

(tk+1 − s)min(2,1+�−�)

≤ CΔt(2,1+�−�) + CΔtmin(2,1+�−2�)
m−1
∑

k=0
Δt t−1+�k+1 ≤ CΔtmin(2,2�−2�). (60)

Using the Itô isometry and splitting the sum in two parts yields

‖II33‖
2
() =

m−1
∑

k=0

tk+1

∫
tk

‖

‖

‖

Sℎ(tm − tk+1)Pℎ
(

I − PN
)

S1(tk+1 − s)Q
1
2
‖

‖

‖

2

2()
ds

=

tm

∫
tm−1

‖

‖

‖

Pℎ
(

I − PN
)

S1(tm − s)Q
1
2
‖

‖

‖

2

2()
ds +

m−2
∑

k=0

tk+1

∫
tk

‖

‖

‖

Sℎ(tm − tk+1)Pℎ
(

I − PN
)

S1(tk+1 − s)Q
1
2
‖

‖

‖

2

2()
ds

= ‖II (1)33 ‖
2
L2(Ω,) + ‖II (2)33 ‖

2
L2(Ω,). (61)

We start with the estimate of ‖II33‖2L2(Ω,). Using the stability properties of the semigroup yields

‖II (2)33 ‖
2
() =

m−2
∑

k=0

tk+1

∫
tk

‖

‖

‖

Sℎ(tm − tk+1)Pℎ
(

I − PN
)

S1(tk+1 − s)Q
1
2
‖

‖

‖

2

2()
ds

≤
m−2
∑

k=0

tk+1

∫
tk

‖

‖

‖

Sℎ(tm − tk+1)(−Aℎ)
1
2
−�‖
‖

‖

2

()
‖

‖

‖

(−Aℎ)
− 1
2
+�Pℎ

(

I − PN
)

S1(tk+1 − s)Q
1
2
‖

‖

‖

2

2(H)
ds

≤ C
m−2
∑

k=0
t−1+�m−k−1

‖

‖

‖

(−A)−
1
2
+� (I − PN

)

S1(tk+1 − s)Q
1
2
‖

‖

‖

2

2()
ds

≤ C
m−2
∑

k=0
t−1+�m−k−1

‖

‖

‖

(−A1)
− 1
2
+� (I − PN

)

S1(tk+1 − s)Q
1
2
‖

‖

‖

2

2()
ds.
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Using the fact that A1, S1 and Q are self-adjoint and Assumption 2.1, it follows that

‖II (2)33 ‖
2
L2(Ω,) = C

m−2
∑

k=0

tk+1

∫
tk

t1−�m−k−1
‖

‖

‖

(

I − PN
)

S1(tk+1 − s)Q
1
2 (−A1)

− 1
2
+�‖
‖

‖

2

2()
ds

≤ C
m−2
∑

k=0

tk+1

∫
tk

t1−�m−k−1
‖

‖

‖

(

I − PN
)

(−A1)
− �
2
+�‖
‖

‖

2

()
‖

‖

‖

(−A1)
�
2
−�S1(tk+1 − s)Q

1
2 (−A1)

− 1
2
+�‖
‖

‖

2

2()
ds

≤ C
(

inf
j∈ℕd⧵N

�j

)−�+� m−2
∑

k=0

tk+1

∫
tk

t−1+�m−k−1‖S1(tk+1 − s)‖
2
()

‖

‖

‖

(−A1)
�−1
2 Q

1
2
‖

‖

‖

2

2()
ds

≤ C
(

inf
j∈ℕd⧵N

�j

)−�+� m−2
∑

k=0
Δt t−1+�m−k−1 ≤ C

(

inf
j∈ℕd⧵N

�j

)−�+�

. (62)

Along the same lines as the estimate of ‖II (2)33 ‖
2
L2(Ω,), we obtain

‖II (1)33 ‖
2
L2(Ω,) ≤ C

(

inf
j∈ℕd⧵N

�j

)−�+�

. (63)

Substituting (63) and (62) in (61) yields

‖II33‖
2
L2(Ω,) ≤ C

(

inf
j∈ℕd⧵N

�j

)−�+�

. (64)

Using the Itô isometry and splitting the sum in two part, it holds that

‖II34‖
2
L2(Ω,) =

m−1
∑

k=0

tk+1

∫
tk

‖

‖

‖

Sℎ(tm − tk+1)
(

I − S2ℎ(Δt)
)

PℎPNS1(tk+1 − s)Q
1
2
‖

‖

‖

2

2()
ds

=

tm

∫
tm−1

‖

‖

‖

(I − S2ℎ(Δt))PℎPNS1(tm − s)Q
1
2
‖

‖

‖

2

2()

+
m−2
∑

k=0

tk+1

∫
tk

‖

‖

‖

Sℎ(tm − tk+1)
(

I − S2ℎ(Δt)
)

PℎPNS1(tk+1 − s)Q
1
2
‖

‖

‖

2

2()
ds

=∶ ‖II (1)34 ‖L2(Ω,) + ‖II (2)34 ‖
2
L2(Ω,). (65)

It is well known (see e.g.11) that ‖A2ℎv‖ ≤ C ′‖v‖1 ≤ C‖(−A1)
1
2 v‖ for all v ∈ Vℎ. Hence by interpolation theory, it holds that

‖(−A2ℎ)
v‖ ≤ C ′‖(−A1)


2 v‖, −1 ≤ 
 ≤ 1, v ∈ ((−A)



2 ) ∩ Vℎ. (66)
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Using the latter estimate together with the smooth properties of the semi-group and13, Lemma 1 yields

‖II (1)34 ‖
2
L2(Ω,) =

tm

∫
tm−1

‖

‖

‖

(I − S2ℎ(Δt))(−A2ℎ)−min(�,1)(−A2ℎ)min(�,1)PℎPNS1(tm − s)Q
1
2
‖

‖

‖

2

2()
ds

≤

tm

∫
tm−1

‖

‖

‖

(I − S2ℎ(Δt))(−A2ℎ)−min(�,1)
‖

‖

‖

2

L2(Ω,)
‖

‖

‖

(−A2ℎ)min(�,1)PℎPNS1(tm − s)Q
1
2
‖

‖

‖

2

2()
ds

≤ CΔt2min(�,1)
tm

∫
tm−1

‖

‖

‖

(−A1)
min(�,1)

2 PℎPNS1(tm − s)Q
1
2
‖

‖

‖

2

2()
ds

≤ CΔt2min(�,1)
tm

∫
tm−1

‖

‖

‖

(−A1)
min(�,1)

2 PNS1(tm − s)Q
1
2
‖

‖

‖

2

2()
ds

≤ CΔt2min(�,1)
tm

∫
tm−1

‖

‖

‖

(−A1)
min(�,1)

2 S1(tm − s)Q
1
2
‖

‖

‖

2

2()
ds.

Using Assumption 2.1 and Lemma 1, it follows that

‖II (1)34 ‖
2
L2(Ω,) ≤ CΔt2min(�,1)

tm

∫
tm−1

‖

‖

‖

(−A1)
min(�,1)

2 S1(tm − s)(−A1)
1−�
2
‖

‖

‖

2

()
‖

‖

‖

(−A1)
�−1
2 Q

1
2
‖

‖

‖

2

2()
ds

≤ CΔt2min(�,1)
tm

∫
tm−1

‖

‖

‖

(−A1)
min(1,2−�)

2 S1(tm − s)
‖

‖

‖

2

()
ds ≤ CΔtmin(�,1). (67)

Using the stability properties of the semi-group yields

‖II (2)34 ‖
2
L2(Ω,) ≤

m−2
∑

k=0

tk+1

∫
tk

‖

‖

‖

Sℎ(tm − tk+1)(−Aℎ)
1−�
2
‖

‖

‖

2

()
‖

‖

‖

(−Aℎ)
−1+�
2
(

I − S2ℎ(Δt)
)

PℎPNS1(tk+1 − s)Q
1
2
‖

‖

‖

2

2()
ds

≤ C
m−2
∑

k=0

tk+1

∫
tk

t−1+�m−k−1
‖

‖

‖

(−Aℎ)
−1+�
2
(

I − S2ℎ(Δt)
)

PℎPNS1(tk+1 − s)Q
1
2
‖

‖

‖

2

2()
ds.

Similarly to (66), the following estimate holds

‖(−Aℎ)
− 

2 v‖ ≤ C‖(−A2ℎ)−
v‖, −1 ≤ 
 ≤ 1, v ∈ Vℎ. (68)

From the definition of PN , the following estimate obviously holds

‖(−A1)


2PN (−A1)

− 

2
‖() < C, 
 ∈ [−1, 1]. (69)
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Inserting and appropriate power of A2ℎ, using (66) and the equivalence of norms13, Lemma 1 and the fact A1 is self adjoint, it
follows that

‖II (2)34 ‖
2
L2(Ω,) ≤ C

m−2
∑

k=0

tk+1

∫
tk

t−1+�m−k−1
‖

‖

‖

(−A2ℎ)−1+�
(

I − S2ℎ(Δt)
)

PℎPNS1(tk+1 − s)Q
1
2
‖

‖

‖

2

2()
ds

≤ C
m−2
∑

k=0

tk+1

∫
tk

t−1+�m−k−1
‖

‖

‖

(−A2ℎ)−1+�
(

I − S2ℎ(Δt)
)

(−A2ℎ)1−�
‖

‖

‖

2

()
‖

‖

‖

(−A2ℎ)�−1PℎPNS1(tk+1 − s)Q
1
2
‖

‖

‖

2

2()
ds

≤ C
m−2
∑

k=0

tk+1

∫
tk

t−1+�m−k−1
‖

‖

‖

(−A2ℎ)−�+�
(

I − S2ℎ(Δt)
)

‖

‖

‖

2

()
‖

‖

‖

(−A1)
�−1
2 PℎPNS1(tk+1 − s)Q

1
2
‖

‖

‖

2

2()
ds

≤ CΔt2min(�−�,1)
m−2
∑

k=0

tk+1

∫
tk

t−1+�m−k−1
‖

‖

‖

(−A1)
�−1
2 PNS1(tk+1 − s)Q

1
2
‖

‖

‖

2

2()
ds. (70)

Using (69), Assumption 2.1 and the smoothing properties of the semigroup, it follows from (70) that

‖II (2)34 ‖
2
L2(Ω,) ≤ CΔt2min(�−�,1)

m−2
∑

k=0

tk+1

∫
tk

t−1+�m−k−1
‖

‖

‖

(−A1)
�−1
2 PN (−A1)

1−�
2
‖

‖

‖

2

()
‖

‖

‖

(−A1)
�−1
2 S1(tk+1 − s)Q

1
2
‖

‖

‖

2

2()
ds

≤ CΔt2min(2�−�,1)
m−2
∑

k=0

tk+1

∫
tk

t−1+�m−k−1‖S1(tk+1 − s)‖
2
()

‖

‖

‖

(−A1)
�−1
2 Q

1
2
‖

‖

‖

2

2()
ds

≤ CΔt2min(�−�,1)
m−2
∑

k=0
Δt t−1+�m−k−1ds ≤ CΔt2min(�−�,1). (71)

Substituting (71) and (67) in (65) yields

‖II34‖L2(Ω,) ≤ CΔtmin(�−�,1). (72)

Substituting (72), (64), (60) and (55) in (50) yields

‖II3‖L2(Ω,) ≤ CΔtmin(�−�,1) + C
(

inf
j∈ℕd⧵N

�j

)− �
2
+�

+ Cℎ�−� . (73)

Substituting (73), (49) and (28) in (27) yields

‖X(tm) −Xℎ
m‖L2(Ω,) ≤ C

[

Cℎ�−� +
(

inf
j∈ℕd⧵N

�j

)− �
2
+�

+ Δtmin(�−�,1)
]

+ CΔt
m−1
∑

k=0
‖X(tk) −Xℎ

m‖L2(Ω,). (74)

Applying the discrete Gronwall lemma to (74) completes the proof of Theorem 1.

4 NUMERICAL EXPERIMENTS

As in3, we consider the following stochastic transport equation

dX =
(

D�X − ∇ ⋅ (qX) − X
|X| + 1

)

dt + dW (75)

whereD > 0 is the diffusion coefficient, q is the Darcy’s velocity field as in3 andD = 10−2. We consider two types of boundary
conditions:

• (a) Homogenous Neumann boundary everywhere in the domain
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• (b) Mixed Neumann-Dirichlet boundary conditions on Λ = [0, 1] × [0, 1]. The Dirichlet boundary condition is X = 1
at Γ = {(x, y) ∶ x = 0} and we use the homogeneous Neumann boundary conditions elsewhere. This is a typical
engineering problem indeed.

For boundary condition (a) our function f using in (1) to define our Nemystkii operator F is given by

f (z, x) = − x
1 + |x|

, f ′(z, x) = − 1
(1 + |x|)2

, z ∈ Λ, x ∈ ℝ.

One can easily check that (9) holds. In fact, simple estimates yields

|f ′(z, x) − f ′(z, y)| =
|

|

|

|

(|x| − |y|)(2 + |x| + |y|)
(1 + |x|)2(1 + |y|)2

|

|

|

|

≤ 2|x − y|, z ∈ Λ, x, y ∈ ℝ.

Therefore from Proposition 1, it follows that the estimates regarding F in Assumption 2.1 is satisfied. For mixed Boundary
condition, the Nemystkii operator F also included the trace operator as we can observe in3. In this case, Assumption 2.1 is not
satisfied as the domain of the trace operator isH2(Λ). Remember that as in3 to simulate our accelerated schemes, the eigenfunc-
tions of the linear operator A should be the same as that of the covariance operatorQ, if not the projection of the eigenfunctions
ofQ onto the eigenfunction ofA should be done. As in3, our linear operator in all our simulations is the Laplace operator �with
Neumann boundary everywhere in the domain as the eigenvalues and eigenfunctions are well known in rectangular domain. In
the decomposition (5), we have used

qi,j =
(

i2 + j2
)−(�+�) , (76)

for some small � > 0 and � > 0. Since the eigenvalues of the Laplace operator with Neumann boundary are given by {�i,j}i,j≥0
given by �i,j = (�

(1)
i )

2 + (�(2)j )
2, �(l)i = i�, we obviously have

∑

(i,j)∈ℕ2
��−1i,j qi,j < �

2
∑

(i,j)∈ℕ2

(

i2 + j2
)−(1+�) <∞, 0 < � ≤ 2,

thus Assumption 8 is satisfied. Details on simulation of the accelerated schemes can be found in3. In the legends of all of our
graphs we use the following notation

• ASETD1 is used for graphs from scheme (17) where the boundary condition (b) is used, while ASETD1=N is used when
Neumann boundary condition (a) is used.

• ASETD0 is used for graphs from scheme (18) where the boundary condition (b) is used, while ASETD0=N is used when
Neumann boundary condition (a) is used.

• SETD1 is used for graphs from the analogue of ASETD1 scheme in3 where the boundary condition (b) is used, while
ASETD1=N is used when Neumann boundary condition (a) is used.

• ASETD0 is used for graphs from the analogue of ASETD0 scheme in3 where the boundary condition (b) is used, while
ASETD0=N is used when Neumann boundary condition (a) is used.

We study the convergence for the both the small time steps and large time steps in order to show the weak stability of the
schemes SETD1 and SETD0 presented in3 and the good stability properties of our accelerated schemes ASETD1 and ASETD0
that we have proposed in this work. In all our graphs, the exact sample solutions are unknown and the reference sample solutions
in each scheme in our errors computations are taken to be the numerical solution samples with that scheme with smallest time
step size (1∕15360 for graphs with small time steps in Figure 1 and 1∕240 for graphs with large time steps in Figure 2). Figure
1 shows the convergence graphs with vey small time steps with � = 1 and � = 2. The Peclet number which measures the rate
of advection over the diffusion is 24. Although we have used very small time steps, we can observe that the well known SETD1
and SETD0 schemes developed in3 are unstable at the biggest time step in the graphs.
The convergence rate of all the schemes are close to 1 for � = 1 (1.04 in Figure 1(a) and 1.01 in Figure 1(b)) and � = 2 (1.08

in Figure 1(c) and 1.05 in Figure 1(d)). This is in agreement to our theoretical result in Theorem 1. Since for boundary condition
(b) Assumption 2.1 is not satisfied for F , we can also conclude that Theorem 1 even holds for large class of nonlinear function
F than what we have considered.
In some graphs, we can also observe that the schemes SETD0 and ASETD0 are less accurate comparing to the schemes

SETD1 and ASETD1. Indeed this is normal as the deterministic term on F is approximated accurately in SETD1 (ASETD1)
than in ASETD0 (ASETD0) scheme. Figure 2 shows the convergence graphs with large time steps with � = 1 and � = 2. We
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(a) (b)

(c) (d)

FIGURE 1 (a) Convergence with the root mean square L2 norm at T = 1 as a function of Δt with 50 realizations and Δx =
Δy = 1∕120, X0 = 0. The noise is white in time and inH r in space � ∈ {1, 2} (with � = 0.05 in (76)). The temporal order of
convergence in time are close to 1 in all the graphs. Graphs in (a) and (b) are for � = 1, while graphs in (c) and (d) are for � = 2.
The reference solution used in the errors computation of each scheme is the numerical sample solution from that scheme with
1∕15360.

can observe that the schemes ASETD1 and SETD0 are still stable for large time steps and that the convergence rate are still
called to the theoretical result in Theorem 1 as we have about 0.95 in Figure2 for � = 1, and 1.05 for � = 1.

5 CONCLUSION

In this paper, we proposed two stable explicit exponential integrators to solve numerically semilinear parabolic partial differential
equations driven by additive noise, with a linear operator not necessary self-adjoint. Such equations are also called stochastic
convection-recation-diffusion equations. This generalises the known results in the literature for reaction-diffusion equation.
Moreover our analysis is done under less regularity assumptions of the nonlinear drift function. Our schemes are accelerated
and achieve higher convergence rate. For instance for additive trace class noise converge rate approximately 1 is recovered. We
provided numerical experiment to illustrate our findings.
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(a) (b)

(c) (d)

FIGURE 2 (a) Convergence with the root mean square L2 norm at T = 1 as a function of Δt with 50 realizations and Δx =
Δy = 1∕120, X0 = 0. The noise is white in time and inH r in space � ∈ {1, 2} (with � = 0.05 in (76)). The temporal order of
convergence in time are close to 1 in all the graphs. Graphs in (a) are for � = 1, while graphs in (b) are for � = 2. The reference
solution used in the errors computation of each scheme is the numerical sample solution from that scheme with 1∕240. A sample
of reference solution is in (c) while the streamline of the Darcy’s velocity q is given in (d)
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