References
[1] M. Tariq, A.A. Al-Badr, Chloroquine, AnalyticaI Profiles of Drug
Substances, Academv Press, Inc. 1984.
[2] J.M. Karle, I.L. Karle, Redetermination of the crystal and
molecular structure of the antimalarial chloroquine
bis(dihydrogenphosphate) dehydrate, research papers (organic compounds),
Acta Cryst. C44 (1988) 1605-1608.
https://doi.org/10.1107/S0108270188004652
[3] H.S. Preston, J.M. Stewart, The crystal structure of the
antimalarial chloroquine diphosphate monohydrate, Journal of the
Chemical Society D: Chemical Communications J. Chem. Soc. D 18 (1970)
1142-1143. https://doi.org/10.1039/C29700001142
[4] K. Nord, J. Karlsen, H.H. Tonnnesen, Photochemical stability of
biologically active compounds. IX. Characterization of the spectroscopic
properties of the 4-aminoquinolines chloroquine and hydroxychloroquine
and of selected metabolites by absorption, fluorescence and
phorporescence measurements, Photochem. Photobiol. 60 (1994) 427-431.https://doi.org/10.1111/j.1751-1097.1994.tb05128.x
[5] J. Nandi, S.N. Sharma, Efficacy of chloroquine in febrile
Plasmodium falciparum infected children in Mewat region of Haryana, J.
Commun. Dis. 32 (2) (2000) 137-143.
https://pubmed.ncbi.nlm.nih.gov/11198399
[6] R. Hayward, K.J. Saliba, K. Kirk, The pH of the digestive
vacuole of Plasmodium falciparum is not associated with chloroquine
resistance, J. Cell Science 119 (2006) 1016-1025. https://doi:
10.1242/jcs.02795
[7] R. Bortoli, M. Santiago, Chloroquine ototoxicity, Clin.
Rheumatol. 26 (2007) 1809-1810.
https://doi.org/10.1007/s10067-007-0662-6
[8] C. Loup, J. Lelièvre, F. Benoit-Vical, B. Meunier, Trioxaquines
and Heme-Artemisinin adducts inhibit the in vitro formation of hemozoin
better than chloroquine, Antimicrob. Agents Chemother. 51(10) (2007)
3768–3770. https://doi:10.1128/AAC.00239-07
[9] R.G. Cooper, T. Magwere, Chloroquine has not disappeared,
African health sciences 7 (2007) 185-186. https://doi:
10.5555/afhs.2007.7.3.185
[10] N. Valecha, H. Joshi, P.K. Mallick, S.K. Sharma, A. Kumar, P.K.
Tyagi, B. Shahi, M.K. Das, B.N. Nagpal, A.P. Dash, Low efficacy of
chloroquine: time to switchover to artemisinin-based combination therapy
for falciparum malaria in India, Acta Trop. 111 (2009) 21-28.
https://doi: 10.1016/j.actatropica.2009.01.013
[11] F.A. Rojas and V.V. Kouznetsov, Property-based design and
synthesis of new chloroquine hybrids via simple incorporation of
2-imino-thiazolidin-4-one or 1h-pyrrol-2,5-dione fragments on the
4-amino-7-chloroquinoline side chain, J. Braz. Chem. Soc. 22 (9) (2011)
1774-1781. http://dx.doi.org/10.1590/S0103-50532011000900021
[12] M.F. Marmor, U. Kellner, T.Y.Y. Lai, J.S. Lyons, W.F. Mieler,
Revised recommendations on screening for chloroquine and
hydroxychloroquine retinopathy, Ophthalmology 118(2) (2011) 415-422.
http://doi: 10.1016/j.ophtha.2010.11.017
[13] M.E. Egger, J.S. Huang, W. Yin, K.M. McMasters, L.R. McNally,
Inhibition of autophagy with chloroquine is effective in melanoma, J.
Surg. Res. 184 (2013) 274-281. http://doi: 10.1016/j.jss.2013.04.055
[14] T. Kimura, Y. Takabatake, A. Takahashi, Y. Isaka, Chloroquine
in cancer therapy: a double-edged sword of autophagy, Cancer Res. 73
(2013) 3-7. http://doi: 10.1158/0008-5472.CAN-12-2464
[15] S. Hangartner, S. Eggert, F. Dussy, D. Wyler, T. Briellmann,
Chloroquine and diazepam for her last sleep, Drug Test. Anal. 5 (2013)
777-780. http://doi: 10.1002/dta.1509
[16] R. Thomé, S. Costa Pinto Lopes, F.T. Costa, L. Verinaud,
Chloroquine: modes of action of an undervalued drug, Immunol. Lett. 153
(2013) 50-57. http://doi: 10.1016/j.imlet.2013.07.004
[17] E. Tönnesmann, R. Kandolf, T. Lewalter, Chloroquine
cardiomyopathy - a review of the literature, Immunopharmacol.
Immunotoxicol. 35 (2013) 434-442. http://doi:
10.3109/08923973.2013.780078
[18] S. Doddaga, R. Peddakonda, Chloroquine-N-oxide, a major
oxidative degradation product of chloroquine: identification, synthesis
and characterization, J. Pharm. Biomed. Anal. 81-82 (2013) 118-125.
http://doi: 10.1016/j.jpba.2013.04.004
[19] M.S. Kazi, K. Saurabh, P. Rishi, E. Rishi, Delayed onset
chloroquine retinopathy presenting 10 years after long-term usage of
chloroquine, Middle East Afr J Ophthalmol. 20 (2013) 89-91.
http://www.meajo.org/text.asp?2013/20/1/89/106404
[20] X. Zhang, Y. Yang, X. Liang, X. Zeng, Z. Liu, W. Tao, X. Xiao,
H. Chen, L. Huang, L. Mei, Enhancing therapeutic effects of
docetaxel-loaded dendritic copolymer nanoparticles by co-treatment with
autophagy inhibitor on breast cancer, Theranostics 4(11) (2014)
1085-1095. http://doi: 10.7150/thno.9933
[21] J-P Routy, J.B. Angel, M. Patel, C. Kanagaratham, D. Radzioch,
I. Kema, N. Gilmore, P. Ancuta, J Singer, M-A Jenabian, Assessment of
chloroquine as a modulator of immune activation to improve CD4 recovery
in immune nonresponding HIV-infected patients receiving antiretroviral
therapy, HIV Medicine 16 (2015) 48–56. http://doi: 10.1111/hiv.12171.
[22] E.B. Golden, H-Y Cho, F.M. Hofman, S.G. Louie, A.H. Schönthal,
T.C. Chen, Quinoline-based antimalarial drugs: a novel class of
autophagy inhibitors, Neurosurg. Focus 38 (3):E12 (2015) 1-9.
http://doi: 10.3171/2014.12.FOCUS14748
[23] M.F. Marmor, U. Kellner, T.Y. Lai, J.S. Lyons, R.B. Melles,
W.F. Mieler, Recommendations on screening for chloroquine and
hydroxychloroquine retinopathy (2016 Revision). Ophthalmology 123(6)
(2016) 1386-1394. https://doi.org/10.1016/j.ophtha.2016.01.058
[24] H. Ye, M. Chen, F. Cao, H. Huang, R. Zhan, X. Zheng,
Chloroquine, an autophagy inhibitor, potentiates the radiosensitivity of
glioma initiating cells by inhibiting autophagy and activating
apoptosis, BMC Neurology 16 (2016) 178.
https://10.1186/s12883-016-0700-6
[25] A-R Choi, J-H Kim, Y-W Woo, H.S. Kim, S. Yoon, Anti-malarial
drugs primaquine and chloroquine have different sensitization effects
with anti-mitotic drugs in resistant cancer cells, Anticancer Research
36(4) (2016) 1641-1648. http://ar.iiarjournals.org/content/36/4/1641
[26] L.Y. Chan, J.D.W. Teo, K.S-W Tan, K. Sou , W.L. Kwan, C-L.K.
Lee, Near infrared fluorophore-tagged chloroquine in plasmodium
falciparum diagnostic imaging, Molecules 23 (2018) 2635.
https://doi:10.3390/molecules23102635
[27] T. Herraiz, H. Guillén, D. González-Peña, V.J. Arán,
Antimalarial quinoline drugs inhibit β-hematin and increase free hemin
catalyzing peroxidative reactions and inhibition of cysteine proteases,www.nature.com/scientificreports,
9 (2019) 15398 https://doi.org/10.1038/s41598-019-51604-z
[28] Available from internet:
//D:/CHLOROQUINE/Articles/Coronavirus%20disease%202019%20(COVID-19).pdf.
Pag. 53,80.
[29] T. Frosch, M. Schmitt, G. Bringmann, W. Kiefer, J. Popp,
Structural analysis of the anti-malaria active agent chloroquine under
physiological conditions, J Phys Chem B 111(7) (2007) 1815-1822.
https://doi: 10.1021/jp065136j
[30] M. Asghari-Khiavi, J. Vongsvivut, I. Perepichka, A. Mechler,
B.R. Wood, D. McNaughton, D.S. Bohle, Interaction of quinoline
antimalarial drugs with ferriprotoporphyrin IX, a solid state
spectroscopy study, J. Inorg. Biochem. 105(12) (2011) 1662–1669.
https://doi:10.1016/j.jinorgbio.2011.08.005
[31] M. Kozicki, D.J. Creek, A. Sexton, B.J. Morahan, A
Wesełucha-Birczyńska, B.R. Wood, An attenuated total refection (ATR) and
Raman spectroscopic investigations into the effects of chloroquine on
Plasmodium falciparum-infected red blood cells, Analyst. 140(7) (2015)
2236-2246. https://doi: 10.1039/c4an01904k
[32] E.C. Tackman, M.J. Trujillo, T-L.E. Lockwood, G. Merga, M.
Lieberman, J.P. Camden, Identification of substandard and falsified
antimalarial pharmaceuticals chloroquine, doxycycline, and primaquine
using surface-enhanced Raman scattering, Anal. Methods 10 (2018)
4718-4722.https://doi.org/10.1039/C8AY01413B
[33] A.D. Becke, Density-functional exchange-energy approximation
with correct asymptotic behaviour, Phys. Rev. A38 (1988) 3098-3100.
https://doi.org/10.1103/PhysRevA.38.3098
[34] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti
correlation-energy formula into a functional of the electron density,
Phys. Rev. B37 (1988) 785-789.
https://doi.org/10.1103/PhysRevB.37.785
[35] S. Miertus, E. Scrocco, J. Tomasi, Electrostatic interaction of
a solute with a continuum. A direct utilization of AB initio molecular
potentials for the prevision of solvent effects, Chem. Phys. 55 (1981)
117–129. https://doi.org/10.1016/0301-0104(81)85090-2
[36] J. Tomasi, J. Persico, Molecular interactions in solution: an
overview of methods based on continous distributions of the solvent,
Chem. Rev. 94 (1994) 2027-2094. https://doi.org/10.1021/cr00031a013
[37] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation
model based on solute electron density and a continuum model of the
solvent defined by the bulk dielectric constant and atomic surface
tensions, J. Phys. Chem. B113 (2009) 6378-6396.
https://doi.org/10.1021/jp810292n
[38] P. Pulay, G. Fogarasi, G. Pongor, J.E. Boggs, A. Vargha,
Combination of theoretical ab initio and experimental information to
obtain reliable harmonic force constants. Scaled quantum mechanical (QM)
force fields for glyoxal, acrolein, butadiene, formaldehyde, and
ethylene, J. Am. Chem. Soc. 105 (1983) 7073-7047.https://doi.org/10.1021/ja00362a005
[39] G. Rauhut, P. Pulay, Transferable scaling factors for density
functional derived vibrational force fields, J. Phys. Chem. 99 (1995)
3093-3100,https://doi.org/10.1021/j100010a019
[40] T. Sundius, Scaling of ab-initio force fields by MOLVIB. Vib.
Spectrosc. 29 (2002) 89-95.https://doi.org/10.1016/S0924-2031(01)00189-8.
[41] R.G. Parr, R.G. Pearson, Absolute hardness: companion parameter
to absolute electronegativity, J. Am. Chem. Soc. 105 (1983) 7512-7516.