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Summary

This paper discusses mixed H∞ and passive sliding mode control problem of
uncertain Markovian jump system with one-sided Lipschitz non-linear and
mode-dependent time-varying delay. The attractive point consist of the fol-
lowing. Firstly, by designing a suitable observer to estimate the unmeasurable
state of the system. Secondly, based on a new mode-dependent Lyapunov-
Krasovskii function, sufficient condition is established to ensure the stability
of the closed-loop system. Thirdly, designing a suitable controller to guaran-
tees reaches of predefined sliding mode surface. Finally, from the numerical
examples, we can testify the effectiveness and less conservativeness of the
theoretical method.
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1 INTRODUCTION

In practical application, Markovian jump systems (MJSs) are widely concerned by scholars in many fields [1-4],
such as electric power system, communication system, aircraft control, etc. Compared with traditional linear time-
invariant systems, MJSs is better to modeling more complex systems that is inevitably affected by sudden changes
in components, system internal structure and environmental disturbances [5-8]. Generally speaking, such systems
contain multiple subsystems. Different subsystems describe the subsequent behavior of dynamic, while Markov chains
describe the randomness of jump transfer among different subsystems. Especially control law design and stability
analysis are important research contents of MJSs.
Time delay is a unavoidable factor which affects the stability of systems. It exists in various parts of the system,

including system states time-delay [9], control signals time-delays [10,11], state derivative time-delays [12-14] and
distributed time-delays [15,16]. In MJSs, time-delay divided into two forms: time-delay independence and time-delay
dependence. The former has no relation with the switch signal, while the latter depends on the mode i. There are
many scholars has been studied time-delay dependence[17,18]. In [10], researchers explored about delay-dependence
stabilization of linear systems with time-varying state and input delays. In [12], this paper found novel robust
stability criterion with mixed delays and non-linear perturbations. Then, delay-dependent robust stability with mixed
delays was processed in [13]. In [14], a sliding mode approach to non-fragile observer-based control greatly improved
the control of the system. Those references deal with nonlinear functions by using Lipschitz condition. It is worth

†This is an example for title footnote.
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noting that the one-sided Lipscchitz (OSL) non-linear functions has fewer restrictions than Lipscchitz non-linearity
which some parameters is positive. The first proposed the OSL non-linear in Hu [19]. The paper of [20,21] have less
conservative than Hu [19]. Next, the observer devised for OSL non-linear systems. To our best knowledge, few studies
focus on the stability of MJSs with time-delay dependence and OSL non-linear via sliding mode control. Hence this
triggers us to study this paper.
In [26,27], the authors discussed the stability of MJSs. But, due to the influence of cost, measurement method and

other factors, the state of the system can not be obtained directly in the real word, so it is necessary to construct
an appropriate observer to estimate the state of the system. So it is necessary to construct an appropriate observer
to estimate the state of the system. Therefore, the problem of observer design become great interest to scholars
[4,28,29]. The robust observer-based finite-time for discrete-time implicit MJSs was studied in [4], the problem of
robust observer based fault-tolerant control for MJSs were obtained in [28]. In [29], a observer-based sliding mode
control for non-linear MJSs was discussed.
Sliding mode control (SMC), a kind of the variable structure control theory was proposed in 1960s, is an effective

robust control strategies for systems with uncertainties or unknown models. Different from other control strategies, it
has the feature of insensitivity, fast response and interference elimination. More recently, due to those features, SMC
is proposed in the MJSs [30-32]. In general, the SMC method consists of two steps: (1) sliding phase synthesis. (2)
arrival phase synthesis. Such as the SMC method being proposed for neutral-type stochastic systems and singular
systems in [4,33]. In [34], T-S model-based sliding mode observer design for finite-time synthesis of MJSs was studied.
Owing to the influence of external disturbances, it is necessary to consider H∞ and passivity performance. These

performances are studied in many systems, such as hybrid [35], network control [36], T-S fuzzy [37] and random
switching [38]. However, there are few discussions about mixed H∞ and passivity for uncertain MJSs in the existing
lierature.
This paper discusses mixed H∞ /passive SMC problem of uncertain stochastic MJS with OSL non-linear and

mode-dependent time-varying delay. The major contributions of this article are as follows.
1. Compared with the references [39,40], this paper which srudies the MJSs with mode-dependent time-varying

and OSL non-linear function is more extensive. 2. A new Lyapunov-krasovskill is proposed, whose the parameters
are mode-dependent in the integral term, which can reduce the conservativeness. 3. Our systems obeys one-sided
Lipschitz non-linearity which is less conservative than the traditional Lipschitz.
Notation: 〈·, ·〉 represent inner product in <n,<n is the n-dimension Euclidean space, 〈φ1, φ2〉 = φ1

Tφ2, ∀φ1, φ2 ∈
<n where φ1

T is the transpose of vector φ1, ‖·‖ denotes L2 (0,∞) norm, ∗ represent symmetric term. (λ̄, ℘, p) is
denote probability space, if there is no special explanation, matrix has suitable dimension and satisfies corresponding
algebraic operation.

2 PRELIMINARIES AND PROBLEM FORMULATION

Consider the following class of non-linear MJS

ẋ (t) = (A (rt) + ∆A (rt))x (t) + (Ad (rt) + ∆Ad (rt))x (t− Γ (t, rt)) +B (rt) (u (t) + f (x(t), t, rt))

+ Fa (rt) fa (t) +H (rt)$ (t) ,

y (t) = C (rt)x (t) ,

z (t) = Cx (rt)x (t) +D$ (rt)$ (t) ,

x (θ) = ϕ (θ) , θ ∈ [−Γ2,0]

(1)

where x (t) ∈ <n, u (t) ∈ <m, $ (t) ∈ <q, y (t) ∈ <p, z (t) ∈ <q, fa (t) ∈ <na are stand for the system state,
control input, disturbance input, measurement output, control output and actuator faults, respectively. $ (t) ∈
L2[0,∞), and f (x (t) , t, rt) ∈ <m is continuity nonlinear function, ϕ (θ) , θ ∈ [−Γ2, 0] is initial function. Matrices
A (rt) , Ad (rt) , B (rt), Fa (rt) , H (rt) , Cx (rt) , C (rt) and D$ (rt) are given constant matrix, where matrix B (rt)

is column full rank. Rank
([
Bi Fai

])
= Rank (Bi) and Fai = BiFi, Fi is constant matrix of suitable dimension.The

uncertainties ∆A (rt) and ∆Ad (rt) are unknown time-varying matrix with norm bounded,M (rt) , N (rt) and Nd (rt)
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are known matrices, and Ξ (rt, t) is satisfies

Ξ (rt, t) Ξ (rt, t) 6 I,∀i ∈ S (2)

[
∆A (rt) ∆Ad (rt)

]
= M (rt) Ξ (rt, t)

[
N (rt) Nd (rt)

]
(3)

Let{rt, t > 0} is a Markov random jumping process which takes value in a finite set S = {1, 2, ..., s} and relationships
are shown as follows:

PΥ {Υ (t+4) = j|Υ (t) = i} =

{
πij4+ o (4) , i 6= j

1 + πii4+ o (4) , i = j
(4)

where 4 > 0, lim
4→0

o(4)
4 = 0 and for i 6= j, ∀ i, j ∈ s, πij > 0, πii = −

S∑
j=1,i6=j

πij .

Consider the transition probability
∏

=
∏̂

+ ∆
∏

=
(∏̂

ij

)
+ (∆πij), while |∆πij | 6 δij , δij > 0 j 6= i, δij is

known constant
∏̂

= (π̂ij) is known constant matrix. Introducing a new parameter λij , λij = π̂ij − δij , ∀ j 6= i,

obvious δii = −
S∑

j=1,j 6=i
δij and λii = −

S∑
j=1,j 6=i

λij .

Let A (rt) = Ai, Ad (rt) = Adi, B (rt) = Bi, Fa (rt) = Fai, H (rt) = Hi, ∆A (rt) = ∆Ai, ∆Ad (rt) =

∆Adi, C (rt) = Ci, Cx (rt) = Cxi, D$ (rt) = D$i.
The (1) rewritten as follows

ẋ (t) = (Ai + ∆Ai)x (t) + (Adi + ∆Adi)x (t− Γi (t)) +Bi (u (t) + fi (x(t), t))

+ Faifa (t) + Hi$ (t) ,

y (t) = Cix (t) ,

z (t) = Cxix (t) +D$i$ (t) ,

x (θ) = ϕ (θ) , θ ∈ [−Γ2,0]

(5)

Assumption 1. ([41]) Γ1i (t) 6 Γi (t) 6 Γ2i (t) , Γ̇i (t) 6 µi, where µi (i = 1, 2) are the constants and Γ2 = max Γ2i (t)

for ∀ i ∈ S.

Definition 1. ([42])(Lipschitz condition) The non-linear function ϕ (χ) satisfies the Lipschitz condition with Lipschitz
constant σ0i as

‖ϕ (χ)− ϕ (χ̂)‖ 6 σ0i ‖χ− χ̂‖ . (6)

Definition 2. ([16])(OSL condition) The non-linear function Fi (χ (t) , t) is OSL, if exists constant σ1i ∈ <, so that

〈Fi (χ (t) , t)− Fi (χ̂ (t) , t) , χ (t)− χ̂ (t)〉 6 σ1i‖χ (t)− χ̂ (t)‖2 (7)

for i ∈ S, χ (t) , χ̂ (t) ∈ <n.

Definition 3. ([16])(quadratically inner bounded) The non-linear function Fi (χ (t) , t) is quadratically inner
bounded, if exists constant σ2i, σ3i ∈ <, so that

〈Fi (χ (t) , t)− Fi (χ̂ (t) , t) , Fi (χ (t) , t)− Fi (χ̂ (t) , t)〉 6 σ2i‖χ (t)− χ̂ (t)‖2

+ σ3i 〈χ (t)− χ̂ (t) , Fi (χ (t) , t)− Fi (χ̂ (t) , t)〉
(8)

for i ∈ S, χ (t) , χ̂ (t) ∈ <n.

Remark 1. The constants σ1i, σ2i and σ3i in one-sided Lipschitz can be negative, positive or zero, but the constants
of traditional Lipschitz must be positive. This is an advantage over the traditional Lipschitz function.

Remark 2. Generally speaking, the OSL represent a extensive family on practical non-linear possess and we can see
that the OSL condition contion contains the transitional Lipschitz in Fig.1, which has great advantages over Lipschitz
in conservativeness. Many non-linear forms satisfy the OSL continuity, but they do not satisfy the Lipschitz continuity.

Assumption 2. fa (t) ∈ <na is a constant vector, far (t) is the r-th element of fa (t), and far (t) represents the r-th
actuator failure of fa (t). And satisfy the following inequality∥∥eT (t)PiFai

∥∥− eT (t)PiFaif̂a (t) 6 0
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Fig 1 OSL, quadratically inner-bounded and Lipschitz function sets

where f̂a (t) =
‖eT (t)PiFai‖
eT (t)PiFai

fMa (t), fMa (t) = max{fa (t)}.

Lemma 1. ([43]) Matrices D,E with appropriate dimensions and for any ε > 0, 0 < P ∈ <n×n, ΓT (t) Γ (t) 6 I,
the following non-equality holds

Q+DΓ (t)E + ETΓT (t)DT 6 Q+ ε−1DTD + εETE (9)

±2DTE 6 DTPD + ETP−1E. (10)

Lemma 2. ([44]) For any symmetric M > 0, scalars ∂ < β, vector function x : [∂, β]→ <n the following non-equality
holds

(β − ∂)

β∫
∂

xT (%)Mx (%) d% >

 β∫
∂

x (%) d%

TM
 β∫
∂

x (%) d%

 (11)

Definition 4. ([39]) Arbitrarily Tp > 0 and any non-zero $ (t) ∈ L2[0,∞), γ1 (satisfies, γ1 > 0) is a performance
level of mixed H∞/ passive. When the initial value is zero, the following inequalities hold

ε


Tp∫
0

[
−αZT (t)Z (t) + 2 (1− α) γ1Z

T (t)$ (t)
]
dt

 > −γ2
1ε


TP∫
0

[
$T (t)$ (t)

]
dt

 (12)

Remark 3. Definition 4 contains H∞ and passivity performance index [39], such as
(1) When index α = 1, it is called H∞ performance index;
(2) When index α = 0, it is called passive performance index;
(3) When index α ∈ (0, 1), it is called mixed passive performance index.

3 MAIN RESULTS

We design a non-fragility obverse to evaluate the states which can not measured, the observer is designed as follow:{
˙̂x (t) =Aix̂ (t) +Adix̂ (t− Γi (t)) +Bi (u (t) + fi (x̂(t), t)) + Faif̂a (t) + (Li + ∆Li (t)) (y (t)− ŷ (t))

ŷ (t) =Cix̂ (t)
(13)

where x̂ (t) is the estimation of the state, Li is observer gains, ∆Li (t) is a perturbed matrix and
max {‖∆Li (t)‖} 6 η, fi (x̂ (t) , t) is nonlinear estimation, f̂a (t) is the observed value of actuator failure, ŷ (t) is the
measured output observation value.

Let e (t) = x (t)− x̂ (t), e (t) represents the estimation error.
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According (1) and (13) we have


ė (t) = (Ai − LiCi −∆Li (t)Ci) e (t) +Adie (t− Γi (t)) + ∆Aix (t) + ∆Adix (t− Γi (t))

+Bi (fi (x (t))− fi (x̂ (t))) + Fai

(
fa (t)− f̂a (t)

)
+Hi$ (t) ,

ey (t) = Cie (t)

(14)

where ey (t) represents the measurement output error.

3.1 Integral-type SMC design
A simple integral sliding surface is designed as follows:

S (t) = Gi (x̂ (t)− x̂ (0))−
t∫

0

Gi (Ai +BiKi)x̂ (t) ds (15)

where Ki is a controller gains, x̂ (0) is the initial value of the observer, when S (t) = 0 and Ṡ (t) = 0, which means
that the trajectory of the system can reach the sliding surface, thus an equivalent controller can be obtained.

Ueq (t) = Kix̂ (t)− (GiBi)
−1
Gi [Adix̂ (t− Γi (t)) + (Li + ∆Li (t))Cie (t)]− Fifa (t)− fi (x̂ (t))

Take Ueq (t) into (13) we get the following equation

˙̂x (t) = (Ai +BiKi)x̂ (t) +BGiAdix̂ (t− Γi (t)) +BGi (Li + ∆Li (t)) (y (t)− ŷ (t)) (16)

where BGi = I −Bi(GiBi)−1
Gi.

A new dynamic equation is obtained.
˙̂x (t) = (Ai +BiKi)x̂ (t) +BGiAdix̂ (t− Γi (t)) +BGi (Li + ∆Li (t)) (y (t)− ŷ (t))

ė (t) = (Ai − LiCi −∆Li (t)Ci) e (t) +Adie (t− Γi (t)) + ∆Aix (t) + ∆Adix (t− Γi (t))

+Bi (fi (x (t))− fi (x̂ (t))) + Fai

(
fa (t)− f̂a (t)

) (17)

3.2 Stability analysis
Theorem 1. For constants γ > 0, α > 0, 0 < Γ1 < Γ2 and 0 < µi, (i = 1, 2), the closed-loop systems (17) are
stochastically stable, if symmetric matrices Pi > 0 and Qυ > 0, υ = (1, 2, 3, 4, 5), Wi, Si and exists positive scalars
ε1i, ε2i, ε3i, ∀ i ∈ S such that the following inequalities hold

Ωi =

[
Ω1i Ω2i

∗ Ω3i

]
< 0 (18)

Pj − Pi −Wi < 0, j 6= i (19)[
Pi − vI Gi

T

∗ GiBi

]
< 0 (20)

where

Ω1i =



Ω11i 0 0 PiAdi Ω15i 0

∗ Ω22i 0 0 0 0

∗ ∗ Ω33i 0 0 0

∗ ∗ ∗ Ω44i 0 0

∗ ∗ ∗ ∗ Ω55i PiAdi
∗ ∗ ∗ ∗ ∗ Ω66i


,Ω2i =



0 Ω1,8 Ω1,9 Ω1,10

0 0 0 0

0 0 0 0

0 0 0 0

0 0 Ω5,9 Ω5,10

0 0 0 0


,Ω3i =


Ω7,7 0 0 0

∗ Ω8,8 Ω8,9 0

∗ ∗ Ω9,9 0

∗ ∗ ∗ Ω10,10
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Ω1,1i = Pi (Ai +BiKi) + (Ai +BiKi)
T
Pi
T + 2Gi

T (GiBi)
−1
Gi +Q1 +Q2 +Q3 + γ (Γ2 − Γ1)Q3

+ ε2iNi
TNi + ρ2iσ1i + ρ4iσ2i + 0.25δii

2Si + αCxi
TCxi +

S∑
j 6=i

λij (Pj − Pi)− δiiWi + η2I + LiLi
T

Ω5,5i = Pi (Ai − LiCi) + (Ai − LiCi)TPiT + ε1i
−1PiPi

T + 2v2Ci
2Ci + ε1iη

2Ci
TCi + 2ε2i

−1PiMiMi
TPi

+ ε2iNi
TNi + 2ε3i

−1PiMiMi
TPi +Q4 + γ (Γ2 − Γ1)Q4 + Γ2

2Q5 +
Γ2

2 − Γ1
2

2
Γ2γQ5 + PiPi

T

+ ρ1iσ1i + ρ3iσ2i +

S∑
j 6=i

λij (Pj − Pi)− δijWi + 0.25δii
2Si

Ω2,2i = −Q1, Ω3,3i = −Q2, Ω4,4i = − (1− µi)Q3 +Adi
TPiAdi + ε3iNdi

TNdi
Ω6,6i = εijNdi

TNdi − (1− µi)Q4 +Adi
TAdi, Ω1,5i = Pi (Li + ∆Li (t))Ci, Ω1,8i = −ρ2i2 + ρ4iσ3i

2

Ω1,9i = ρ2i
2 −

σ3iρ4i
2 , Ω1,10i = αCxi

TD$i − (1− α) γ1Cxi
T , Ω5,9i = ρ3iσ2i

2 − ρ1i
2 , Ω5,10i = PiHi

Ω7,7i = (µi − 1)Q5, Ω8,8i = −ρ4iI Ω8,9i = ρ4iI, Ω9,9i = Bi
TBi − ρ3iI − ρ4iI, γ = max {−πii}

Ω10,10i = −γ2
1I + αD$i

TD$i − 2 (1− α) γ1D$i
T , f̃i (x (t)) = fi (x (t))− fi (x̂ (t)), Γ1 = min Γ1i (t)

Then the closed-loop system (17) are stochastically stable.
Proof: First, we choose a new mode-dependent Lyaunov function as follows:

V (x̂, e, i) = V1 + V2

V1 = x̂T (t)Pix̂ (t) +

t∫
t−Γ1

x̂T (s)Q1x̂ (s) ds+

t∫
t−Γ2

x̂T (s)Q2x̂ (s) ds

+

t∫
t−Γi(t)

x̂T (s)Q3x̂ (s) ds+ γ

−Γ1∫
−Γ2

t∫
t+θ

x̂T (s)Q3x̂ (s) dsdθ

V2 = eT (t)Pie (t) +

t∫
t−Γi(t)

eT (s)Q4e (s) ds+

−Γ1∫
−Γ2

t∫
t+θ

eT (s)Q4e (s) dsdθ

+ Γ2

0∫
−Γi(t)

t∫
t+θ

eT (s)Q5e (s) dsdθ + Γ2γ

−Γ1∫
−Γ2

0∫
θ

t∫
t+λ

eT (s)Q5e (s) dsdλdθ

From the above, we get

`V1 6 2x̂T (t)Pi [(Ai +BiKi) x̂ (t) +BGiAdix̂ (t− Γi (t)) +BGi (Li + ∆Li (t))Cie (t)]

+ x̂T (t)

s∑
j=1

πijPj x̂ (t) + x̂T (t)Q1x̂ (t)− x̂T (t− Γ1)Q1x̂ (t− Γ1) + x̂T (t)Q2x̂ (t)

− x̂T (t− Γ2)Q1x̂ (t− Γ2) + x̂T (t)Q3x̂ (t)− (1− µi) x̂T (t− Γi (t))Q3x̂ (t− Γi (t))

+ γ (Γ2 − Γ1) x̂T (t)Q3x̂ (t)

(21)
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Similarly, we have

`V2 6 2eT (t)Pi[(Ai − LiCi −∆Li (t)Ci) e (t) +Adie (t− Γi (t)) + ∆Aix (t) + ∆Adix (t− Γi (t))

+Bi (fi (x (t))− fi (x̂ (t))) + Fai

(
fa (t)− f̂a (t)

)
+Hi$ (t)] + eT (t)

s∑
j=1

πijPje (t)

+ eT (t)Q4e (t)− (1− µi (t)) eT (t− Γi (t))Q4e (t− Γi (t)) + γ (Γ2 (t)− Γ1 (t)) eT (t)Q4e (t)

+ Γ2 (t) (µi (t)− 1)

t∫
t−Γi(t)

eT (s)Q5e (s)ds+ Γ2 (t) Γ2 (t) eT (t)Q5e (t)

+ Γ2 (t) γ
Γ2

2 (t)− Γ2
1 (t)

2
eT (t)Q5e (t)

(22)

Noting that πij>0 (i 6= j) and πii60 we have

s∑
j=1

πij

t∫
t−Γj(t)

x̂T (t)Q3x̂ (t)ds

=

s∑
j 6=i

πij

t∫
t−Γj(t)

x̂T (s)Q3x̂ (s)ds+ πii

t∫
t−Γi(t)

x̂T (s)Q3x̂ (s)ds

6 −πii

t∫
t−Γ2

x̂T (s)Q3x̂ (s)ds+ πii

t∫
t−Γ1

x̂T (s)Q3x̂ (s)ds

= γ

t−Γ1∫
t−Γ2

x̂T (s)Q3x̂ (s)ds

(23)

S∑
j=1

πij

0∫
−Γj(t)

t∫
t+θ

eT (s)Q5e (s)dsdθ

6 −πii

0∫
−Γ2

t∫
t+θ

eT (s)Q5e (s)dsdθ + πii

0∫
−Γ1

t∫
t+θ

eT (s)Q5e (s)dsdθ

= γ

−Γ1∫
−Γ2

t∫
t+θ

eT (s)Q5e (s)dsdθ

(24)

For
s∑
j=1

πijPj in (21), (22), we have

s∑
j=1

πijPj =

s∑
j=1

(π̂ij + ∆πij)Pj −
s∑
j=1

(∆πij + δij)Wi

=

s∑
j 6=i

λij (Pj − Pi)−∆πiiWi − δiiWi +

s∑
j 6=i

(∆πij + δij) (Pj − Pi −Wi)

(25)

where Wi = Wi
T according to (10) ∀ Si > 0 we have

−∆πiiWi 6 0.25δii
2Si +WiSi

−1Wi (26)

the upper formula can be rewritten as follows:
s∑
j=1

πijPj 6
s∑
j 6=i

λij (Pj − Pi) + 0.25δii
2Si − δiiWi +WiSi

−1W+i

s∑
j 6=i

(∆πij + δij) (Pj − Pi −Wi) (27)
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According Lemma1, we have

2x̂T (t)PiBGiAdix̂ (t− Γi (t)) 6 2x̂T (t)PiAdix̂ (t− Γi (t)) + x̂T (t)Gi
T (GiBi)

−1
Gix̂ (t)

+ x̂T (t− Γi (t))Adi
TPiAdix̂ (t− Γi (t))

(28)

2x̂T (t)PiBGi (Li + ∆L (t))Cie (t) 6 x̂T (t)LiLi
T x̂ (t) + η2x̂T (t) x̂ (t) + 2v2eT (t)Ci

TCie (t) (29)

−2eT (t)Pi∆L (t)Cie (t) 6 ε1i
−1eT (t)PiPi

T e (t) + ε1iη
2eT (t)Ci

TCie (t) (30)

2eT (t)Pi∆Aix (t) = 2eT (t)Pi∆Ai (x̂ (t) + e (t))

6 2ε2i
−1eT (t)PiMiMi

TPie (t) + ε2ix̂
T (t)Ni

TNix̂ (t) + ε2ie
T (t)NiNi

T e (t)
(31)

2eT (t)Pi∆Adix (t− Γi (t)) = 2eT (t)Pi∆Adi (x̂ (t− Γi (t)) + e (t− Γi (t)))

6 2ε3i
−1eT (t)PiMiMi

TPie (t) + ε3ix̂ (t− Γi (t))Nd
T
i Ndix̂ (t− Γi (t))

+ ε3ie
T (t− Γi (t))Nd

T
i Ndie (t− Γi (t))

(32)

2eT (t)PiBi (fi (x (t))− fi (x̂ (t))) 6 eT (t)PiPi
T e (t) + (fi (x (t))− fi (x̂ (t)))

T
Bi

TBi (fi (x (t))− fi (x̂ (t))) (33)

from Definition 2, 3 we have
ρ1iσ1ie

T (t) e (t)− ρ1if̃ (x (t) , t) e (t) > 0 (34)

ρ2iσ1ix̂
T (t) x̂ (t) + ρ2if̃ (x (t) , t) x̂ (t)− ρ2if (x (t) , t) x̂ (t) > 0 (35)

from Definition 3 we have

ρ3iσ2ie
T (t) e (t) + ρ3ie

T (t) f̃ (x (t) , t)− ρ3if̃
T (x (t) , t) f̃ (x (t) , t) > 0 (36)

ρ4iσ2ix̂
T (t) x̂ (t)− ρ4iσ3ix̂

T (t) f̃ (x (t) , t)− ρ4if̃
T (x (t) , t) f̃ (x (t) , t)

+ ρ4iσ3ix̂
T (t) f (x (t) , t) + 2ρ4if̃ (x (t) , t) f (x (t) , t)− ρ4if

T (x (t) , t) f (x (t) , t) > 0
(37)

we definite

J (t) = ε


Tp∫
0

[
αZT (t)Z (t)− 2 (1− α) γ1Z

T (t)$ (t)− γ2
1$

T (t)$ (t)
]
dt

 (38)

Lastly, bring (21-37) into (38), it is obvious that

J (t) = ε


Tp∫
0

[
αZT (t)Z (t)− 2 (1− α) γ1Z

T (t)$ (t)− γ2
1$

T (t)$ (t) + `V
]
dt


= ε


Tp∫
0

[
αxT (t)Cxi

T (t)Cxi (t)x (t) + 2αxT (t)Cxi
T (t)D$i$ (t) +$T (t)D$i

TD$i$ (t)

− 2 (1− α) γ1x
T (t)Cxi

T (t)$ (t)− 2 (1− α) γ1$
T (t)D$i

T$ (t)− γ2
1$

T (t)$ (t) + `V ] dt}

= ε


Tp∫
0

ξ1
TΩiξ1dt


where

ζ1 =
[
x̂T (t) x̂T (t− Γ1) x̂T (t− Γ2) x̂T (t− Γi) e

T (t)
]

ζ2 =
[
eT (t− Γi)

∫ t
t−Γi

eT (s) ds fi (x (t)) f̃i (x (t)) $T (t)
]
, ξ1 =

[
ζ1 ζ2

]
From the above formula, we can get J (t) 6 0 for any given t > 0, the closed-loop systems (17) is mixed H∞ and

passive, The proof is completed. It is particularly noteworthy that when $ (t) = 0, the closed-loop system is also
stable. In the (29) formula, we assume Pi + (GiBi)

−1Gi < vI, as can be seem form the Schur lemma, it is equivalent
to (20).
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Remark 4. In `V , the integral term
s∑
j=1

πij
∫ t
t−Γj(t)

x̂T (t)Q3x̂ (t)ds,
s∑
j=1

πij
∫ t
t−Γj(t)

eT (t)Q4 (t)ds,

S∑
j=1

πij
∫ 0

−Γj(t)

∫ t
t+θ

eT (s)Q5e (s)dsdθ are mode dependent, and using (23-24) can make it offset.

Theorem 2. For constants γ > 0, α > 0, 0 < Γ1 < Γ2 and 0 < µi < 1, (i = 1, 2), the systemd (17) are stochastically
stable, if symmetric matrices Pi > 0, Qυ > 0, υ = (1, 2, 3, 4, 5), Wi, Si and exists positive scalars ε1i, ε2i, ε3i, ∀ i ∈ S
so that the following LMI hold.

fi =

[
f1i f2i

f3i f4i

]
6 0 (39)

Pj − Pi −Wi < 0, j 6= i (40)[
Pi − vI Gi

T

∗ GiBi

]
< 0 (41)

where

f1i =



f1,1i 0 0 AdiXi
T 0 0 0 0 0 f1,10i

∗ −R2 0 0 0 0 0 0 0 0

∗ ∗ −R3 0 0 0 0 0 0 0

∗ ∗ ∗ f4,4i AdiXi
T 0 0 0 0 0

∗ ∗ ∗ ∗ f5,5i 0 0 0 0 Hi

∗ ∗ ∗ ∗ ∗ f6,6i 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ f7,7i 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ f8,8i 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ f9,9i 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ f10,10i



f6i =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ψ1i ψ2i 0 0 0

0 0 ψ3i ψ4i ψ5i

 ,f7i =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ψ6i ψ7i ψ8i 0 0

 ,f8i =


0 0 0 ψ9i ψ10i

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


f4i =

[
f6i f7i

0 f8i

]
,f5i = −diag

{
Xi Xi ε1i I ρ1iδ1i ρ3iδ2i I Ξ I I

}
f1,1i = AiXi

T +BiTi +XiAi
T + Ti

TBi
T +R1 +R2 +R3 + γ (Γ2 − Γ1)R3 + 0.25δii

2S̄i − δiiW̄i

f5,5i = AiXi
T +XiAi

T +R4 + Γ2
2R5 + γ (Γ2 − Γ1)R4 + γΓ2

Γ2
2 − Γ1

2

2
R5 − δijWi + 0.25δii

2Si

+ I + 2ε2i
−1MiMi

T + 2ε3i
−1MiMi

T + ε1i
−1I + 2R̃

f6,6i = − (1− µi)R4, f1,4i = AdiXi
T , f7,7i = − (1− µi)R5, f8,8i = −ρ4iI, f1,8i = Xi(ρ4iδ3i−ρ2i)

2 , f5,10i = Hi,
f9,9i = Bi

TBi−ρ4iI−ρ3iI, f1,9i = Xi(−ρ4iδ3i+ρ2i)
2 , f5,9i = (ρ3iδ3i−ρ1i)

2 I, f8,9i = ρ4iI, f10,10i = −γ2
1−2 (1− α) γ1D$i,

f1,10i = αXi

(
Cxi

TD$i

)
− 2 (1− α) γ1XiCxi

T , Θi =
{√

λ1iXi · · ·
√
λi(i−1)Xi

√
λi(i+1)Xi · · ·

√
λisXs

}
Ξi = −diag

{
X1 · · · Xi−1 Xi+1 · · · Xs

}
, ψ1 = XiAdi

T , ψ2 = ε3iXiNdi
T , ψ3 = ε1iηXiCi

T , ψ4 = ε2iXiNi
T

ψ5 = ρ1iδ1iXi, ψ6 = ρ3iδ2iXi, ψ7 =
√

2vXiNi
T , ψ8 = Θi, ψ9 = ε3iXiNdi

T , ψ10 = XiNdi
T , ξ2 =

[
ζ1 ζ2

]
ζ1 =

[
x̂T (t) x̂T (t− Γ1) x̂T (t− Γ2) x̂T (t− Γi) e

T (t)
]
, ζ2 =

[
eT (t− Γi)

∫ t
t−Γi

eT (s) ds fi (x (t)) f̃i (x (t)) $T (t)
]

Proof: Let Xi = Pi
−1,Yi = PiLi, Ti = KiXi, XiSiXi

T = S̄i, XiQ1Xi
T = R1, XiQ2Xi

T = R2, XiQ3Xi
T = R3,

XiQ4Xi
T = R4, XiQ5Xi

T = R5, LiCiXi
T = R̃i, XiWiXi

T = W̄i, By theorem 1 the Pre-and post-multiplying (19)
by diag {Xi, Xi, Xi, Xi, Xi, Xi, Xi, I, I, I} and its transpose, the fi 6 0, moreover Ki = TiXi

−1, Li = Pi
−1Yi. The

proof is completed.

Remark 5. The processing of
s∑
j=1

πijPj is in the (27) form, where the range of transition probabilities is broader and

easier to obtain in practice, and the feasibility solution is easier to derive in LMIs.
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3.2.1 SMC law design
Remark 6. Design a proper SMC law to enable its trajectory to reach the sliding mode surface S (t) = 0, the SMC
law design as follows.

u (t) = ua (t) + ub (t) (42)
ua (t) = Kix̂ (t)− Fif̂a (t)− fi (x̂ (t))

ub (t) = −λ̄i (t) sign (S (t))

where

λ̄i (t) = h+
∥∥∥(GiBi)

−1
GiAdi

∥∥∥ ‖x̂ (t− Γi (t))‖+
∥∥∥(GiBi)

−1
Gi (Li + ∆Li (t))Ci

∥∥∥ ‖e (t)‖

Theorem 3. Presume the switching surface is given in (15) with Ki and Li have been solved in Theorem 2, the
state trajectories can reach the sliding mode surface S (t) = 0 with SMC (42) in finite time.
Proof: Choose Lyapunov function as

VS =
1

2
ST (t)S (t) (43)

According to (43), we get

`VS = ST (t) Ṡ (t)

= ST (t)
[
Gi ˙̂x (t)−Gi (Ai+BiKi) x̂ (t)

]
= ST (t)

{
Gi

[
Adix̂ (t− Γi (t)) +Bi (u (t) + fi (x̂ (t))) +BiFif̂a (t)−BiKix̂ (t)

]}
+ST (t)Gi (Li + ∆Li (t))Cie (t)

6 ‖S (t)‖ ‖Gi‖
[
‖Adix̂ (t− Γi (t))‖+ ‖Bi (u (t) + fi (x̂ (t)))‖+ ‖Bi‖

∥∥∥(Fif̂a (t)−Kix̂ (t)
)∥∥∥

+ ‖LiCie (t)‖+η ‖Ci‖ ‖e(t)‖

we have
`VS 6 −h ‖S (t)‖ = −

√
2hV

1
2 (t) (44)

where h > 0, then, by determiningS(t0, r0) = S0, we have

ε[Vs(S(t), i, t)|S(t0, r0)] 6 −h
2
t+ Vs

1
2 (S0, i, t0)

It can be known that there exist t∗ 6 2Vs
1
2 (S0, i, t0)/h, such that[Vs(S(t), i, t)|S(t0, r0)], which implies the state

strategies will reach the sliding mode surface in finite time. The proof of theorem 3 is completed.

Remark 7. In this paper, the SMC law includes observer gain Li and control gain Ki for error system, which is
different from other papers, such as [9,10,44]. According to the proof of Theorem 3, the state trajectories of system
(1) can reach onto the predefined surface in finite time.

4 EXAMPLES FOR ENUNCIATIONS

4.1 example 1
In order to verify the validity of theorem 2, consider the jump of two modes. The parameters described by:

Mode 1

A1 =

 −3 2 −0.2

−0.1 −1 −4

2 1 −1

, Ad1 =

 0.1 −0.1 0.01

−0.2 −0.1 0.1

−0.1 −0.1 0.3

, B1 =

0.1

0.2

0.1

, Fa1 =

0.1

0.2

0.1

, H1 =

0.1

0

0.1

, C1 =
[
0.1 1.2 −0.1

]
,

Cx1 =
[
0.1 −0.01 0.01

]
, M1 =

−0.1

0.3

−0.1

, N1 =
[
0.1 0.01 −0.1

]
, Nd1 =

[
−0.1 −0.1 0.1

]
, D$1 = 0.2
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Mode2

A2 =

 −3 −2 2.5

−0.1 −3 −2

−4 −1 −3.5

, Ad2 =

−0.1 −0.1 0.1

0.3 −0.1 −0.1

−0.1 −0.2 0.1

, B2 =

0.2

0.1

0.1

, Fa2 =

0.2

0.1

0.1

, H2 =

0.1

0.1

0.1

, C2 =
[
0.1 0.8 −0.1

]
,

Cx2 =
[
−0.01 0.01 −0.01

]
, M2 =

 0.1

−0.2

0.3

, N2 =
[
0.1 0.1 −0.5

]
, Nd2 =

[
−0.1 0.1 0.01

]
, D$2 = 0.2

consider the known part of the transition probability matrix and the transition probability error matrix∏̂
=

[
−0.6 0.6

0.9 −0.9

]
,

[
δ11 δ12

δ21 δ22

]
=

[
−0.4 0.4

0.1 −0.1

]
Next, the selected parameters are given. ε11 = ε12 = 0.5, ε21 = ε22 = 0.1, ε31 = ε32 = 0.1, a = 0.5 and γ1 = 1,

time delay and time delay derivatives are d1 = 0.1, d2 = 0.6, µ1 = 0.01, µ2 = 0.6, the Lipschitz constant is σ11 =

σ12 = 0.3, σ21 = σ22 = 0.01 and σ31 = σ32 = 0.7. Use the same method as [28], assumption fi (x (t)) = 0.3 sin (x (t)),
in definition 2,3, we can prove that fiT (x(t))x(t) 6 0.3‖x(t)‖2, fiT (x(t))fi(x(t)) 6 0.09‖x(t)‖2. The remaining
parameters are η = 0.5, ρ11 = ρ12 = 0.15, ρ21 = ρ22 = 0.75, ρ31 = ρ32 = 0.2 and ρ41 = ρ42 = 0.7. Exogenous input
$ (t) = 0.2 · exp (−100t).
based on the above discussion, solve the linear matrix inequality, and obtain the controller gain and observer gain.

K1 =
[
3.6150 - 5.1410 - 7.3831

]
K2 =

[
- 6.9409 - 5.3619 8.8466

]
L1 =

 - 8.3244
28.4930
- 31.5833

 L2 =

 - 3.3630
14.7427
- 16.3453


The results are display in Figs.2-7. Fig.2 is the state of closed-loop system, Fig.3 and Fig.4 show the observational

state trajectory and error state trajectory of the system, Fig.5 and Fig.6 represent the controller trajectory and
sliding surface function, and the switching function is described in Fig.7.

Fig 2 The state response x(t)

4.2 example 2
Consider a RLC from ([39]) circuit where the current in the circuit is i (t), L, R and C represent inductance,

resistance and capacity, u (t) is the driver, L, R and C voltages and quantities are represent by uL (t) , uR (t) and uC (t).
It is assumed that the switch have two places and switches from one place to another in a stochastic method, and is
modeled by taking the value of Markov process in finite state space S = {1, 2}. Let x1 (t) = uC (t) and x2 (t) = iL (t),
circuits can be designed as MJS (1) with the parameters as follows:

Ai =

[
0 1

Ci

− 1
Li
− R
Li

]
Bi =

[
0
1
Li

]
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Fig 3 The estimation state x̂ (t)

Fig 4 The estimation error e (t)

Fig 5 controller trajectory u (t)

where R = 0.01Ω, C1 = 0.4F , C2 = 0.6F , L1 = 3H, and L2 = 7H. Next, some other parameters are given
Mode 1
Ad1 =

[
−0.1 0.08

−0.2 −0.3

]
, Fa1 =

[
0
1
3

]
, H1 =

[
−0.1

0.8

]
, C1 =

[
−0.2 −0.5

]
, Cx1 =

[
0.5 −1

]
, M1 =

[
−0.1

−0.8

]
N1 =

[
0.03 0.1

]
, Nd1 =

[
0.01 0.02

]
, D$1 = 0.01

Mode 2
Ad2 =

[
0.06 −0.2

0.2 −0.3

]
, Fa2 =

[
0
1
7

]
, H2 =

[
−0.1

0.2

]
, C2 =

[
−0.42 0.1

]
, Cx2 =

[
0.1 −0.012

]
, M2 =

[
0.23

0.1

]
N2 =

[
−0.1 0.002

]
, Nd2 =

[
0.01 0.01

]
, D$2 = 0.01
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Fig 6 sliding mode s (t)

Fig 7 switching signal

Consider the known part of the transition probability matrix and the transition probability error matrix∏̂
=

[
−0.11 0.11

0.11 −0.11

]
,

[
δ11 δ12

δ21 δ22

]
=

[
−0.1 0.1

0.1 −0.1

]
Similarly, introducing a new parameter λij , λij = π̂ij−δij , ∀ j 6= i obvious δii = −

S∑
j=1,j 6=i

δij and λii = −
S∑

j=1,j 6=i
λij .

Next, given the selected parameters, ε11 = ε12 = 0.5, ε21 = ε22 = 0.1 and ε31 = ε32 = 0.1, a = 0.5, γ1 = 1, time delay
and time delay derivatives are d1 = 0.1, d2 = 0.6, µ1 = 0.02, µ2 = 0.02. The remaining parameters are η = 0.11,
ρ11 = ρ12 = 0.105, ρ21 = ρ22 = 0.77, ρ31 = ρ32 = 0.2 and ρ41 = ρ42 = 0.7. The nonlinear function is the same sa
example 1, exogenous input $ (t) = 0.2 · exp (−100t).
Based on the above discussion, solve the linear matrix inequality, and obtain the controller gain and observer gain.

K1 =
[
−4.6195 −8.3922

]
K2 =

[
- 3.4159 - 8.4352

]
L1 =

[
- 4.4565
- 52.3160

]
L2 =

[
- 47.6393
- 67.3875

]
The results are display in Figs.8-13. Fig.8 is the state of closed-loop system, Fig.9 and Fig.10 show the observational
state trajectory and error state trajectory of the system, Fig.11 and Fig.12 represent the controller trajectory and
sliding surface function, and the switching function is described in Fig.13.

5 CONCLUSIONS

This paper is about mixed H∞ /passive SMC problem of uncertain stochastic MJSs, transition probabilities
bound and unmeasured states. The considered non-linear system satisfies a class of generalized Lipshitz which is less
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Fig 8 The state response x(t)

Fig 9 The estimation state x̂ (t)

Fig 10 The estimation error e (t)

conservative than traditional Lipshitz. We designed parameters are mode-dependent in the integral term, which can
reduce the conservativeness. The mixed H∞ /passive performance index is more advanced. All of our results have
been testified by numerical examples verifying the availability.
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Fig 11 controller trajectory u (t)

Fig 12 sliding mode s (t)

Fig 13 switching signal
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