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Abstract: The Pearson type family densities are among the most important classes of distri-

butions that play a key role in the directional statistics. Their particular structures make them

suitable candidates to analysis data on non-Euclidean space, such as sphere. To model data scat-

tered asymmetrically on such spaces, the researchers confined themselves to extend particular

distributions from the class of the Pearson type family densities. Those specific distributions are

symmetric in nature but their extended versions are usually heavy tailed. In this paper, we in-

troduce some alternative probability density functions in the class of Pearson type distributions

on the sphere having the spherical Student’s t, Fisher and Chi-square densities as the subfamilies.

Via investigating various theoretical properties of this new subclass, we show that it is inheritably

asymmetric. To further evaluating this subclass, some simulation studies are conducted. Also,

modeling of two real-life data using the proposed densities and then comparing their fitting conse-

quences with those resulted from invoking other common spherical distributions are considered.

Keywords: Spherical distribution, Pearson type family, Heavy-tailed distributions, Gaussian

hypergeometric function, Asymmetric.

1 Introduction

It is known from elementary statistics that the Student’s t-distribution plays a key role in statistical

modeling and inferences, as does the normal density. However, it is not a suitable choice to

model heterogeneity among data. Instead, a rich family of distributions, called the Pearson family

and initially proposed by Pearson (1895) to model the observations on the Euclidean space, can

take into account heterogeneity. Moreover, this family can be used to construct some continuous
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probability distribution functions to deal with skewness. Historically, this system was formerly

defined in the context of numerical analysis leading to a valid solution of an associated differential

equation (Johnson et al., 1995). The solutions for some of those particular equations are well-known

densities such as the Student’s t, Fisher and Chi-square distributions. Many progresses have been

made in making statistical inference through invoking the Pearson type family distributions so far.

However, most research was confined to the densities defined on the Euclidean space. There is an

interest to study some subset of this family on the non-Euclidean space in the case of dealing with

the data to be modelled using the directional statistics tools.

Many progress has been made over three decades or so to propose probability distributions on

the sphere. Most densities defined on the sphere were symmetric in their forms. However, there

are some rare exceptions. See, for example, Fisher et al. (1987) and Mardia and Jupp (2000) to

consulate a comprehensive treatments of distributions on the non-Euclidean spaces in general and

the unit sphere in particular. Let us assume there is an interest to model spherical data having

some degrees of skewness.

Generally, there are two well-known methods to construct the spherical distributions. Following

Mardia and Jupp (2000), the methods are categorized as the conditional and marginal approaches.

For instance, the von Mises-Fisher (vMF) distribution is considered as a density derived using the

conditional approach. Interestingly, most of the multivariate distributions can be conditioned in

a proper way so that the corresponding densities will lead to some distributions on the sphere.

Consequently, the resulted distributions on the sphere inherit relatively the same properties as

the initial densities on the Euclidean space. It should be noted that most distributions derived

in this way poses the rotational symmetry property. This important feature is relatively crucial

while dealing with spherical densities. See, for example, Mardia and Jupp (2000), to consulate

theoretical aspect of this property in the context of the directional statistics. However, there is

rare activity on modeling skewness of the spherical data. Now, consider the case in which one is

also interested in studying the spherical densities having bimodality property.

Some directional distributions can also be derived through wrapping, which is a method of the

marginal approach. Following this methodology, some well-known densities such as the wrapped

cauchy, wrapped normal and wrapped t-student distributions have been proposed in the literature

as well as the popular book written by Mardia and Jupp (2000). The wrapped Cauchy distribution,



3 Mousa Golalizadeh and Meisam Moghimbeygi

belonging to the Pearson family VII and being as a subclass of the Jones-Pewsey distribution, has

been extensively considered in many studies. However, the most popular distribution on the circle

is the wrapped normal distribution, again a density in the subclass of Pearson type VII.

Most studies treating the Pearson family distribution on the non-Euclidean space have concen-

trated on the particular cases; circle or sphere. For instance, Kato and Shimizu (2004) studied

various aspects of the t-distribution on the sphere. Pewsey et al. (2013) gave a comprehensive

treatment of different wrapped distributions along with their important properties all on the cir-

cle. Generally, there is an rare research on constructing spherical densities based on the Euclidean

version of the Pearson type family distributions. An exception is the research done by Shimizu

and Iida (2002), who studied the t-student distribution on the sphere as a subclass of Pearson type

VII family.

Following Pewsey et al. (2007), who introduced some skew circular distributions on the unit cir-

cle, we propose some spherical densities that simultaneously poss skewness and bimodality proper-

ties. To do so, we construct the spherical t-distribution using conditional approach and via invoking

the multivariate Student’s t-distribution. Then, recalling the relationship between the Student’s t,

Fisher and Chi-square distributions on the Euclidean space, we propose their counterparts on the

sphere as a subclass of the spherical Pearson type distributions. Also, statistical inferences on these

densities along with a procedure to generate samples from the proposed distributions are provided.

Moreover, an application of fitting the proposed distributions on real-life data and comparing the

results with fitting them with some other spherical densities are presented.

The remainder of this paper is organized as follows. We first propose a new class of the

skewed spherical densities in Section 2. We then consider making the statistical inference using

two common approaches, namely method of moment and maximum likelihood method, in Section

3. Section 4 includes some simulation studies aiming at comparing the proposed distributions with

the general class of vMF densities. An analysis of a real-life data is provided in Section 5. The

paper concludes with general discussion and some insights on further possible research on this

topic.
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2 Pearson type family distributions on sphere

There are many cases where taking into account heavy rather than light tailed densities is preferred.

Those distributions have particular structures and the way to construct them is also typical. As

pointed out by Pearson (1916), those heavy tailed densities with some reasonable propoerties are

in fact the members of type VII family of the Pearson system.

On the other hands, it is very common to use the vMF distribution to model data lie on the

surface of the unit sphere. One of the main reason to do so is partly due to the fact that this

density plays the same role as the normal distribution does on the Euclidean space (Mardia and

Jupp, 2000). Following Shimizu and Iida (2002), the spherical t-distribution on the unit sphere is

a proper candidate to study the heavy tailed spherical data. In fact, they proposed this density as

a subclass of the Pearson type VII distributions. Here, we first review some important properties

of this distribution using the standard spherical coordinate systems and then extend it to propose

our new Pearson type VI and III densities and study their special sub-classes.

Let us consider random vector X ∈ Sp−1 represented by its equivalent angle in the spherical

coordinate systems, i.e., θ = (θ1, ..., θp−1)
′
. Note that, here, Sm denotes m-dimensional unit sphere.

Following Mardia and Jupp (2000), the connection between two set of variables are given by

X = (X1, X2, . . . , Xp−1, Xp)
′

= (cos θ1, sin θ1 cos θ2, . . . , sin θ1 · · · sin θp−2 cos θp−1, sin θ1 · · · sin θp−2 sin θp−1)
′
.

Similarly, a mean direction vector with parameters α = (α1, ..., αp−1)
′ , can be defined as

µ◦ = (µ◦
1, µ

◦
2, . . . , µ

◦
p−1, µ

◦
p)

′

= (cosα1, sinα1 cosα2, . . . , sinα1 · · · sinαp−2 cosαp−1, sinα1 · · · sinαp−2 sinαp−1)
′
.

Using this typical definition of angular random variable, the spherical t-distribution can be derived

via invoking its multivariate counterpart on the Euclidean space Rp. More details are given in

next section.

2.1 Spherical t-distribution

Assume a p-dimensional random vector T follows the multivariate distribution with ν degree of

freedom, i.e., T ∼ tν . Then, for an outcome t of T, the probability density function (pdf) is given
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by

C[1 +
1

ν
(t− µ

′

◦)
′
Σ−1(t− µ

′

◦)]
− ν+p

2 , (2.1)

where C, ′ and Σ are the normalizing constant, the transpose operator and the covariance matrix

of T, respectively. To impose the constraints ||T|| = R2, ||µ◦|| = r2, where || || is the Euclidean

norm, and Σ = σI, and to let X = T/R and µ = µ◦/r, the pdf given in (2.1) turns to

C[1 +
1

σν
(R2 + r2 − 2Rrx

′
µ)]−

ν+p
2 . (2.2)

Shimizu and Iida (2002) called this pdf the spherical t-distribution on Sp−1. To set further

constraints R = r = σ = 1 and to define κ = 2/ν, the spherical t-density in (2.2) is simplified as

f1(x|µ, κ) = Cp(κ)[1 + κ(1− x
′
µ)]−

1
κ− p

2 (2.3)

where

C−1
p (κ) =

2p−1π
p−1
2 Γ(p−1

2 )

(1 + 2κ)(1/κ+p/2)Γ(p− 1)
2F1(

1

κ
+

p

2
,
p− 1

2
; p− 1;

2κ

1 + κ
)

and 2F1(a, b; c; z) is the Gaussian hypergeometric function (Abramowitz and Stegun, 1965). Usu-

ally, the interest is on the special case p = 3, i.e. the unit sphere. Then, the normalized constant

of the density for this particular case is simplified as

C3(κ) =
1

2π

1 + κ/2

1− (1 + 2κ)−1/κ−1/2
.

To shorten the notations for our latter computational tasks, we denote the spherical t-distribution

along with its parameters as STp(µ, κ), where µ represents the mean direction and κ is known as

the concentration parameter. See, e.g. Mardia and Jupp (2000) for more details on the concepts

and interpretations of these parameters.

Using the tangent-normal decomposition, see e.g., Fisher et al. (1987), the random variables

θ1 and (θ2, ..., θp−1) are independent on the pole. Hence, the spherical Pearson type densities on

the pole can, indeed, be expressed as the product of two independent densities. Moreover, it can

be shown that the random vector (θ2, ..., θp−1) is distributed uniformly on Sp−2. Therefore, the

random variable θ1 plays a key role in expressing the STp(µ, κ) distribution on the pole.

Now, suppose one is interested in deriving the moments of the first component of the spherical

variable on Sp−1, i.e. X1. Based upon the earlier discussion on the properties of the STp(µ, κ), it
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is straightforward to convey this objective in terms of the density of θ1. To do so, let us denote the

m-th moment of X1, by ρm(κ). Then,

ρm(κ) = E(cosm θ1)

= C−1
θ1,p

(κ)

∫ π

0

cosm θ1[1 + κ− κ cos θ1]
− 1

κ− p
2 sinp−2 θ1dθ1

= C−1
θ1,p

(κ)

∫ 1

−1

tm[1 + κ− κt]−
1
κ− p

2 (1− t2)
p−3
2 dt

=
2p−2C−1

θ1

(1 + 2κ)
1
κ+ p

2

∫ 1

0

(2u− 1)m(1− 2κ

1 + 2κ
u)−

1
κ− p

2 (1− u)(p−3)/2u
p−3
2 du

=

m∑
i=0

(
m

i

)
(−1)m−i

2i+p−2C−1
θ1

(1 + 2κ)
1
κ+ p

2

∫ 1

0

(1− 2κ

1 + 2κ
u)−

1
κ− p

2 (1− u)
p−3
2 ui+ p−3

2 du

=

m∑
i=0

(
m

i

)
(−1)m−i2i

Γ(i+ p−1
2 )Γ(p− 1)

Γ(i+ p− 1)Γ(p−1
2 )

2F1(
1
κ + p

2 , i+
p−1
2 ; i+ p− 1; 2κ

1+2κ )

2F1(
1
κ + p

2 ,
p−1
2 ; p− 1; 2κ

1+2κ )
,(2.4)

where Cθ1,p(κ) is the normalized constant of the density of the angular variable θ1.

To recall the relationship between the Student’s t and Fisher distributions on the plane, we

shall obtain the spherical Fisher distribution in the next section.

2.2 Spherical Fisher distribution

It is known from the elementary statistics that if a random variable, say U , follows the Fisher

distribution with parameters α and β, then its probability density function, for outcome u, will be

proportional to

u
p
2−1(1 +

α

β
u)−

α+β
2 .

Considering the special case α = 2 and β = 2/κ, it is then seen that the Fisher distribution is

closely linked to the ST2(µ, κ). This can be identified via considering the equality U = 1 −X
′
µ.

On the other hand, the truncated F(2, κ)-distribution with parameters α1 and α2 has the following

pdf,

f(x|α1, α2, σ) ∝ (1− x
′
µ)α1−1(1 +

1− x
′
µ

σ
)−(α1+α2). (2.5)

Note that the truncated F(2, κ)-density is also known as the Beta Prime distribution (Johnson

et al., 1995) and is considered as a subclass of the Pearson type VI distributions.

This last connection motivated us to extend the STp(µ, κ) density to derive the spherical Fisher

distribution, as a proper candidate to analyze directional data. Let us assume the pdf of this new

density is denoted by f2(x|µ, κ). We can then write the spherical Fisher distribution along with its
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parameters µ and κ; identified by the notation SFp(µ, κ), expressed by following pdf,

f2(x|µ, κ) = Cp(κ)(1− x
′
µ)

p
2−1(1 +

pκ

2
(1− x

′
µ))−

p
2−

1
κ

where

Cp
−1(κ) =

2
3p
2 −2π

p−1
2 Γ(p− 3

2 )

Γ( 3p2 − 2)
(1 + pκ)−

p
2−

1
κ 2F1(

p

2
+

1

κ
,
p− 1

2
,
3p− 4

2
,

pκ

pκ+ 1
).

It is seen that for the particular case p = 3,

C3
−1(κ) = 2π(

2

3κ
)

3
2B(

3κ

3κ+ 1
;
3

2
,
1

κ
)

where B(·) is incomplete beta function (Abramowitz and Stegun, 1965) represented by

B(x; a, b) =

∫ x

0

ta−1(1− t)b−1dt.

Similar to discussion about the STp(µ, κ), the m-th moment of X1, while the spherical variable

X follows the SFp(µ, κ) on the pole, is obtained using the following expressions:

ρm(κ) = E(cosm θ1)

= C−1
θ1,p

(κ)

∫ π

0

cosm θ1(1− cos θ1)
p
2−1(1 +

pκ

2
(1− cos θ1))

− p
2−

1
κ sinp−2 θ1dθ1

= C−1
θ1,p

(κ)

∫ 1

−1

tm(1− t)
p
2−1(1 +

pκ

2
(1− t))−

p
2−

1
κ (1− t2)

p−3
2 dt

= 2
3p
2 −3C−1

θ1,p
(κ)(1 + pκ)−

p
2−

1
κ

∫ 1

0

(2u− 1)m(1− pκ

pκ+ 1
u)−

p
2−

1
κ (1− u)p−

5
2u

p−3
2 du

=

m∑
i=0

(
m
i

)
(−1)m−i2

3p
2 −3+iC−1

θ1

(1 + pκ)
p
2+

1
κ

∫ 1

0

(1− pκ

pκ+ 1
u)−

p
2−

1
κ (1− u)p−

5
2ui+ p−3

2 du

=

m∑
i=0

(
m

i

)
(−1)m−i2i

Γ(p−1
2 + i)Γ( 3p−4

2 )

Γ( 3p−4
2 + i)Γ(p−1

2 )

2F1(
p
2 + 1

κ , i+
p−1
2 ; i+ 3p−4

2 ; pκ
pκ+1 )

2F1(
p
2 + 1

κ ,
p−1
2 ; 3p−4

2 ; pκ
pκ+1 )

(2.6)

where Cθ1,p(κ) is the normalized constant of density. Once again, it is seen that for the particular

case p = 3,

ρ1(κ) =
4

5

2F1(
1
κ + 3

2 , 2;
7
2 ;

3κ
3κ+1 )

2F1(
1
κ + 3

2 , 1;
5
2 ;

3κ
3κ+1 )

− 1.

The connections between the Pearson type family distributions help us to propose other spherical

distributions too. For instance, the Pearson type VI and III distributions, have strong link with the

Chi-square distribution on the plane. Hence, we invoke this connection to introduce the spherical

Chi-square distribution in subsequent section.
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2.3 Spherical Chi-square distribution

Our objective here is to impose some restrictions in the density given by (2.5) to derive a new

distribution useful in directional statistics. Let us fix α1 = κ/2, σ = α2 and allow α2 to get a very

large number. Then, it can be shown that the resulted density is a new distribution in the class of

the Pearson type III family with the following pdf

f3(x|µ, κ) =
Γ(κ2 + p− 2)(1− x

′
µ)

κ
2 −1ex

′
µ+1

2
κ
2 +p−2π

p−1
2 Γ(κ2 + p− 3)M(p−1

2 , κ
2 + p− 2, 2)

(2.7)

where M(·, ·, ·) is the confluent hypergeometric function (Abramowitz and Stegun, 1965). We call

this new density the Spherical Chi-square distribution and denote this statement with the notation

SCp(µ, κ). It is straightforward to show that for particular case p = 3, the pdf in (2.7) reduces to

f3(x|µ, κ) =
(1− x

′
µ)

κ
2 −1ex

′
µ−1

2πγ(κ2 , 2)

where γ(·, ·) is the lower incomplete gamma function.

Similar to discussion provided in dealing with STp(µ, κ), the m-th moment of X1, can be

obtained through the following sequel equalities, provided the spherical variable X follows SCp(µ, κ)

ρm(κ) = E(cosm θ1)

= C−1
θ1,p

(κ)

∫ π

0

cosm θ1(1− cos θ1)
κ
2 −1ecos θ1 sinp−2 θ1dθ1

= C−1
θ1,p

(κ)

∫ 1

−1

tm(1− t)
κ
2 −1et(1− t2)

p−3
2 dt

= 2p−3+κ
2 C−1

θ1,p
(κ)

∫ 1

0

(2u− 1)m(1− u)
p−3+κ

2 −1u
p−3
2 e2u−1du

=

m∑
i=0

(
m

i

)
(−1)m−i2i

Γ(p−1
2 + i)Γ(p− 2 + κ

2 )M(p−1
2 + i, p− 2 + κ

2 + i, 2)

Γ(p−1
2 )Γ(p− 2 + κ

2 + i)M(p−1
2 , p− 2 + κ

2 , 2)
(2.8)

where Cθ1,p(κ) is the normalized constant. It is seen that, for the particular case p = 3, we have

ρ1 =
2M(2, 2 + κ

2 , 2)

(1 + κ
2 )M(1, 1 + κ

2 , 2)
− 1.

To have consistent notation throughout this paper, we use the notation SPTp(µ, κ), stands for

the Spherical Pearson Type distributions including the t-student, Fisher and chi-square densities.

However, if we wants to deal with a particular Pearson type distribution, we will provide explicit

notation, as discussed earlier, along with expressing pdf of corresponding density.
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3 Statistical Inference on the Parameters of SPTp(µ, κ)

Now, we provide the way of making the statistical inference on the parameters of the spherical

Pearson type distributions. We shall deal with both the method of moment and maximum likeli-

hood approaches.

Let us assume the spherical random variables Xi for i = 1, 2, ..., n, are n independent observations

following the spherical Pearson type distributions with the mean direction µ and the concentra-

tion parameter κ on Sp−1. The statistical inference about µ and κ, are given below using two

approaches.

3.1 Method of Moment Estimator

In order to calculate moments of the SPT distribution, we invoke its rotational symmetry property.

The property for our considered density can simply be conveyed as follows:

If Y is distributed as SPTp(µ0, κ) and M is a rotation matrix, which rotats µ0 to µ, then X = MY

is a random vector distributed as SPTp(µ, κ).

As seen, this fruitful property shows that the rotated variable preserves the initial form of the

density with just a different directional mean compared with the initial (raw) variable. We shall

see that this interesting property will later help us in dealing with theoretical computations tasks

greatly. To consult more properties of the rotational symmetry, one can see, for example, Mardia

and Jupp (2000).

Using the rotational symmetry property, we can write

E(X) = M × E(Y )

= M × E
{
(cos θ1, sin θ1 cos θ2, ..., sin θ1 · · · sin θd−2 cos θd−1, sin θ1 · · · sin θd−2 sin θd−1)

}
= ρ1(κ)M × µ0 = ρ1(κ)µ
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and

Var(X) = M ×Var(Y )×M
′

= M × {E(Y Y
′
)− E(Y )E(Y

′
)} ×M

′

= M{diag[ρ2(κ),
1− ρ2(κ)

p− 1
, ...,

1− ρ2(κ)

p− 1
]− ρ21(κ)µ0µ

′

0}M
′

= M{ρ2(κ)µ0µ
′

0 +
1− ρ2(κ)

p− 1
(Ip − µ0µ

′

0)− ρ21(κ)µ0µ
′

0}M
′

= (ρ2(κ)− ρ21(κ))µµ
′
+

1− ρ2(κ)

p− 1
(Ip − µµ

′
)

where, Ip is the identity matrix of order p.

As is common in directional statistics, we use cosine moments to estimate the parameters of

the SPT distributions by the method of moment. Following this perspective, the mean direction

is easily estimated as

µ̃ =

∑n
i=1 xi

||
∑n

i=1 xi||
.

To estimate the concentration parameter (κ), one can again recall the first moment of the SPT.

Using the equation (3.1), we have

E(X
′
)µ = ρ1(κ).

Then, the estimate of κ can be written as

κ̃ = ρ−1
1 (

1

n

n∑
i=1

x
′

iµ̃).

As seen, one needs to follow some numerically iterated methods to derive the estimates of the

parameters using the method of moment because the expressions involving µ̃ and κ̃ are inter-

connected. There are many algorithms to follow this task. We shall see an implementation of such

technique when we conduct and present our simulation studies.

3.2 Maximum Likelihood Estimator

To invoke the maximum likelihood estimate (MLE) approach, it is common to maximize the

(logarithm of the) likelihood function of the parameter(s), which is associated with the pdf of the

corresponding variables. To this end, we use Lagrange functions Lj , for j = 1, 2, 3, which are in

fact the logarithm of the likelihood functions, i.e.

Lj(µ, κ) = ℓj(µ, κ) + λ(1− µ
′
µ),
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where ℓj(µ, κ) =
∑n

i=1 log fj(xi|µ, κ), with the obvious constraint µ
′
µ = 1.

To differentiate Lj(µ, κ) with respect to µ and κ, the maximum likelihood estimations are given

by the following expressions:

µ̂ =
{∂ℓ(µ, κ)/∂µ

ℓ(µ, κ)

}/
∥∂ℓ(µ, κ)/∂µ

ℓ(µ, κ)
∥ (3.1)

κ̂ = argmax
κ

ℓ(µ, κ). (3.2)

It is clear that the MLEs of the parameters should be derived by some iterative algorithms through

invoking the equations (3.1) and (3.2). Before describing a general flowchart of such algorithm, it

worths pointing out an important assertion useful to derive the MLEs.

Using the density function (2.5), it can be shown that for a small value of σ or equivalently large

value of κ, the estimation of µ is approximated by

µ̂ =

∑n
i=1

xi

1−x
′
iµ̃

||
∑n

i=1
xi

1−x
′
iµ̃
||
, (3.3)

where µ̃ is the estimate of µ given by the MM approach. So, this estimation can be used as an

initial value while invoking any iterative algorithm to derive the parameter estimates.

In summary, the following simple iterative steps can be followed to obtain the parameters estimate

of the SPTp(µ, κ) using the ML method:

Step 0. Compute the initial value for µ̂, using the expression (3.3).

Step 1. Derive an estimate for κ using the equation (3.2).

Step 2. Having κ̂ from Step 1, obtain an estimate for µ using the equation (3.1).

Step 3. Iterate between Step 1 and Step 2 using the updated parameters until reaching an reason-

able rate of convergence; fixed before running the algorithm.

4 Simulation Study

Due to both popularity and importance of three dimensional sphere in many real applications, we

confine ourselves to conduct the simulation studies on S2. Our investigations will be performed in

two different scenarios. First, we compare the performances of the MM and MLE estimators in

different settings. Then, we study fitting the SPT distributions in the cases where the generated
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data are imposed via contaminating observations with an specific degree of noises to constitute

some outliers. Let us, first, explain how to simulate the spherical data come from the SPT density.

In order to simulate the data from ST3(µ, κ), SF3(µ, κ) and SC3(µ, κ), we invoke the distribution

functions of θ ∈ (0, π) and ϕ ∈ (0, 2π) on the pole, where these two variables are independent. In

particular, while being on the pole, ϕ is distributed uniformly on the unit circle, independent from

θ. So, the distribution function of ϕ is the same for all three densities. In particular, not being

concerned about the specific distribution of the SPT, we have

G(ϕ) =
ϕ

2π
, 0 < ϕ < 2π.

On the other hands, the density function of θ, following three aforementioned distributions are,

respectively,

FST (θ) =
1− (1 + κ− κ cos θ)−

1
κ− 1

2

1− (1 + 2κ)−
1
κ− 1

2

,

FSF (θ) =
B( 3(1−cos θ)κ

3(1−cos θ)κ+2 ;
3
2 ,

1
κ )

B( 3κ
3κ+1 ;

3
2 ,

1
κ )

,

FSC(θ) =
γ(κ2 , 1− cos θ)

γ(κ2 , 2)
.

As seen, to simulate θ from either densities is straightforward using available technological tools.

A remark to note is that the ultimate pair (ϕ, θ) generated then is a point on the pole. But,

in real application the spherical data might live somewhere else on the sphere than the pole. In

particular, the data are assumed to have unknown spherical mean µ. This problem can also be

circumvented using a simple rotation matrix. There are many rotation matrices for this purpose.

But, a simple one, proposed by Mardia and Jupp (2000), which rotates the spherical point m1 to

its counterpart m2 or vice versa, is given by

M(m1,m2) =
(m1 +m2)(m1 +m2)

′

1 +m
′
1m2

− I3.

Now, we are at the position to simulate spherical data from three proposed distributions described

in the previous sections. This along with some comments on the relevant parameters are given

next.

We initiate our simulation study by generating data from the SPT3(µ, κ) distributions. This is

done via altering the location parameters to be one of the pairs (α, β) = {(π/4, π/4), (π/3, π/6)}

while the concentration parameters (κ) is fixed at κ = 1.8. Also, to investigate the effects of sample
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size in estimating parameters, we consider four scenarios n = 20, 50, 100, 1000. Furthermore, we

iterate each simulation run 1000 times. Note that the large sample case gives us insights on the

asymptotic behaviour of our estimators though the theoretical aspects of this issue needs to be

comprehensively studied. To evaluate the accuracy of the proposed estimators, we calculate the

mean, relative bias (RB) and mean square errors (MSE) for every simulation scenario. The entire

results of the simulation studies based upon different scenarios are reported in tables 1, 2 and

3. It worths to mention that the means of parameters are highlighted by a dashed line over the

estimates of corresponding parameters in each table. Also, for brevity of notation, we write MLE

and MM, indicating the maximum likelihood and method of moment estimators, respectively.

As seen in all three tables, the estimations provided by the MM procedure are generally per-

forming better than those derived through the MLE method in the small sample size situations.

But, this is not the case when the numbers of samples are increasing which leads to better perfor-

mance of the MLEs. Following the results reported in Tables 1, the accuracy of the estimation of

the directional means for the ST distribution is improved by increasing either the concentration

parameter (κ) or the sample size (n). However, this pattern is not continuing while estimating the

concentration parameter. That means, if either the sample size or the directional mean is increased

then the estimators proposed for estimating κ, are doing worth.

Following the results reported in Table 2, we see that the performance of two methods in

estimating the directional mean using the SF distribution is relatively the same. Note that, if

the concentration parameter is increased, unlike the RB measure, the values of the MSEs are

increasing too. This shows critical impact of the concentration parameter on other parameters of

spherical Pearson type family densities studied in this paper. Note that the similar patterns are

also observed in Table 3 while the SC distribution is invoked in both generating the spherical data

and estimating the parameters.

To have an visual inspection of efficiency of the methods in different situations as well as in the

case of various distributions proposed in this paper, we provided the comparative plots in 1, 2 and

3. In all plots, the first and second cases refer to the simulation study in which the parameters of

the SPT densities are fixed as (α, β, κ) = (π4 ,
π
4 , 1), and (α, β, κ) = (π3 ,

π
6 , 8), respectively. Also, the

approximate 95% confidence intervals have been computed for each density and particular sample

size. The computed intervals are drawn as solid lines with the average of the estimates at the
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middle, identified by either the ML or MM approaches.

Many remarks can be driven from the plots. As seen, to increase the sample size leads to

the accurate estimates regardless of the type of the distribution considered for fitting the data.

Moreover, two methods of estimations, i.e., ML and MM, are performing the same in most scenarios.

However, there are some cases in which the MM estimators are doing better than ML, particularly

when the concentration parameter (κ) is small.

The approximate confidence intervals for the concentration parameter (κ) while using small

sample size and the ST, if the real values are (α, β, κ) = (π4 ,
π
4 , 1), contains some negative values

which are not feasible. This shows that the standard errors of estimator in this scenario are too

big. This situation occurs for both the ML and MM estimators. Also, we just see this odd outcome

for the ST density while other two distributions are at the safe side. Amazingly, the approximate

confidence intervals for the concentration parameter (κ) are too narrow if the SC density is used

in the first case, i.e., (α, β, κ) = (π4 ,
π
4 , 1).

Under the scenario (α, β, κ) = (π3 ,
π
6 , 8), the performance of either estimators using different

distributions are relatively reasonable. Although the estimators for α and β display appropriate

patterns for all three considered densities, that for κ varies too much. We mean the estimator of

κ neither follows the asymptotic manner nor shows equal pattern for three distributions. It might

be due to large values of its real value, κ = 8 imposing remarkable variation in each sample path.

Do remember that the spherical data might display multimodality on the empirical density in this

case. Hence, the common procedures proposed in this paper fail to make sensible inference. This

topic can then be studied in further research.
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Table 1: Mean, RB and MSE of the parameter estimations using the ML and MM approaches

under different scenarios. Dashed lines over the estimators indicate the mean of the estimations in

1000 runs derived in using from ST distribution. Real values of the parameters are on the top of

each panel.

(α, β, κ) = (π4 ,
π
4 , 1)

Method n ¯̂α RBα̂ MSEα̂
¯̂
β RBβ̂ MSEβ̂

¯̂κ RBκ̂ MSEκ̂

20 0.847 0.078 0.058 0.713 -0.092 0.214 2.366 1.366 4.601

ML
50 0.798 0.016 0.028 0.789 0.005 0.061 1.580 0.580 1.041

100 0.791 0.007 0.014 0.772 -0.018 0.030 1.278 0.278 0.354

1000 0.787 0.002 0.001 0.783 -0.003 0.003 1.009 0.009 0.029

20 0.837 0.065 0.062 0.726 -0.076 0.218 2.367 1.367 5.369

MM
50 0.798 0.016 0.030 0.786 0.001 0.067 1.590 0.590 1.590

100 0.793 0.010 0.016 0.773 -0.016 0.031 1.285 0.285 0.552

1000 0.788 0.003 0.002 0.783 -0.003 0.003 1.011 0.011 0.040

(α, β, κ) = (π3 ,
π
6 , 8)

20 1.045 -0.002 0.016 0.521 -0.005 0.025 8.692 0.087 3.365

ML
50 1.046 -0.002 0.007 0.525 0.003 0.008 8.633 0.079 3.602

100 1.048 0.001 0.003 0.524 0.001 0.004 8.335 0.042 2.710

1000 1.047 0.00035 0.00032 0.524 -0.00001 0.00044 8.094 0.01173 0.5053

20 1.051 0.004 0.025 0.520 -0.007 0.036 7.338 -0.083 5.843

MM
50 1.051 0.003 0.010 0.526 0.005 0.013 7.478 -0.065 5.377

100 1.049 0.002 0.005 0.527 0.006 0.006 7.878 -0.015 4.188

1000 1.047 -0.00018 0.00045 0.523 -0.00035 0.00069 8.131 0.01633 0.9492
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Table 2: Mean, RB and MSE of the parameter estimations using the ML and MM approaches

under different scenarios. Dashed lines over the estimators indicate the mean of the estimations

in 1000 runs using the from SF distribution. Real values of the parameters are on the top of each

panel.

(α, β, κ) = (π4 ,
π
4 , 1)

Method n ¯̂α RBα̂ MSEα̂
¯̂
β RBβ̂ MSEβ̂

¯̂κ RBκ̂ MSEκ̂

20 0.925 0.178 0.208 0.404 -0.485 0.651 1.131 0.131 0.980

ML
50 0.788 0.003 0.068 0.685 -0.128 0.321 1.277 0.277 0.839

100 0.790 0.005 0.045 0.737 -0.061 0.259 1.219 0.219 0.551

1000 0.783 -0.003 0.005 0.779 -0.008 0.011 1.049 0.049 0.060

20 0.926 0.179 0.196 0.388 -0.506 0.661 1.291 0.291 0.808

MM
50 0.790 0.005 0.059 0.691 -0.120 0.292 1.341 0.341 0.753

100 0.784 -0.002 0.035 0.790 0.006 0.142 1.342 0.342 0.737

1000 0.781 -0.006 0.004 0.781 -0.005 0.008 1.071 0.071 0.097

(α, β, κ) = (π3 ,
π
6 , 8)

20 1.052 0.005 0.074 0.467 -0.108 0.148 7.978 -0.003 1.406

ML
50 1.058 0.010 0.031 0.516 -0.015 0.041 8.035 0.004 1.179

100 1.056 0.008 0.017 0.520 -0.007 0.023 8.000 0.000 1.317

1000 1.047 0.000 0.001 0.514 -0.017 0.002 7.984 -0.002 0.893

20 1.066 0.018 0.065 0.488 -0.068 0.110 8.011 0.001 1.514

MM
50 1.062 0.014 0.030 0.520 -0.008 0.043 7.956 -0.005 1.496

100 1.053 0.006 0.017 0.521 -0.004 0.021 7.840 -0.020 1.267

1000 1.046 -0.002 0.001 0.514 -0.019 0.002 8.074 0.009 0.889
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Table 3: Mean, RB and MSE of the parameter estimations. The data are generated from SC

distribution using the ML and MM approaches under different scenarios. Dashed lines over the

estimators indicate the mean of the estimations in 1000 runs using the from SC distribution. Real

values of the parameters are on the top of each panel.

(α, β, κ) = (π4 ,
π
4 , 1)

Method n ¯̂α RBα̂ MSEα̂
¯̂
β RBβ̂ MSEβ̂

¯̂κ RBκ̂ MSEκ̂

20 0.763 -0.028 0.020 0.835 0.063 0.054 0.643 -0.357 0.134

ML
50 0.783 -0.003 0.005 0.785 -0.001 0.011 0.823 -0.177 0.039

100 0.783 -0.003 0.002 0.794 0.011 0.004 0.994 -0.006 0.007

1000 0.785 0.000 0.000 0.787 0.002 0.000 1.004 0.004 0.001

20 0.798 0.016 0.029 0.793 0.010 0.068 0.973 -0.027 0.084

MM
50 0.798 0.016 0.013 0.790 0.006 0.021 0.978 -0.022 0.033

100 0.789 0.005 0.005 0.786 0.001 0.011 1.001 0.001 0.015

1000 0.784 -0.002 0.001 0.788 0.003 0.001 1.005 0.005 0.002

(α, β, κ) = (π3 ,
π
6 , 8)

20 1.054 0.007 0.062 0.496 -0.053 0.082 8.031 0.004 1.618

ML
50 1.033 -0.014 0.027 0.545 0.042 0.045 8.057 0.007 1.092

100 1.045 -0.002 0.015 0.515 -0.017 0.020 8.090 0.011 0.498

1000 1.050 0.002 0.010 0.522 -0.002 0.001 8.000 0.010 0.344

20 1.064 0.016 0.056 0.500 -0.045 0.091 8.107 0.013 1.029

MM
50 1.011 -0.035 0.030 0.538 0.027 0.042 8.122 0.015 0.848

100 1.046 -0.001 0.014 0.517 -0.012 0.022 8.101 0.013 0.453

1000 1.050 0.002 0.014 0.522 -0.001 0.020 8.001 0.012 0.386
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Figure 1: Comparative plots for the estimators of the ST’s parameters using two estimation

procedures. The approximated %95 CIs are plotted versus different sample sizes. The first

and second cases refer to the scenario in which the parameters of the ST density are fixed as

(α, β, κ) = (π4 ,
π
4 , 1), and (α, β, κ) = (π3 ,

π
6 , 8), respectively.



19 Mousa Golalizadeh and Meisam Moghimbeygi

0.6

0.8

1.0

1.2

α

−1

0

1

β

0

4

8

κ

First Case Second Case

method ML MM

First Case Second Case

method ML MM

First Case Second Case

method ML MM

20 50 100 1000 20 50 100 1000

Sample Size

20 50 100 1000 20 50 100 1000

Sample Size

20 50 100 1000 20 50 100 1000

Sample Size

Figure 2: Comparative plots for the estimators of the SF’s parameters using two estimation proce-

dures. The approximated %95 CIs are plotted versus different sample sizes. The first and second

cases refer to the scenario in which the parameters of the SF density are fixed as (α, β, κ) = (π4 ,
π
4 , 1),

and (α, β, κ) = (π3 ,
π
6 , 8), respectively.
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Figure 3: Comparative plots for the estimators of the SC’s parameters using two estimation

procedures. The approximated %95 CIs are plotted versus different sample sizes. The first

and second cases refer to the scenario in which the parameters of the SC density are fixed as

(α, β, κ) = (π4 ,
π
4 , 1), and (α, β, κ) = (π3 ,

π
6 , 8), respectively.
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Based upon the discussion provided in the introduction, we expect that the SPT is performing

well where the empirical plot of the data are relatively skewed. To evaluate this objective, we were

interested in fitting the vMF density as well as various forms of the SPT3(µ, κ) distributions where

the simulated data are subject to some outliers. To do this end, we initially generated data from

the vMF distribution and then contaminated them by adding a fixed value to the latitude on the

North pole. Remember that longitudinal is uniformly distributed on the North pole irrespective

of the type of distribution, from SPT family, is considered to simulate the data. Hence, one can

only concentrated on tracing the sample path of the latitudinal variable being modeled by some

stochastic processes. Hence, we now compare the aforementioned models in terms of variability

imposed on the latitude. To do so, we generate data from vMF on the North pole and randomly

select 5, 10, 20, 50 percent of observations and contaminate them by adding the constant angle to

the latitude. In other words, we add a fixed point to a fixed proportion, say Π%, of the latitude

angles, mathematically expressed as θoutlier = θreal+ζ. Note that the concentration parameter (κ)

is allowed to vary in any positive value. To this end, we tried its value at three feasible numbers

to cover various amount of concentrations, i.e. low, medium and large.

Moreover, we were interested in comparing the performance of the SPT and vMF distributions

under different percentage of contamination. To this end, we derived the difference between the

likelihood functions computed under those underlying distributional assumption. Note that the

vMF density is shifted using a pre-fixed proportion of angles to cope with skewness feature of

its counterpart distribution. In particular, we first generated data from vMF3(µ0, κ) and then

contaminated Π percent of their latitudes with the fixed angles ζ. At the end, we recorded the

number of times (from 100 simulation runs) of when the SPT likelihood was bigger than the shifted

vMF counterpart. The results are reported in Table 4. Some of the remarks, achieved from the

results in this table, are as follows:

Based upon discussion above, we could take the value of ζ into account as a degree of contami-

nation. Hence, tolerance of any well performing of the considered distribution after increasing the

value of ζ will show the level of robustness. As seen, the SPT distributions are more robust in

compare with the shifted vMF for the large value of ζ. This is the case for both densities come

from the SPT. We also see that the SPT distribution is more robust if the concentration parameter

(κ) is increased.
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Table 4: Comparing the SPT and the shifted vMF distribution when the generated samples from

vMF(µ0, κ) are contaminated with Π percent on one angle. Values in each cell show the number

of time (over 100 run), the logarithm of the likelihood for each of the SPT family is greater than

the shifted vMF. See the text for more details.

κ

5 10 50

µ0

Π
5 10 20 50 5 10 20 50 5 10 20 50

π
6 0 0 0 0 0 0 0 0 17 100 100 100

ST π
4 0 0 0 0 0 3 90 10 100 100 100 100
π
3 0 33 100 100 12 100 100 100 100 100 100 100
π
6 0 0 0 0 0 0 0 0 0 0 5 2

SF π
4 0 0 0 0 0 0 0 0 0 100 100 100
π
3 0 0 53 95 0 0 100 100 100 100 100 100
π
6 0 0 0 0 0 0 0 0 0 0 0 0

SC π
4 0 0 0 0 0 0 0 0 0 7 100 100
π
3 0 0 6 100 0 0 80 100 0 100 100 100

5 Application

As an application of the models studied in this paper, we consider two real-life data sets in this

section. We first investigate fitting the ST3(µ, κ), SF3(µ, κ) and SC3(µ, κ), distributions using

those data sets. Moreover, we also fit those data with four popular spherical distributions, namely

vMF, Kent, Wood and Angular Central Gaussian (ACG) densities, to compare the performance

of all densities. See, for example, Mardia and Jupp (2000) for more details on the properties of

those latter densities. The criteria to choose a candidate density that fit our real-life data well are

two common statistical measures; Akaike Information Criterion (AIC) and Bayesian Information

Criterion (BIC).

Now, we give more details of our real-life data sets. The first data set (Data 1) deals with an

sociological study of the attitudes of 48 individuals to 16 different occupations. Following Coxon
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Figure 4: Schematic representation of the real data set (left: Data 1 and right: Data 2) on S2.

and Jones (1979), individuals were asked to make their judgments on rating or rank ordering

of occupations based upon four different criteria namely Earnings, Social Status, Reward, Social

Usefulness. Rating and rank ordering were transformed on S2 through multidimensional scaling

method reported in Coxon and Jones (1978). Note that the data, registered as the unit vectors,

can be found in Appendix B20 of Fisher et al. (1987).

The second data set (Data 2) is a report on the measurements of the orientation of the dendritic

field at various sites in the retinas of 6 cats, in response to different visual stimuli. We used a subset

of the original data where 30 responses of cats to horizontally polarized light are provided. Keilson

et al. (1983) was first to analyze this data set. The spherical coordinates of this final data set can

be found in Appendix B15 of Fisher et al. (1987).

A schematic representation of two real data set is shown in Figure 4. As seen, both data sets

constitute some outliers, at least via detecting them with eyes in the specific directions that the

spheres are plotted. In particular, a clear sign of outlying one observation is seen among the first

data set. As discussed earlier, the SPT distributions are more heavy tailed than other common

spherical densities. Hence, we expect that our proposed densities are better choices in modeling

two data sets described above.

The values of two model choice criteria for all distributions, described at the earlier of this

section, are shown in Table 5. Because the value of AIC and BIC for SPT are less than others

densities, we are able to claim that the SPT outperforms its counterparts if two mentioned data sets

are used as the samples to fit spherical densities. Moreover, among the family of SPT distributions,
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Table 5: The values of the AIC and BIC criteria after fitting the vMF, Kent, Wood, ACG, ST,

SF and SC distributions to two real data sets. See text for more details of abbreviates. The least

values in each criterion and using each data set, highlighted as boldface, show superiority of the

ST density among alternative distributions.

Spherical Distribution

Data set Criterion vMF Kent Wood ACG ST SF SC

Data 1
AIC 39.38 38.95 37.24 94.34 3.77 8.29 20.33

BIC 44.99 48.30 46.60 98.08 1.84 13.90 25.94

Data 2
AIC 52.57 54.81 52.93 106.4 44.97 50.62 51.18

BIC 56.78 61.82 59.94 109.1 49.18 54.82 55.39

the ST is the best candidate density to fit both data sets. These results support our initial guesses

on suitability of the SPT distributions in compare with other spherical densities.

6 Discussion

It is believed that the outliers usually biase making statistical inference while fitting some non-

robust models to analysis data. In the lack of possible approaches to treat outliers prior to the

ultimate statistical analysis, one should seek some suitable models to analyze the entire data. To

recall some heavy tailed distributions; being robust to the outliers, to fit the data is a possible

approach in this case. Such phenomenon is more critical while dealing with spherical data. To

provide a solution to this problem, we proposed the spherical t-distribution in this paper. Then,

various statistical properties of this density have been investigated. In particular, we expressed

the procedures of estimating the parameters of this density using two common statistical inference

methods. We also studied some special cases of this distribution in which the data are available in

the unit sphere. We illustrated the robustness of the spherical t-distribution while being compared

with the popular vMF density using some simulated studies conducted in different scenarios. More-

over, we have showed superiority of our proposed distribution in compare with other alternative

spherical densities while employing them to fit two real data sets.

The ST proposed in this paper belongs to the Pearson type family distribution. Following
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this point, we also introduced two other densities, called SF and SC, and studied their properties.

These latter densities are multimodal in some particular situations and are, indeed, robust to the

outliers in compare with the vMF distributions.

According to the terminologies of the spherical distributions, the SPT distributions proposed in

this paper are constructed through the conditional approach. One can study driving these densities

following other methods to introduce special distributions. As another topic to research in this

field, one can conduct the statistical tests on the parameters of the SPT distributions. Finally, one

might prefer to impose the skewness on the sphere and then look at the asymmetric distributions

based on the Pearson type family that are linked the proposed densities in this paper.
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