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Abstract
In this paper we introduce the notion of fundamental group for soft topological spaces. To do so,

we define soft paths, soft loops and the notion of ξ-soft path homotopy, and study some of their basic
properties. We also show that the fundamental group of an ε-soft topological group is commutative,
and that πsoft

1 is a functor between the category of soft topological spaces and the category of groups.

1 Introduction
Modoltsov introduced soft set theory in [12] to solve many complex problems in economics, physics,
engineering, biology, sociology, medicine, etc., which were not soluble by classical mathematics because
of the various types of uncertainties presented in these problems. The theories of probability, fuzzy sets
and rough sets are similar to the soft set theory.

After Modoltsov’s work, the theory has been studied and used extensively. For example, the basic
aspects of soft set theory were developed in [7, 11, 14], and the algebraic structures of soft sets and
their applications were studied in [1, 2, 5, 9, 13, 17]. Also, soft topological spaces were discussed in
[4, 3, 18, 15, 16, 19]. This theory has a rich potential for applications. For example, Maji offered in [10]
the first practical application of soft sets in decision making problems.

Algebraic topology is one of the most important theories in mathematics which uses algebraic tools
to study topological spaces. Homotopy theory constitutes a basic part of algebraic topology and studies
topological spaces up to homotopy equivalence, which is a weaker relation than topological equivalence,
in the sense that homotopy classes of spaces are larger than homeomorphic classes. The concept of
homotopy equivalence gives rise to the classification of topological spaces according to their homotopy
properties.

H. Poincaré invented fundamental groups to convey topology to algebra by assigning a group struc-
ture on the set of homotopy classes of loops in a functorial way. Thus, if two topological spaces are
homeomorphic, then they have isomorphic fundamental groups.

The aim of this article is to define ξ-soft path homotopy to classify soft topological spaces up to
homeomorphisms and to introduce the fundamental group of a soft topological space to convey soft
topology to algebra.

For this purpose, we present in Section 2 some definitions and results of the theory of soft sets and soft
topological spaces which will be used later in the paper. In Section 3, we define the notions of soft weak
topology, τ(X) topology, τ∆ topology on [0, 1], soft path and ξ-soft path homotopy, and show that ξ- soft
path homotopy is an equivalence relation on soft paths. In Section 4, we define the fundamental group
of a soft topological space. Theorem 4.3 shows that when a soft topological space is path connected, its
fundamental group is independent of the base point. Theorem 4.7 characterizes the commutativity of
fundamental groups, and Theorem 4.12 says that the fundamental group of an ε-soft topological group
is commutative. Finally, we introduce the category of soft topological spaces and show that πsoft

1 is a
functor from this category to the category of groups.
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2 Preliminaries
In this section we present some definitions and results of the theory of soft sets and soft topological spaces
which will be used later in the paper. The contents can be found in [2, 6, 7, 8, 13, 15].

Let X and A be sets and

SS(X,A) = {(F,A) : F is a map from A to P (X)}.

We call X the initial universe, A the set of parameters, and each element of SS(X,A) a soft set over X.
If (F,A) and (G,A) are soft sets over X, then

(1) (F,A) is said to be a soft subset of (G,A) if F (a) ⊆ G(a), for every a ∈ A. In this situation we
write (F,A) ⊑ (G,A);

(2) (F,A) and (G,A) are soft equal if (F,A) ⊑ (G,A) and (G,A) ⊑ (F,A), in which case we write
(F,A) = (G,A). Also, (F,A) and (G,A) are said to be soft disjoint if F (a) ∩ G(a) = ϕ for each
a ∈ A;

(3) the soft complement of (F,A) is the soft set (F c, A), where the map F c : A −→ P (X) is defined by
F c(a) = X \ F (a), for every a ∈ A;

(4) (0, A) and (1, A) are elements of SS(X,A) such that 0(a) = ϕ and 1(a) = X, for each a ∈ A;

(5) (F,A) is said to be a soft point of SS(X,A) if F (a) ̸= ϕ for some a ∈ A, and F (a′) = ϕ for every
a′ ̸= a. We denote this by aF . A soft point aF belongs to (G,A) if F (a) ⊆ G(a). If F (a)∩G(a) = ϕ,
then aF ̸= aG for each a ∈ A.

Let I be an arbitrary index set and {(Fi, A) : i ∈ I} ⊆ SS(X,A). The soft union of these soft sets is
denoted by ⊔{(Fi, A) : i ∈ I} and is the soft set (F,A) ∈ SS(X,A), where the map F : A −→ P (X) is
defined by F (a) =

∪
{Fi(a) : i ∈ I}, for every a ∈ A. Similarly, the soft intersection of the aforementioned

soft sets is the soft set (F,A) ∈ SS(X,A), where the map F : A −→ P (X) is defined by F (a) =
∩
{Fi(a) :

i ∈ I}, for every a ∈ A. The soft intersection is denoted by ⊓{(Fi, A) : i ∈ I}.

Definition 2.1. [8] Suppose (F,A) ∈ SS(X,A) and (G,B) ∈ SS(Y,B). The cartesian product of (F,A)
and (G,B) is a soft set (H,A×B), where H : A×B −→ P (X × Y ) is defined by

H(a, b) = F (a)×G(b) = {(x, y) : x ∈ F (a), y ∈ G(b)}.

We denote the cartesian product by (F ×G,A×B).

Definition 2.2. [8] Consider SS(X,A) and SS(Y,B). Let f : X −→ Y and e : A −→ B be maps. Then,
by φf,e we denote a map from SS(X,A) to SS(Y,B) for which the following hold.

(i) If (F,A) ∈ SS(X,A), then the image of (F,A) under φf,e, denoted by φf,e(F,A), is the soft set
(G,B) ∈ SS(Y,B) such that for every b ∈ B,

G(b) =

{
∪{f(F (a)) : a ∈ e−1(b)} e−1(b) ̸= ϕ,
ϕ otherwise.

(ii) If (G,B) ∈ SS(Y,B), then the inverse image of (G,B) under φf,e, denoted by φ−1f,e(G,B), is the
soft set (F,A) ∈ SS(X,A) such that F (a) = f−1(G(e(a))), for every a ∈ A.

In Definition 2.2, the map e : A −→ B is called the parametric map.

Proposition 2.3. [6] In Definition 2.2, if the map e is a bijection, then the following hold.

(i) G(b) = f(F ◦ e−1(b)) for every b ∈ B.

(ii) If f is a bijection, then φf,e(F,A) = φ−1f−1,e−1(F,A).
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Definition 2.4. [8] A family τ of subsets of SS(X,A) is said to be a soft topology on SS(X,A) if τ
satisfies the following conditions.

(i) (0, A), (1, A) ∈ τ .

(ii) If (G,A), (H,A) ∈ τ , then (G,A) ⊓ (H,A) ∈ τ .

(iii) If (Fi, A) ∈ τ for every i in some index set I, then ⊔i(Fi, A) ∈ τ .
The triple (X, τ,A) is called a soft topological space.
If (X, τ,A) is a soft topological space, then

(6) the members of τ are called soft open sets in X;

(7) a soft set (F,A) is called soft closed if the complement (F c, A) belongs to τ . The family of all soft
closed sets is denoted by τ c. The set cl(F,A) = ∩{(H,A) ∈ τ c : (F,A) ⊆ (H,A)}, is called the soft
closure of (F,A);

(8) the soft topology τ = SS(X,A) is known as the discrete soft topology on X and (X, τ,A) is known
as the discrete soft topological space;

(9) if a ∈ A and x ∈ X, then the soft set (F,A) ∈ τ is called the a-soft open neighborhood of x if
x ∈ F (a);

(10) a subfamily B of τ is said to be a base for τ if each member of τ is a union of the members of B.
Equivalently, B is a base for τ if for each (F,A) ̸= (0, A), there exists {(Gi, A) ∈ B : i ∈ I} such
that (F,A) = ⊔{(Gi, A) : i ∈ I};

(11) a subset C of τ is called a subbase for τ if the set {∩ni=1(Fi, A) : (Fi, A) ∈ C, n ≥ 1}, is a base for τ .
Proposition 2.5. [6] For i = 1, 2, let (Xi, τi, A) be a soft topological space and let X = X1×X2. Define
τ△ by

τ△ = {(F ×G,△) : (F,A) ∈ τ1, (G,A) ∈ τ2},
where△A = {(a, a) : a ∈ A}, and the map F×G : △A −→ P (X) is defined by F×G(a, a) = F (a)×G(a),
for every (a, a) ∈ △A. Then

1. τ△A
is a soft topology on SS(X,△A);

2. if ε is a map from △A to A defined by ε(a, a) = a, then the projection maps Pi : X → Xi, defined
by Pi(x1, x2) = xi, are soft ε-continuous for i = 1, 2.

Definition 2.6. [8] Let (X, τX , A) and (Y, τY , B) be soft topological spaces, x ∈ X, and e : A −→ B
be a parametric map. A map f : X −→ Y is called soft e-continuous at x ∈ X if for every a ∈ A and
every e(a)-soft open neighborhood (G,B) of f(x) in (Y, τY , B), there exists an a-soft open neighborhood
(F,A) of x in (X, τX , A) such that φf,e(F,A) ⊑ (G,B).
If the map f is soft e-continuous at every point of X, then we say that it is soft e-continuous.
Proposition 2.7. [8] Let (X, τX , A) and (Y, τY , B) be soft topological spaces, BY be a base (subbase)
for (Y, τY , B), and e : A −→ B be a parametric map. Then the following statements are equivalent.

(i) A map f : X → Y is soft e-continuous.

(ii) For each (G,B) ∈ BY , φ−1f,e(G,B) ∈ τX .
Proposition 2.8. [8] Let (X, τX , A) and (Y, τY , B) be soft topological spaces and e be a bijective para-
metric map from A to B. Then, the following statements are equivalent.

(i) A map f : X −→ Y is soft e-continuous.

(ii) φf,e(cl(F,A)) ⊑ cl(φf,e((F,A))), for every (F,A) ∈ SS(X,A).

Definition 2.9. [8] Let (X, τX , A) and (Y, τY , B) be soft topological spaces and e be a bijective parametric
map from A to B. A bijective map f : X −→ Y is said to be a soft e-homeomorphism if f and f−1 are
soft e-continuous and soft e−1-continuous, respectively.
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3 ξ-Soft path homotopy on soft topological spaces
This section is devoted to the study of the concept of ξ-soft path homotopy between soft paths in soft
topological spaces and presents some introductory facts about it. Theorem 3.15 shows that the ξ-soft
path homotopy is an equivalence relation on soft paths.

Proposition 3.1. Let (X1, τX1
, A) and (X2, τX2

, A) be soft topological spaces. Then

τX = {(F,A) : (F,A) ⊓ (11, A) ∈ τX1
and (F,A) ⊓ (12, A) ∈ τX2

}

is a soft topology on SS(X,A), where X = X1 ∪X2.

Proof. Clearly, (0, A), (1, A) ∈ τ. Let (F1, A) and (F2, A) be in τX . Then (Fj , A) ⊓ (1j , A) ∈ τXj , for
j ∈ {1, 2}. For each a ∈ A,

[(F1, A) ⊓ (F2, A) ⊓ (11, A)](a) = (F1(a) ∩ F2(a)) ∩ 11(a)

= (F1 ∩ 11)(a) ∩ (F2 ∩ 11)(a)

= ((F1, A) ⊓ (11, A))(a) ∩ ((F2, A) ⊓ (11, A))(a).

So [(F1, A) ⊓ (F2, A)] ⊓ (11, A) = [(F1, A) ⊓ (11, A)] ⊓ [(F2, A) ⊓ (11, A)]. Since (Fj , A) ⊓ (11, A) ∈ τX1
,

for j ∈ {1, 2}, [(F1, A) ⊓ (F2, A)] ⊓ (11, A) ∈ τX1
. Similarly, ((F1, A) ⊓ (F2, A)) ⊓ (12, A)) ∈ τX2

. Hence
(F1, A) ⊓ (F2, A) ∈ τX .
Let {(Fj , A) : j ∈ J} be a family of members of τX . Put (H,A) = ⊔j∈J(Fj , A), where (Fj , A)⊓ (1i, A) ∈
τXi , for j ∈ J and i ∈ {1, 2}. For every a ∈ A, and i ∈ {1, 2},

H(a) = ∪j∈J(Fj(a) ∩ 1i(a)) = ∪j∈J(Fj ∩ 1i)(a).

So [⊔j∈J(Fj , A)] ⊓ (1i, A) = ⊔j∈J [(Fj , A) ⊓ (1i, A)], which implies that ⊔j∈J((Fj , A) ⊓ (1i, A)) ∈ τXi
.

Hence (H,A) ∈ τX . Therefore, τX is a soft topology on SS(X,A).

The soft topology introduced in Proposition 3.1 is called the soft weak topology. In this paper, we
assume that each soft union has the soft weak topology.

Proposition 3.2. (Soft Gluing Lemma). Let f : (X1, τX1 , A) −→ (Y, τY , B) and g : (X2, τX2 , A) −→
(Y, τY , B) be soft e-continuous maps, and e : A −→ B be a parametric map. If for every x ∈ X1 ∩
X2, f(x) = g(x), then the map h : (X, τX , A) −→ (Y, τY , B) given by

h(x) =

{
f(x) x ∈ X1

g(x) x ∈ X2,

is soft e-continuous, where X = X1 ∪X2.

Proof. Let (F,B) ∈ τY and (G,A) = φ−1h,e((F,B)). We show that (G,A) ∈ τX , or equivalently, (G,A) ⊓
(1i, A) ∈ τXi

, for i = 1, 2. For every a ∈ A,

((G,A) ⊓ (11, A))(a) = G(a) ∩ 11(a)
= h−1(F ◦ e(a)) ∩X1

= {x ∈ X : h(x) ∈ F ◦ e(a)} ∩X1

= {x ∈ X1 : f(x) ∈ F ◦ e(a)}
= f−1(F ◦ e(a))
= φ−1f,e((F,A))(a).

Hence, (G,A)⊓(11, A) = φ−1f,e((F,B)) ∈ τX1
. Since g is soft e-continuous, similarly, (G,A)⊓(12, A) ∈ τX2

.
By Proposition 3.1, (G,A) ∈ τX . Now Proposition 2.7 implies that h is soft e-continuous.

Proposition 3.3. Let (X, τX , A), (Y, τY , A′) and (Z, τZ , A
′′) be soft topological spaces, and e : A −→ A′

and e′ : A′ −→ A′′ be parametric maps. If f : (X, τX , A) −→ (Y, τY , A
′) is a soft e-continuous map and

g : (Y, τY , A
′) −→ (Z, τZ , A

′′) is a soft e′-continuous map, then g ◦ f : (X, τX , A) −→ (Z, τZ , A
′′) is soft

e′ ◦ e- continuous.
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Proof. Let (W,A′′) ∈ τZ and φ−1g◦f,e′◦e(W,A
′′) = (U,A). We show that (U,A) ∈ τX . For every a ∈ A,

U(a) = φ−1g◦f,e′◦e(a) = (g ◦ f)−1(W (e′ ◦ e(a))) = f−1(g−1(W (e′(e(a))))).

Hence
U(a) = f−1(φ−1g,e′(W,A

′′)(e(a)) = φ−1f,e ◦ φ
−1
g,e′(W,A

′′)(a).

Since g is soft e′-continuous, φ−1g,e′(W,A
′′) ∈ τY , and since f is soft e-continuous, φ−1f,e(φ

−1
g,e′(W,A

′′)) ∈ τX .
Hence (U,A) ∈ τX . By Proposition 2.7, g ◦ f is soft e′ ◦ e-continuous.

Notation. Let X be a topological space and A be a set of parameters. If U is an open set in X, we
assume that (λU , A) is a soft set over X such that λU (a) = U, for every a ∈ A.

Proposition 3.4. Let X be a topological space and A be a set of parameters. Then

τ(X) = {(λU , A) : U is open in X} ⊆ SS(X,A)

is a soft topology on SS(X,A).

Proof. Since X and ϕ are open subsets of X, it is clear that (0, A) and (1, A) are in τ(X).
Let (λU1 , A) and (λU2 , A) be in τ(X). For each a ∈ A,

((λU1
, A) ⊓ (λU2

, A))(a) = λU1
(a) ∩ λU2

(a) = U1 ∩ U2 = λU1∩U2
(a).

So (λU1
, A) ⊓ (λU2

, A) = (λU1∩U2
, A). Since U1 ∩ U2 is open in X, (λU1

, A) ⊓ (λU1
, A) ∈ τ(X).

Let {(λUj
, A) : j ∈ J} be a family of members of τ(X). Put (H,A) = ⊔j∈J(λUj

, A) and V = ∪j∈JUj .
For every a ∈ A, H(a) = ∪j∈JλUj (a) = ∪j∈JUj = λV (a). So (H,A) = (λV , A). Since V is an open set in
X, (H,A) ∈ τ(X). Therefore, τ(X) is a soft topology on SS(X,A).

Proposition 3.5. Let X and Y be topological spaces and f : X −→ Y be a continuous map. For every
parametric map e : A −→ B, the map f : (X, τ(X), A) −→ (Y, τ(Y ), B) is soft e-continuous.

Proof. Let a ∈ A, x ∈ X and (λW , B) be an e(a)-soft open neighborhood of f(x). Since f(x) ∈ λW (e(a)) =
W, and W is open in X, there is an open neighborhood U of x such that f(U) ⊆ W. Now (λU , B) is an
a-soft open neighborhood of x such that φf,e(λU , B) ⊑ (λW , B). The reason is that for every b ∈ B,
e−1(b) ̸= ϕ implies φf,e(λU , B)(b) = f(U) ⊆ W = (λW , B)(b), and if e−1(b) = ϕ, then φf,e(λU , B)(b) =
ϕ ⊆ (λW , B)(b). Therefore, f is soft e-continuous at x.

Proposition 3.6. Let Y be a topological space and (X, τX , A) be a soft topological space. If e : B −→ A
is a parametric map, f : Y −→ Y is continuous and α : (Y, τ(Y ), B) −→ (X, τX , A) is soft e-continuous,
then α ◦ f : (Y, τ(Y ), B) −→ (X, τX , A) is soft e-continuous.

Proof. Since f : Y −→ Y is continuous, by Proposition 3.5, f : (Y, τ(Y ), B) −→ (Y, τ(Y ), B) is soft e′-
continuous, where e′ : B −→ B is the identity map. By Proposition 3.3, α◦f : (Y, τ(Y ), B) −→ (X, τX , A)
is soft (e ◦ e′)-continuous. Since e ◦ e′ = e, α ◦ f is soft e-continuous.

Proposition 3.7. Let B be a set and ∆ = {(b, b) : b ∈ B}. Let X be a topological space and f :
X ×X −→ X ×X be a continuous map. Then the set

τ∆ = {(λU × λV ,∆) : U and V are open in X}

is a soft topology on SS(X × X,∆) such that the map f : (X × X, τ∆,∆) −→ (X × X, τ∆,∆) is soft
e-continuous, where e : ∆ −→ ∆ is a parametric map.

Proof. By Proposition 2.5 and Proposition 3.4, τ∆ is a soft topology on SS(X ×X,∆).
Let (b, b) ∈ ∆, (x, y) ∈ X ×X and (λU ×λV ,∆) be an e(b, b)-soft open neighborhood of f(x, y). Then

f(x, y) ∈ λU×λV (e(b, b)) = U×V, where U and V are open in X. By the continuity of f, there exist open
sets U1 and V1 in X such that x ∈ U1, y ∈ V1 and f(U1 × V1) ⊆ U × V. If (W,∆) = (λU1

× λV1
,∆), then

(W,∆) is a (b, b)-soft open neighborhood of (x, y) that satisfies φf,e(W,∆) ⊑ (λU × λV ,∆). Therefore, f
is soft e-continuous at (x, y).
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Proposition 3.8. Let A,B and ∆ = {(b, b) : b ∈ B} be parametric sets and e : ∆ −→ A be a parametric
map. Let Y be a topological space, and (X, τX , A) be a soft topological space. If f : Y × Y −→ Y × Y
is a continuous map and h : (Y × Y, τ∆,∆) −→ (X, τX , A) is a soft e-continuous map, then the map
h ◦ f : (Y × Y, τ∆,∆) −→ (X, τX , A) is soft e-continuous.

Proof. By Propositions 3.3, 3.6 and 3.7, the proof is straightforward.

Notation. From now on, I = [0, 1] is a subspace of the Euclidean space R.

Definition 3.9. Let (X, τX , A) and (I, τ(I), B) be soft topological spaces and e : B −→ A be a parametric
map. The map α : (I, τ(I), B) −→ (X, τX , A) is called a soft path from aF to aG if

(i) α is soft e-continuous;

(ii) α(0) ∈ F (a) and α(1) ∈ G(a).

We denote it by α : aF ∼ aG. If aF = aG, the map α is said to be a soft loop at the point aF .

Example 3.10. Let e : B −→ A be a parametric map, x ∈ X and Cx : (I, τ(I), B) −→ (X, τX , A) be given
by Cx(t) = x. It is easy to see that for every (W,A) ∈ τX , φ−1Cx,e

(W,A) = (0, B) or φ−1Cx,e
(W,A) = (1, B).

This implies that Cx is soft e-continuous. Thus, Cx is a soft loop at aF if x ∈ F (a). We call this the
constant soft loop.

Example 3.11. Let e : B −→ A be a parametric map and α : I −→ S1 be given by α(t) = e2πit. Also,
assume aF is a soft point such that F (a) = {(1, 0)}. Since α : I −→ S1 is continuous, by Proposition 3.5,
the map α : (I, τ(I), B) −→ (S1, τ(S1), A) is soft e-continuous. Since α(0) = α(1) ∈ F (a), the map α is
a soft loop at aF .

Proposition 3.12. Let α : (I, τ(I), B) −→ (X, τX , A) be a soft path from aF to aG and e : B −→ A be
parametric map. Then ←−α : (I, τ(I), B) −→ (X, τX , A) given by ←−α (t) = α(1 − t) is a soft path from aG
to aF .

Proof. Since the map α : (I, τ(I), B) −→ (X, τX , A) is soft e-continuous and the map f : I −→ I defined
by f(t) = 1−t is continuous, by Proposition 3.6,←−α is soft e-continuous. Additionally,←−α (1) = α(0) ∈ F (a)
and ←−α (0) = α(1) ∈ G(a). Therefore, the map ←−α is a soft path from aG to aF .

Proposition 3.13. Let e : B −→ A be a parametric map, α : (I, τ(I), B) −→ (X, τX , A) be a soft path
from aF to aG, and β : (I, τ(I), B) −→ (X, τX , A) be a soft path from aG to aH . Then

(i) the map αβ : (I, τ(I), B) −→ (X, τX , A) is a soft path from aF to aH , where

αβ(t) =

{
α(2t) 0 ≤ t ≤ 1

2
β(2t− 1) 1

2 ≤ t ≤ 1;

(ii) for every a′ ∈ A, φαβ,e(λI , B)(a′) = φα,e(λI , B)(a′) ∪ φβ,e(λI , B)(a′).

Proof. (i) By the Soft Gluing Lemma and Proposition 3.6, αβ is soft e-continuous. Also, αβ(0) = α(0) ∈
aF and αβ(1) = β(1) ∈ aH . Therefore, αβ is a soft path from aF to aH .
(ii) If a′ ∈ A and e−1(a′) ̸= ϕ, then

φαβ,e(λI , B)(a′) = αβ(I) = α(I) ∪ β(I) = φα,e(λI , B)(a′) ∪ φβ,e(λI , B)(a′).

We call the soft path αβ : (I, τ(I), B) −→ (X, τX , A), introduced in Proposition 3.13, the product soft
path.
Notation. Let B be a set and I = [0, 1]. We define the soft sets (C0, B) and (C1, B) over I by C0(b) = {0}
and C1(b) = {1}, for every b ∈ B.
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Definition 3.14. Let A, B be sets, ∆ = {(b, b) : b ∈ B} and e : B −→ A be a parametric map. Let
α, β : (I, τ(I), B) −→ (X, τX , A) be soft paths from aF to aG, and ξ : ∆ −→ A be a map defined by
ξ(b, b) = e(b). The soft paths α and β are called ξ-soft path homotopic if there exists a soft ξ-continuous
H : (I × I, τ∆,∆) −→ (X, τX , A) which satisfies the following conditions.

(SP1) φH,ξ(λI × C0,∆) = φα,e(λI , B).

(SP2) φH,ξ(λI × C1,∆) = φβ,e(λI , B).

(SP3) φH,ξ(C0 × λI ,∆)(a′) ⊆ F (a), for every a′ ∈ A.

(SP4) φH,ξ(C1 × λI ,∆)(a′) ⊆ G(a), for every a′ ∈ A.

We call H a ξ-soft path homotopy between the soft paths α and β, and denote it by H : α ∼sh β. We
also let SP (X,A, aF , aG) denote the set of all soft paths in a soft topological space (X, τX , A) having the
same initial soft point aF and the same final soft point aG.

Notatin. From now on, we assume that A,B,∆ and e, ξ are the parametric sets and parametric
maps used in Definition 3.14.

Theorem 3.15. The ξ-soft path homotopy relation is an equivalence relation on SP (X,A, aF , aG).

Proof. Let α, β, γ : (I, τ(I), B) −→ (X, τX , A) be soft paths from aF to aG, in (X, τX , A). Let the map
H : (I × I, τ∆,∆) −→ (X, τX , A) be defined by H(s, t) = α(s), for every s, t ∈ I. We prove that H is soft
ξ-continuous. To do this, let (s, t) ∈ I×I, (b0, b0) ∈ ∆ and (W,A) be a ξ(b0, b0)- soft open neighborhood of
H(s, t) = α(s). Then α(s) ∈ W (ξ(b0, b0)) = W (e(b0)). Thus, (W,A) is an e(b0)-soft open neighborhood
of α(s). Since α is soft e-continuous, there exists a b0-soft open neighborhood (λU , B) of s such that
φα,e(λU , B) ⊑ (W,A). If (F,∆) = (λU × λI ,∆), then (F,∆) is a (b0, b0)-soft open neighborhood of (s, t).
We show that φH,ξ(F,∆) ⊑ (W,A). For every a′ ∈ A, if ξ−1(a′) ̸= ϕ, then

φH,ξ(F,∆)(a′) = ∪{H(F (b, b)) : (b, b) ∈ ξ−1(a′)} = ∪{H(F (b, b)) : b ∈ e−1(a′)}
= H(U × I) = α(U) ⊆W (a′).

Hence φH,ξ(F,∆) ⊑ (W,A). Therefore, H is soft ξ-continuous at (s, t). We show that H satisfies (SPi),
i ∈ {1, 2, 3, 4}. Let a′ ∈ A. If ξ−1(a′) = ϕ, then it is easy to prove that (SP1), (SP2), (SP3) and (SP4)
hold for H. If ξ−1(a′) ̸= ϕ, then e−1(a′) ̸= ϕ and so

φH,ξ(λI × Cj ,∆)(a′) = H(I × {j}) = α(I) = φα,e(λI , B)(a′), j ∈ {0, 1};

φH,ξ(C0 × λI ,∆)(a′) = H({0} × I) = {α(0)} ⊆ F (a);

φH,ξ(C1 × λI ,∆)(a′) = H({1} × I) = {α(1)} ⊆ G(a).

Thus, H satisfies (SPi), for i ∈ {1, 2, 3, 4}. Hence H : α ∼sh α.
Now, let H : α ∼sh β. Then H : (I × I, τ∆,∆) −→ (X, τX , A) is a ξ-soft path homotopy . We define
H ′ : (I×I, τ∆,∆) −→ (X, τX , A) by H ′(s, t) = F (1−s, 1−t). By Proposition 3.6, H ′ is a soft ξ-continuous
map. We prove that H ′ satisfies (SPi), for i ∈ {1, 2, 3, 4}. Let a′ ∈ A. If ξ−1(a′) ̸= ϕ, then

φH′,ξ(λI × C0,∆)(a′) = H ′(I × {0}) = H((1− I)× 1) = H(I × 1)

= φH,ξ(λI × C1,∆)(a′)

= φβ,e(λI , B)(a′).

φH′,ξ(C0 × λI ,∆)(a′) = H ′({0} × I) = H(1× (1− I)) = H(1× I) = φH,ξ(C1 × λI ,∆)(a′) ⊑ G(a).

Hence (SP1) and (SP3) hold for H ′. Similarly, H ′ satisfies (SP2) and (SP4). Hence H ′ is a ξ-soft path
homotopy from β to α.
Finally, let H : α ∼sh β and H ′ : β ∼sh γ. Define the map L : (I × I, τ∆,∆) −→ (X, τX , A) by

L(s, t) =

{
H(s, 2t) 0 ≤ t ≤ 1

2
H ′(s, 2t− 1) 1

2 ≤ t ≤ 1.
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By the Soft Gluing Lemma and Proposition 3.8, the map L is soft ξ-continuous. Let a′ ∈ A and
ξ−1(a′) ̸= ϕ. Then (SP1) and (SP2) are true because

φL,ξ(λI × C0,∆)(a′) = L(I × {0}) = H(I × {0}) = φH,ξ(λI × C0,∆)(a′) = φα,e((λI , B)(a′).

φL,ξ(λI × C1,∆)(a′) = L(I × {1}) = H ′(I × {1}) = φH′,ξ(λI × C1,∆)(a′) = φγ,e((λI , B)(a′).

The statement (SP3) holds because

φL,ξ(C0 × λI ,∆)(a′) = L(0× I) = L(0× [0, 1/2]) ∪ L(0× [1/2, 1])

= H(0× [0, 1/2]) ∪H ′(0× [1/2, 1])

⊆ H(0× [0, 1]) ∪H ′(0× [0, 1])

⊆ F (a).

Similarly, (SP4) is also true. Hence L : α ∼sh γ. Consequently, ∼sh is an equivalence relation on
SP (X,A).

Proposition 3.16. If H : α1 ∼sh α2 and H ′ : β1 ∼sh β2, then α1β1 ∼sh α2β2.

Proof. Let α1 and α2 be soft paths from aF to aG, and β1 and β2 be soft paths from aG to aK . Define
the map HH ′ : (I × I, τ∆,∆) −→ (X, τX , A) by

HH ′(s, t) =

{
H(2s, t) 0 ≤ s ≤ 1

2
H ′(2s− 1, t) 1

2 ≤ s ≤ 1.

Then by the Soft Gluing Lemma and Proposition 3.8, HH ′ is a soft ξ-continuous map. We prove that
HH ′ satisfies (SPi), for i ∈ {1, 2, 3, 4}. Let a′ ∈ A and ξ−1(a′) ̸= ϕ. Then

φHH′,ξ(λI × C0,∆)(a′) = HH ′(I × {0}) = HH ′([0, 1/2]× {0}) ∪HH ′([1/2, 1]× {0})
= H(I × {0}) ∪H ′((2I − 1)× {0})
= H(I × {0}) ∪H ′(I × {0})
= φH,ξ(λI × C0,∆)(a′) ∪ φH′,ξ(λI × C0,∆)(a′)

= φα1,e(λI , B)(a′) ∪ φβ1,e(λI , B)(a′)

= φα1β1,e(λI , B)(a′);

φHH′,ξ(C0 × λI ,∆)(a′) = HH ′({0} × I) = H({0} × I) = φH,ξ(C0 × λI ,∆)(a′) ⊆ F (a).

Thus (SP1) and (SP3) hold for HH ′. It can be shown similarly that (SP2) and (SP4) also hold for
HH ′.

Proposition 3.17. If α : aF ∼ aG, β : aG ∼ aK and γ : aK ∼ aL are soft paths in a soft topological
space (X, τX , A), then the following hold.

(i) α(βγ) ∼sh (αβ)γ.

(ii) Cx0α ∼sh α and αCx1 ∼sh α, where x0 = α(0) and x1 = α(1).

(iii) α←−α ∼sh Cx0
and ←−αα ∼sh Cx1

, where x0 = α(0) and x1 = α(1).

(iv) ←−αβ ∼sh ←−β←−α .

Proof. (i) Define H : (I × I, τ∆,∆) −→ (X, τX , A) by

H(s, t) =


α( 4s

2−t ) 0 ≤ s ≤ 2−t
4

β(4s+ t− 2) 2−t
4 ≤ s ≤

3−t
4

γ( 4s+t−3
t+1 ) 3−t

4 ≤ s ≤ 1.
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By the Soft Gluing Lemma and Proposition 3.6, the map H is soft ξ-continuous. To prove (SP1), (SP2),
(SP3) and (SP4), suppose a′ ∈ A and ξ−1(a′) ̸= ϕ. Then

φH,ξ(λI × C0,∆)(a′) = H(I × {0}) = α(βγ)(I) = φα(βγ),ξ(λI , B)(a′)

φH,ξ(C0 × λI)(a′) = H({0} × I) = {α(0)} ⊆ F (a).

Hence (SP1) and (SP3) hold. Similarly, the map H satisfies (SP2) and (SP4). Therefore H : α(βγ) ∼sh

(αβ)γ.
(ii) By the Soft Gluing Lemma and Proposition 3.6, the maps H,K : (I × I, τ∆,∆) −→ (X, τX , A), given
by

H(s, t) =

{
x0 0 ≤ s ≤ 1−t

2
α( 2s+t−1

t+1 ) 1−t
2 ≤ s ≤ 1,

K(s, t) =

{
α( 2s

t+1 ) 0 ≤ s ≤ 1+t
2

x1
1+t
2 ≤ s ≤ 1,

are soft ξ-continuous. Using a method similar to the one used in (i), we find that (SPi) holds for H and
K, when i = 1, 2, 3, 4. So, H : Cx0

α ∼sh α and K : αCx1
∼sh α.

(iii) By the Soft Gluing Lemma and Proposition 3.6, the maps H,K : (I× I, τ∆,∆) −→ (X, τX , A), given
by

H(s, t) =

{
α(2s(1− t)) 0 ≤ s ≤ 1

2
α(2(1− s)(1− t)) 1

2 ≤ s ≤ 1,

K(s, t) =

{
α(2(1− s)(1− t)) 0 ≤ s ≤ 1

2
α(2s(1− t)) 1

2 ≤ s ≤ 1,

are soft ξ-continuous. An argument similar to the one in (i) shows that H : α←−α ∼sh Cx0 and K :←−αα ∼sh

Cx1
.

(iv) By (i), (ii) and (iii), the proof is straightforward.

4 Fundamental groups of soft topological spaces
In this section, we introduce the fundamental group of a soft topological space and show that πsoft

1 is a
functor between the category of soft topological spaces and the category of groups. We also prove that
the fundamental group of an ε-soft topological group is commutative.

Notation. If α : (I, τ(I), B) −→ (X, τX , A) is a soft path, we denote the equivalence class of α by
[α]e, and assume that [α]−1e = [←−α ] and [Cx]e = 1x,e, where Cx : I −→ X is the constant map Cx(t) = x.

Definition 4.1. Let aF be a soft point of a soft topological space (X, τX , A), and x0 ∈ F (a). Then the
set

πsoft
1 (X,A, x0) = {[α]e : α is a soft loop at aF , α(0) = α(1) = x0}

is called the fundamental group of (X, τX , A) at aF .

Theorem 4.2. The fundamental group πsoft
1 (X,A, x0) is a group with respect to the multiplication

[α]e[β]e = [αβ]e, with neutral element 1e = 1x0,e = [Cx0 ]e and with [α]−1e as the inverse of [α]e.

Proof. By Proposition 3.16, the multiplication is well-defined. Also, Proposition 3.17 shows that the
following identities hold.

(i) [α]e([βγ]e) = ([αβ]e)[γ]e.

(ii) 1e[α]e = [α]e, [α]e1e = [α]e.

(iii) [α]e[α]
−1
e = 1e, [α]

−1
e [α]e = 1e.
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Theorem 4.3. Let α : (I, τ(I), B) −→ (X, τX , A) be a soft path from aF to aG. Then, α induces an
isomorphism ψα from the fundamental group πsoft

1 (X,A, α(0)) to the fundamental group πsoft
1 (X,A, α(1)).

Proof. If [β]e ∈ πsoft
1 (X,A, α(0)), then ←−α βα(0) = α(1) = ←−α βα(1), and so [←−α βα]e ∈ πsoft

1 (X,A, α(1)).

Now, define the map ψα : πsoft
1 (X,A, α(0)) −→ πsoft

1 (X,A, α(1)) by ψα[β]e = [←−α βα]e. The map ψα is
well-defined because if γ ∼sh β, then ←−α γα ∼sh ←−α βα by Proposition 3.16, and so [←−α γα]e = [←−α βα]e.
The map ψα is a homomorphism because by Proposition 3.17,

ψα([β]e[γ]e) = ψα([βγ]e) = [←−α βγα]e = [←−α βα←−α γα]e = [←−α βα]e[←−α γα]e = ψα([β]eψα([γ]e).

Finally, the map ψ←−α : πsoft
1 (X,A, α(1)) −→ πsoft

1 (X,A, α(0)) is the inverse of ψα because by Proposition
3.17,

ψα ◦ ψ←−α ([β]e) = ψα([αβ
←−α ]e = [←−ααβ←−αα]e = [β]e.

Similarly, ψ←−α ◦ ψα is the identity homomorphism. Therefore, ψα is an isomorphism of groups.

Definition 4.4. A soft topological space (X, τX , A) is said to be soft path connected if any two soft
points of SS(X,A) can be joined by a soft path.

Remark 4.5. If (X, τX , A) is path connected, by Theorem 4.3, the soft fundamental group πsoft
1 (X,A, x0)

is, up to isomorphism, independent of the choice of the soft point aF . In this case, the notation πsoft
1 (X,A, x0)

is abbreviated to πsoft
1 (X,A).

Proposition 4.6. If α, β : (I, τ(I), B) −→ (X, τX , A) are soft paths from aF to aG such that α ∼sh β,
then their induced isomorphisms ψα and ψβ are identical.

Proof. Since α and β are ξ-soft path homotopic, by Proposition 3.16, ←−αα←−β ∼sh ←−α β
←−
β . So ←−α ∼sh ←−β .

Therefore, for every soft loop [γ]e at the soft point aF , the soft loops ←−α γα and ←−β γβ are ξ-soft path
homotopic. Consequently, ψα([γ]e) = ψβ([γ]e).

In the following theorem, we characterize the commutativity of πsoft
1 (X,A) for a path connected soft

topological space.

Theorem 4.7. Let aF and aG be soft points of a soft path connected space (X, τX , A). Then the fun-
damental group πsoft

1 (X,A) is commutative if and only if for each pair of soft paths α, β from aF to
aG, ψα = ψβ .

Proof. Suppose that for each pair of soft paths α, β from aF to aG, ψα = ψβ . We prove that the funda-
mental group πsoft

1 (X,A) is commutative. To do this, let [f ]e, [g]e ∈ πsoft
1 (X,A). Since (X, τX , A) is soft

path connected, there exists a soft path α from aF to aG. Since gα is a soft path from aF to aG, by the
hypothesis, ψgα([f ]e) = ψα([f ]e). Hence (←−gα)f(gα) ∼sh ←−α fα. Since ←−gα ∼sh ←−α←−g , by Proposition 3.16,
α←−α←−g fgα←−α ∼sh α←−α fα←−α . This implies that ←−g fg ∼sh f and so fg ∼sh gf. Hence, [f ]e[g]e = [g]e[f ]e.

Therefore, πsoft
1 (X,A) is commutative.

Conversely, let πsoft
1 (X,A) be commutative, and α, β be soft paths from aF to aG. Then [α

←−
β ]e[f ]e =

[f ]e[α
←−
β ]e, for every [f ]e ∈ πsoft

1 (X,A). Hence α←−β f ∼sh fα
←−
β . By Proposition 3.16, ←−β fβ ∼sh ←−α fα.

Hence ψα([f ]e) = ψβ([f ]e).

At this stage, we want to prove that the fundamental group of an ε-soft topological group is commu-
tative. To do this, we first recall the definition of ε-soft topological groups.

Definition 4.8. [6] Let (S, µ) be a group and τS be a soft topology on SS(S,A). Let △A = {(a, a) : a ∈
A} and ε : △A → A be given by ε(a, a) = a. We say that (S, τS , A, µ) is an ε-soft topological group if

(i) µ is soft ε- continuous;

(ii) the map i : S −→ S defined by i(x) = x−1 is soft e-continuous, where e : A −→ A is the identity
map.
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Notation. In an ε-soft topological group (S, τS , A, µ), the soft point 1A is defined by 1A(a) = 1,
where 1 is the neutral element of S.

Proposition 4.9. Let α, β : (I, τ(I), B) −→ (S, τS , A) be soft paths on an ε-soft topological group
(S, τS , A, µ). Then H : (I × I, τ∆,∆) −→ (S,A), given by H(s, t) = µ(α(s), β(t)), is soft ξ-continuous.

Proof. Let (b, b) ∈ ∆, (s, t) ∈ I × I and (W,A) be a ξ(b, b)-soft open neighborhood of H(s, t). Then
H(s, t) = µ(α(s), β(t)) ∈ W (ξ(b, b)) = W (e(b)). Since µ : (S × S, τ△A

, A) −→ (S, τS , A) is soft ε-
continuous, there exists an (e(b), e(b))-soft open neighborhood (V1 × V2,∆) of (α(s), β(t)) such that

φµ,ε(V1 × V2,∆) ⊑ (W,A).

Since α(s) ∈ V1(e(b)), β(t) ∈ V2(e(b)), and α, β are soft e-continuous, there exist b-soft open neighbor-
hoods (U1, B) and (U2, B) of s and t, respectively, such that

φα,e(λU1
, B) ⊑ (V1, A), φβ,e(λU2

, B) ⊑ (V2, A).

Now (U,∆) = (λU1 × λU2 ,∆) ∈ τ∆ and φH,ξ(U,∆) ⊑ (W,A) imply that H is a soft ξ-continuous map.

Proposition 4.10. Let (S, τS , A, µ) be an ε-soft topological group and α, β : (I, τ(I), B) −→ (S, τS , A)
be soft loops at 1A. Then the map α.β : (I, τ(I), B) −→ (S, τS , A), defined by α.β(t) = µ(α(t), β(t)), is
a soft loop at 1A.

Proof. Let t ∈ I, b ∈ B and (W,A) be an e(b)-soft open neighborhood of α.β(t). Since µ : (S ×
S, τ△A

, A) −→ (S, τS , A) is soft ε-continuous, there exists an (e(b), e(b))-soft open neighborhood (F ×
G,△A) of (α(t), β(t)) such that φµ,e(F × G,△A) ⊑ (W,A). Since (F,A) and (G,A) are e(b)-soft open
neighborhoods of α(t) and β(t), respectively, there exists a b-soft open neighborhood (λU , B) of t such
that

φα,e(λU , B) ⊑ (F,A), φβ,e(λU , B) ⊑ (G,A). (1)

We show that φα.β,e(λU , B) ⊑ (W,A). Let a ∈ A and e−1(a) ̸= ϕ. Then by (1), α(U) ⊆ F (a) and
β(U) ⊆ G(a). Hence α(U)× β(U) ⊆ (F ×G)(a). Therefore,

φα.β,e(λU , B)(a) = ∪{α.β(λU )(b) : b ∈ e−1(a)} = α.β(U) = µ(α(U)× β(U))

⊆ µ(F (a)×G(a)) ⊆W (a).

Consequently, α.β is soft e-continuous. It is clear that α.β(0) and α.β(1) are in 1A(1). Therefore α.β is
a soft loop at 1A.

Proposition 4.11. Let (S, τS , A, µ) be an ε- soft topological group. If α, β : (I, τ(I), B) −→ (S, τS , A)
are soft loops at 1A, then [αβ]e = [α.β]e, where α.β is as in Proposition 4.10.

Proof. By the Gluing Lemma and Proposition 3.8, the map H : (I × I,∆) −→ (S,A), given by

H(s, t) =

 α(2s) 0 ≤ s ≤ 1−t
2

α( 2s−t+1
2 ) · β( 2s+t−1

2 ) 1−t
2 ≤ s ≤

1+t
2

β(2s− 1) 1+t
2 ≤ s ≤ 1,

is ξ-soft continuous. The map H satisfies (SP1), (SP2), (SP3) and (SP4) because if a ∈ A and ξ−1(a) ̸= ϕ,
then

φH,ξ(λI × C0,∆)(a) = H(I × {0}) = αβ(I) = φαβ,e(λI , B)(a);

φH,ξ(λI × C1,∆)(a) = H(I × {1}) = α.β(I) = φα.β,e(λI , B)(a);

φH,ξ(C0 × λI ,∆)(a) = H({0} × I) = {α(0)} ⊆ 1A(1);

φH,ξ(C1 × λI ,∆)(a) = H({1} × I) = {β(1)} ⊆ 1A(1).

Hence H : αβ ∼sh α.β.
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Theorem 4.12. The fundamental group of an ε-soft topological group (S, τS , A, µ), (i.e., πsoft
1 (S,A, 1A))

is commutative.

Proof. By the Gluing Lemma and Proposition 4.10, the map H : (I × I,∆) −→ (S,A), defined by

H(s, t) =

{
α(2st).β(2(1− t)s) 0 ≤ s ≤ 1

2
α(t+ (1− t)(2s− 1)).β(1 + 2(s− 1)t) 1

2 ≤ s ≤ 1,

is soft ξ-continuous. It is easy to prove that H : α.β ∼sh β.α. Now, Proposition 4.11 implies that the
fundamental group of the ε-soft topological group (S, τS , A, µ) is commutative.

Next, we introduce the category of soft topological spaces and show that πsoft
1 is a functor from this

category to the category of groups.
Let ST OP consist of

(a) a class of soft topological spaces as objects;

(b) a set of soft e-continuous maps as morphisms;

(c) the composition of soft e-continuous maps as composition.

By Proposition 3.2, ST OP is a category. We call it the category of soft topological spaces. In this
category, for every soft topological space (X, τX , A), the map IX : (X, τX , A) −→ (X, τX , A) defined by
IX(x) = x is the identity morphism, where e : A −→ A is the identity map.
In the following Proposition, we assume that A,A′, B and ∆ = {(b, b) : b ∈ B} are parametric sets, and
e : B −→ A, e′ : A −→ A′, ξ : ∆ −→ A and ξ′ : ∆ −→ A′ are parametric maps such that ξ(b, b) = e(b)
and ξ′(b, b) = e′ ◦ e(b).

Proposition 4.13. Let f : (X, τX , A) −→ (Y, τY , A
′) be soft e′-continuous.

(i) If α : (I, τ(I), B) −→ (X, τX , A) is a soft path from aF to aG, then there exist maps F ′, G′ : A′ −→
P (Y ) such that f ◦ α : (I, τ(I), B) −→ (Y, τY , A

′) is a soft path from e(a)F ′ to e(a)G′ . Moreover, if
α is a loop at aF , then f ◦ α is a loop at e(a)F ′ .

(ii) If α, β : (I, τ(I), B) −→ (X, τX , A) are soft paths and H : α ∼sh β, then f ◦H : f ◦ α ∼sh f ◦ β.

(iii) The map πsoft
1 (f) : πsoft

1 (X,A, x0) −→ πsoft
1 (Y,A′, f(x0)), defined by πsoft

1 (f)([α]e) = [f ◦ α]e′◦e,
is a group homomorphism.

Proof. (i) Define the maps F ′ and G′ from A′ to P (Y ) by

F ′(x) =

{
f ◦ F (a) x = e(a)
ϕ otherwise,

and G′(x) =

{
f ◦G(a) x = e(a)
ϕ otherwise.

By Proposition 3.3, the map f ◦ α : (I, τI , B) −→ (Y, τY , A
′) is soft e′ ◦ e-continuous. Since α(0) ∈ F (a),

f ◦ α(0) ∈ f ◦ F (a) = F ′(a). Similarly, f ◦ α(1) ∈ G′(a). So, f ◦ α is a soft path from e(a)F ′ to e(a)G′ .
(ii) By Proposition 3.3, the map f ◦H : (I × I, τ∆, B) −→ (Y, τY , A

′) is soft e′ ◦ e-continuous. Let a′ ∈ A
and ξ′−1(a′) ̸= ϕ. Then ξ−1(a′) ̸= ϕ and

φf◦H,ξ′(λI × C0,∆)(a′) = f ◦H(I × {0}) = f ◦ φH,ξ(λI × C0,∆)(a′)

= f ◦ φα,e(λI , B)(a′)

= f ◦ α(I) = φf◦α,e′(λI , B)(a′).

Thus, f ◦H satisfies (SP1). In a similar way, we can prove that f ◦H satisfies (SP2), (SP3) and (SP4).
Hence f ◦H : f ◦ α ∼sh f ◦ β.
(iii) By (i) and (ii), the map πsoft

1 (f) is well-defined. Let α, β : (I, τ(I), B) −→ (X, τX , A) be soft loops.
By Proposition 3.13, αβ is also a soft loop. Since f ◦ (αβ) = (f ◦ α)(f ◦ β),

πsoft
1 (f)([αβ]e) = [(f ◦ α)(f ◦ β)]e′◦e = [f ◦ α]e′◦e[f ◦ β]e′◦e = πsoft

1 (f)([α]e)π1(f)([β]e).
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Theorem 4.14. πsoft
1 is a covariant functor from ST OP to G, where G is the category of groups.

Proof. If aF is a soft point of a soft topological space (X, τX , A), then by Theorem 4.2, πsoft
1 (X,A, x0) is

a group. If f : (X, τX , A) −→ (Y, τY , A
′) is soft e′-continuous, where e′ : A −→ A′ is a parametric map,

then by Proposition 4.13, πsoft
1 (f) is a homomorphism from πsoft

1 (X,A, x0) to πsoft
1 (Y,A′, f(x0)).

Now, let (X, τX , A) be a soft topological space and IX be the identity morphism of ST OP. We prove that
πsoft
1 (IX) = Iπsoft

1 (X), where Iπsoft
1 (X) is the identity morphism of G. Since IX is the identity morphism,

the parametric map e′ : A −→ A is the identity map. Hence

πsoft
1 (IX)([α]e′) = [I ◦ α]e′◦e′ = [α]e′ = Iπsoft

1 (X)([α]e′).

Let (X, τX , A), (Y, τY , A
′) and (Z, τZ , A

′′) be soft topological spaces. Let f : (X, τX , A) −→ (Y, τY , A
′)

be soft e′-continuous and g : (Y, τY , A
′) −→ (Z, τZ , A

′′) be soft e′′-continuous, where e′ : A −→ A′ and
e′′ : A′ −→ A′′ are parametric maps. Then

πsoft
1 (g ◦ f)([α]e) = [g ◦ f ◦ α]e′′◦e′◦e = πsoft

1 (g)([f ◦ α]e′◦e) = πsoft
1 (g) ◦ πsoft

1 (f)([α]e).

Hence πsoft
1 (g ◦ f) = πsoft

1 (g) ◦ πsoft
1 (f). Therefore, πsoft

1 is a covariant functor from ST OP to G.

Proposition 4.15. Let α : (I, τ(I), B) −→ (X1, τX1 , A) be a soft loop at aF and β : (I, τ(I), B) −→
(X2, τX2 , A) be a soft loop at aG. Let ∆A = {(a, a) : a ∈ A}, and e′ : A −→ ∆A defined by e′(a) = (a, a)
be a parametric map. Then α×β : (I, τ(I), B) −→ (X1×X2, τ∆A

,∆A), defined by α×β(t) = (α(t), β(t)),
is a soft loop at aF×G.

Proof. First, we show that α× β is a soft e′ ◦ e-continuous map. Let t ∈ I, b ∈ B and (U × V,∆A) be an
e′ ◦ e(b)-soft open neighborhood of α× β(t). Then

(α(t), β(t)) ∈ U × V (e′ ◦ e(b)) = U × V (e(b), e(b)) = U(e(b))× V (e(b)).

Hence α(t) ∈ U(e(b)) and β(t) ∈ V (e(b)). By the soft e-continuity of α and β, there exists a b-soft open
neighborhood (FU ′ , A) of t in τ(I) such that

φα,e(FU ′ , A) ⊑ (U,A) and φα,e(FU ′ , A) ⊑ (V,A).

Now, it is easy to prove that φα×β,e′◦e(FU ′ , A) ⊑ (U × V,∆A). Therefore, α× β is soft e′-continuous.
Since α× β(0) = (α(0), β(0)) ∈ F (a)×G(a) and α× β(1) = (α(1), β(1)) ∈ F (a)×G(a), the map α× β
is a soft loop at aF×G.

By Proposition 2.5, the maps Pj : (X1 ×X2, τ∆A
,∆A) −→ (X, τX , A) defined by Pj(x1, x2) = xj , j ∈

{1, 2}, are soft ε-continuous, where ε : ∆A −→ A is the parametric map defined by ε(a, a) = a, for every
(a, a) ∈ ∆A.

Theorem 4.16. Let aF and aG be soft points in soft topological spaces (X1, τX1
, A) and (X2, τX2

, A),
respectively. Let e′ : B −→ ∆A be a parametric map given by e′(b) = (e(b), e(b)), x0 ∈ F (a), and
y0 ∈ G(a). Then the map

ψ : πsoft
1 (X1 ×X2,∆A, (x0, y0)) −→ πsoft

1 (X1, A, x0)× πsoft
1 (X2, A, y0),

defined by ψ([γ]e′) = ([P1 ◦ γ]e, [P2 ◦ γ]e), is an isomorphism.

Proof. Let γ : (I, τ(I), B) −→ (X1×X2, τ∆A
,∆A) be a soft loop at aF×G. Since the maps P1 and P2 are

soft ε-continuous, by Proposition 3.3, P1 ◦ γ : (I, τ(I), B) −→ (X1, τX1 , A) and P2 ◦ γ : (I, τ(I), B) −→
(X2, τX2

, A) are soft ε ◦ e′-continuous. On the other hand, ε ◦ e′ = e and hence, P1 ◦ γ and P2 ◦ γ are
soft e-continuous. Additionally, γ(0), γ(1) ∈ F (a) × G(a) ⊆ X × Y . So, P1 ◦ γ(0), P1 ◦ γ(1) ∈ F (a) and
P2 ◦ γ(0), P2 ◦ γ(1) ∈ G(a). Thus

[P1 ◦ γ]e ∈ πsoft
1 (X1, A, x0) and [P2 ◦ γ]e ∈ πsoft

1 (X2, A, y0),
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and so the map ψ is well-defined. By Theorem 4.14, the maps πsoft
1 (P1) and πsoft

1 (P2) are group homo-
morphisms, and hence ψ = (πsoft

1 (P1), π
soft
1 (P2)) is a group homomorphism. To continue, we prove that

ψ is an isomorphism.
First, we prove that ψ is one-to-one. To do this, let γ : (I, τ(I), B) −→ (X1 × X2, τ∆A

,∆A) be a soft
loop at aF×G such that ψ([γ]e′) = (1x0,e, 1y0,e). Then P1 ◦ γ ∼sh Cx0

and P2 ◦ γ ∼sh Cy0
. We show that

γ ∼sh C(x0,y0).
Let γ(t) = (α(t), β(t)), where α : (I, τ(I), B) −→ (X1, τX1 , A) is a soft loop at aF and β : (I, τ(I), B) −→

(X2, τX2 , A) is a soft loop at aG. Let H1 : P1 ◦ γ ∼sh Cx0 and H2 : P2 ◦ γ ∼sh Cy0 . Define the map

H : (I × I, τ∆,∆) −→ (X1 ×X2, τ∆A
,∆A)

by H(s, t) = (H1(s, t),H2(s, t)). We show that H is a ξ-soft continuous map. Let (s, t) ∈ I × I, (b, b) ∈ ∆
and (L ×K,∆A) be an (e(b), e(b))-soft open neighborhood of H(s, t). Since (L,A) and (K,A) are e(b)-
soft open neighborhoods of H1(s, t) and H2(s, t), respectively, there exists a (b, b)-soft open neighborhood
(λU × λV ,∆) of (s, t) such that

φH1,ξ(λU × λV ,∆) ⊑ (F,A) and φH2,ξ(λU × λV ,∆) ⊑ (G,A).

Let a′ ∈ A and ξ−1(a′) ̸= ϕ. Then

φH,ξ(λU × λV ,∆)(a′) = H(U × V ) = H1(U × V )×H2(U × V )

⊆ φH1,ξ(λU × λV ,∆)(a′)× φH2,ξ(λU × λV ,∆)(a′)

⊆ F (a′)×G(a′).

Hence H is a ξ-soft continuous map. Now, we show that H satisfies (SP1), (SP2), (SP3) and (SP4). Let
a′ ∈ A and ξ−1(a′) ̸= ϕ. Then

φH,ξ(λU × C0,∆)(a′) = H(U × {0}) = H1(U × {0})×H2(U × {0})
= φH1,ξ(λU × C0,∆)(a′)× φH2,ξ(λU × C0,∆)(a′)

⊆ φP1◦γ,ξ(λU × C0,∆)(a′).

Hence H satisfies (SP1). Similarly, (SP2), (SP3) and (SP4) hold for H. Hence H : γ ∼sh C(x0,y0) which
implies that [γ]e′ = 1e′ . Therefore, ψ is one-to-one.

To complete the proof, we show that ψ is onto. Let α : (I, τ(I), B) −→ (X1, τX1
, A) be a soft loop at

aF and β : (I, τ(I), B) −→ (X2, τX2
, A) be a soft loop at aG. By Proposition 4.15,

γ = α× β : (I,B) −→ (X1 ×X2, τ∆,∆),

defined by α × β(t) = (α(t), β(t)), is a soft loop at aF×G. Clearly, ψ([γ]e′) = ([α]e, [β]e). Hence, ψ is an
epimorphism.

Conclusion and suggestions for further study
In this paper, we introduced the notions of soft path, soft loop and ξ-soft path homotopy, and proved that
ξ-soft path homotopy is an equivalence relation on SP (X,A). In Section 4, we defined the fundamental
group of a soft topological space and observed that the fundamental group of an ε-soft topological group
is commutative. We also proved that πsoft

1 is a functor between the category of soft topological spaces
and the category of groups.
A topic for further study is to define and discuss in some detail an appropriate notion of ξ-soft homotopy
between soft topological spaces, soft H-groups and soft H-cogroups.
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