Current and future invasion of Senna didymobotrya under the changing climate in Africa
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Abstract 
Senna didymobotrya is invasive native flowering shrubs mainly grow in Africa. Climate change thought to facilitates the introduction and spread of invasive alien species. The present study aimed at examining the present and future invasion of S. didymobotrya under the changing climatic using species distribution modeling. The mean AUC and TSS value of the model was (95%) and (81%), respectively, which put the model under excellent category. Our result showed under the current climatic conditions 18.11% of the continent is suitable for S. didymobotrya invasion. Eastern African countries are found the most suitable habitat for S. didymobotrya invasion followed by southern African countries. The total highly suitable area for the species is 3.4% and 3.17% in 2050s under RCP4.5 and RCP8.5, respectively.  In 2070s, the highly suitable area is predicted as 3.18 % and 2.73% in RCP4.5 and RCP8.5, respectively. An area with the category of low to moderate suitability under RCP 4.5 and RCP8.5 in the 2050s is projected as 17.4 % and 20.5 % and this area is increased in the 2070s to19.11% and 22.82 for the RCP 4.5 and RCP 8.5, respectively. The results of this study showed a substantial contraction in the highly suitability areas, but large increase in the low and moderately suitable habitat. Despite the contraction in highly suitable areas, countries which are found suitable in the present climatic condition remains suitable for S. didymobotrya establishment. Our ensemble predicted a significant increase in the vulnerability of habitat for invasion under the future climatic scenarios. Our study suggest, the future biodiversity conservation strategy and policy direction should focus on the means and strategy of limiting the rate of expansion of invasion and distribution in different ecosystem types, hence reduce the expected harm in the ecosystem.
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Introduction
Invasive alien species are posing a great threat to earth’s biodiversity and many ecosystem types (Mainka & Howard, 2010a; Shiferaw et al., 2018), and agricultural productivity and economic growth (Simberloff et al., 2013). Human activities have greatly contributed for changing the habitat ranges of invasive alien species at faster rate (Walther et al., 2009). The rapidly growing human populations, increased mobility (travel), tourism, transport, and technological advancement (Wilson et al., 2009; Wittenberg & Cock, 2001), and increasing global market(Richardson & Rejmanek, 2011) have greatly facilitated for the movement of many invasive alien species from their native ranges to other  new areas. Once after becoming established in their habitat, invasive plant species have the ability to flourish and extend quickly in to new area and tends to harm the ecosystem function and structure(Masters & Norgrove, 2010; Shiferaw et al., 2019),and natural processes and human activities (Luizza, et al., 2016). The currently increasing spread and risk of invasive of alien plant species in Africa remains the most striking problem affecting biodiversity losses and livelihood (Witt et al., 2018), which call for an integrated approach. Over 164 invasive alien species were reported in Africa by Witt et al.(2018), of these  reported species Senna didymobotrya is among the most frequently observed invasive species under fabaceae family followed by acacia species. 
Senna didymobotrya is native flowering shrub trees mainly grow in Africa; and recognized as invasive alien species in many African countries (Jaca & Condy, 2017). It is considered as one of the top most invasive species in Africa, and named as  ‘bush encroacher’ and treat to many ecosystem types (Tamiru, 2017). S. didymobotrya invasion can suppress the regeneration and growth of native plant species by creating large dense impenetrable brushes, and mono-cropping stands (Witt et al., 2018), and obstructing the movement of wildlife’s. The shrub can easily establish itself in diverse habitats types such as grasslands, woodlands, forests, riparian zones, dumpsite, disturbed area and coastal scrub(Tamiru, 2017; Witt & Luke, 2017).  For instance high invasion of S. didymobotrya was reported in Budongo Forest Reserve and Matiri Forest Reserve Uganda (Winterbottom & Eilu 2006);  degraded land, urbanized land, coastline, Savanna, and Grassland of southern Africa (Nel et al., 2004; Rambuda & Johnson, 2004; Terzano et al., 2018) and Ethiopia (Fessehaie & Tessema, 2014; Fufa et al., 2017; Shiferaw et al., 2018; Tamiru, 2017). Its further expansion would worsen the problem, leading to great environmental and economic damage. 
In Africa a significant change in temperature and precipitation distribution might be visualized. According to The IPCC’s Fifth Assessment Report (2014), across the continent by the mid (2030–2040) and end  of 21st century (2081–2100)the average regional temperature is projected to rise. However, compared to the global mean surface temperature, the rise in temperature across the region is projected to be higher. An average temperature of less than 2oc under the low emission scenarios, and more than 4oc for the high emission scenarios was projected for most part of the continent (IPCC, 2014) . The precipitation trend is likely to vary from place to place, in which a decrease and increase in rainfall patterns across, southern and eastern Africa countries, respectively is projected(IPCC, 2014, 2019). Continues change in climate reduce the resilience of major ecosystems to biological invasion, exacerbate shifting in species from their geographical ranges and causing native species extinction (Ethiopian Panel on Climate Change, 2015; Hussein, 2011; IPCC, 2014; Mainka & Howard, 2010a). 

Climate change, and land-use changes have a profound effect on the introduction, establishment and expansion of invasive species (Roura-Pascual et al., 2011). Climate warming  could facilitate the dispersal performance of invasive alien species, which would allow range expansion and new invasions (Thiney et al.,2019; Walther et al., 2009). Climate change caused by anthropogenic, and natural processes such as change in the weather system (extreme event), drought, change in precipitation pattern and wind (cyclone) are considered as the main factors assisting the establishment and spread of invasive alien species (Burgiel & Muir, 2010). Moreover, climate change favor the distribution of alien spices movement in to new area through removing constraint to species dispersal and survival such as temperature or moisture (Hellmann,et al.,2008; Mainka & Howard, 2010b). Due to climate change effect globally an invasive species are expected to shift northward(Smith et al., 2012). In Africa a substantial change in many ecosystem services including their extent of biodiversity is projected to be affected by climate change ,which will further put pressure in major range shift in many plants species (Ezeng et al., 2017; Sintayehu, 2018). Similar to other invasive species, climate change may create an opportunity for invasion of S. didymobotrya.  Thus, examining the relation between invasion of invasive species and climate change is needed to design appropriate ecosystem management strategies. Therefore, this study examined the current and future habitat suitability for didymobotrya invasion in Africa under the current and future climatic scenarios and land use. This study address the long term projected impact of climate change in the distribution and extent of alien invasive species at continent level (Africa). Moreover, to our knowledge this is the first ever study that made use of species distribution modelling (ensemble model) to examine the current and future habitat suitability of S. didymobotrya invasion in Africa under changing climate and land use conditions. Like many other invasive species under the ongoing climate and land use changes conditions, the expansion of S. didymobotrya species across the continent is anticipated to increase. 
Materials and methods 

Target species


Senna didymobotrya (Fresen) H.S. is flowering plant species in the family fabaceae. In several part of Africa, the species named “African senna ”, “candelabra tree”, “popcorn senna ”, and “peanut butter cassia” (Jaca & Condy, 2017). It is a hairy, aromatic shrub growing up to nine meters. It has been domesticated to many areas as an ornamental plant, a cover crop and a leguminous green manure. The plant commonly grows in the tropical climate on diverse habitats types and is native to eastern and central Africa (Orwa et al., 2009). The leaf extracts from S. didymobotrya were commonly used as medicinal purpose (Jaca & Condy, 2017; Jeruto et al.,2017). The species is distributed  from Congo east to Ethiopia and south to Namibia, Zimbabwe, Angola, Mozambique , Comoros, Madagascar, Mauritius and South Africa (Orwa et al., 2009; Tabuti, 2007). The tree species is capable in establishing itself under light frost up to 25 days in a year (Dlamini, 2016) and usually prefer  warmer climate.  Its occurrence is favored by the presence of other species like,  Sesbania punicea  , Melia azedarach, and  Psidium guajava  (Dlamini, 2016). The tree often  grows  and ruderal in areas with steady water supply such as wetlands, and riparian areas (Dlamini, 2016; Tabuti, 2007), water bodies, damp localities, grassland and woodland (Nyaberi et al., 2013), with altitude range  from 900 up to 2500 m above sea level(Tabuti, 2007). It has distinctive floral morphology and the presence of extrafloral nectaries have the nature to attract ants. 
Species presence records

Species occurrence data were acquired from Global Biodiversity Information Facility (GBIF: 105 https://www.gbif.org/), Vegetationmap4africa (597: https://vegetationmap4africa.org/), and South African National Biodiversity Institute (SNABI: 11, http://ipt.sanbi.org.za/iptsanbi/) databases (figure1). The data were further explored for quality inspection and cleaning to check the presence of any duplicate records. Duplicate records were removed from the dataset. A visual inspection was done by displaying the acquired georeferenced points in ESRI ArcMap 10.7 software. Finally, a total of 515 presence points were used as input for species distribution modeling. Furthermore, in order to reduce the influence of false absence during modelling, we generated 800 randomly distributed pseudo-absence points over the geographical surface. 
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Figure 1. Spatial distribution of species occurrence across elevation range
Environmental and climate data
To predict the current and future distribution we acquired 19 bioclimatic and one elevation variables from WorldClim (www.worldclim.com) database version 2.1. The data has a resolution of 5arc minutes which is approximately 10 km at the equator. The dataset was interpolated from measurement of more than 10,000 weather stations across the world (Hijmans et al., 2005). The data was downloaded in GeoTiff (.tif) format using the getData raster package (Naimi,2018:https://cran.r-project.org) in R. Then all the data was downscaled to the boundary of Africa using clip tool in ArcMap 10.7. All of the acquired bioclimatic data may not be used at once during modelling, because of collinearity reason which otherwise resulting model instability hence  might led to wrong interpretation(Dormann et al., 2013), then to detect the collinearity between the variables we used variance inﬂation factors (VIF) (Marquardt, 1970). A pearson’s correlation coefficients using pairwise comparison was used to all the  environmental variables for selecting the variables with highest correlation value(r >0.7) and finally these variables with highest correlation than the threshold values were excluded from the model (Dormann et al., 2013).  To this end, vifstep function in sdm R package was implemented. A vifstep is as stepwise procedure that commonly applied for excluding variables characterized by highly linear correlation (i.e greater than the threshold) with other variables included in the model (Naimi et al., 2014).  Finally, after successive collinearity checking a total of eight (8) bioclimatic variables consisting of four (4) temperatures, four (4) precipitations related variables and one (1) topographic variable were maintained for modelling (table 3).  
Global climate models (GCMs) for two representative concentration paths such as RCP4.5 and RCP8.5 of the periods 2050 (2041-2060) and 2070 (2061-2080) were obtained from WorldClim open sources database (https://worldclim.org/data/v1.4/cmip5.html) for representing the future climate projections (Fick & Hijmans, 2017). According to van Vuuren et al. ( 2011) RCPs scenarios are developed to illustrates climate situations in which radioactive forcing which can be anticipated to rise by 4.5 and 8.5 in Watts per square meter (W/m-2) in the year 2100 and is commonly used for historical climate change modelling(IPCC, 2014). The radioactive forcing is expressed the added energy reserved by the earth system as a result of increased climate change pollution caused by greenhouse gases effect, mainly from CO2 increase(Bjornas, 2015).  
Distribution modeling

Species distribution models (SDMs) the most powerful tools in many discipline such as regional conservation planning, climate change impact assessment, and ecology (Naimi, 2015), and phylogeography (Alvarado-Serrano & Knowles, 2014). It has a robust capability in predicting species probability of occurrence in geographical areas using the presence and absence data, and produce invasion risk mapping (Srivastava et al., 2019). SDMs model can be run in usdm package available in R and through ensemble approach which combine several statistical and machine learning algorithms (Marmion et al., 2009; Naimi & Araújo, 2016). In our study we used a total of eight (8) SDM models listed under the domain of three regression models: generalized linear model (GLM), generalized additive model (GAM), multivariate adaptive regression splines (MARS), two classification models; flexible discriminant analysis (FDA), mixed discriminant analysis, (MAD), and three machine learning models such as random forest (RF), boosted regression trees (BRT), and support vector machine (SVM). The selected model types are among the most powerful models in handling presence and absence data, hence predicting the species habitat suitability by generating binary map (Naimi & Ara, 2016).
In this study an ensemble modelling approach which combines the eight modelling results was used for predicting the current and future suitability map of invasion by S. didymobotrya species. An ensemble modelling was suggested as among the robust approaches in distribution modeling (Araújo & New, 2007; Gómez et al., 2018; Hao et al., 2020; Marmion et al., 2009); and has the potential in minimizing the expected modelling result variability which otherwise caused by using a single algorithms (Alfaro et al., 2019; Buisson et al., 2010; Turner et al., 2019). An ensemble model also reported as the most efficient outperformed and consistent model in predicting different alien invasive species by Stohlgren et al.(2010), and for Prosopis spp. by Ng, et al.( 2018), respectively. Although an ensemble approaches is reported to be robust tool for species distribution forecasting, however a proper selection of parameters still required to reduce the possible model uncertainties.
Model performance, current and future suitability area analysis 

The model predicting performance for the future and current area suitability for S.didymobotrya was evaluated based on area under the curve (AUC) of receiver operating characteristics (ROC) (Fielding & Bell, 1997) and true skills statistics (TSS)(Allouche et al., 2006) measure of metric. The AUC values range from 0 to 1, and while the TSS measuring metric ranges from -1 to 1(Naimi, 2015). The different model AUC and TSS classification index is indicated in table1 (Thuiller  et al., 2009). The classification index illustrates the model prediction efficacy from low/fail to excellent ranges. We calibrated the models using the defaults setting which share the data in to 70% for the training the model and the remaining 30% of the data were used for assessing the performance of the model (Araújo, et al., 2005). 

Table 1. Index for classifying model prediction accuracy(Thuiller  et al., 2009)
	Accuracy
	AUC
	KAPPA/TSS

	Excellent /High
	0.9 -1
	0.8 - 1

	Good
	0.8 -0.9
	0.6- 0.8

	Fair
	0.7- 0.8
	0.4- 0.6

	Poor
	0.6- 0.7
	0.2 -0.4

	Fail/null
	0.5- 0.6
	0 -  0.2


In this study the habitat suitability change analysis of S. didymobotrya was performed based on the future scenarios (2050 and 2070) under the two Representation Concentration Pathways (RCPs) 4.5 and 8.5. The  final map generated from the ensemble model was classified in to four different suitability classes, namely: not suitable (0.0–0.25), low suitable (0.25–0.50), moderately suitable (0.50–0.75) and highly suitable (0.75–1.00) classes following the method of Hamid et al.( 2019). A total of five (5) maps, consisting of four maps for the two RCPs for the year 2050 and 2070 and one map for the current period (2020) were produced to show the current and future potential distribution of S. didymobotrya species at continental level in Africa. We used a weighted averaging method to create the final ensemble maps.  Finally, for each range of suitability classes the area percentage was calculated in ArcMap version 10.7 (ESRI, 2011). 
Habitat vulnerability assessment

The potential habitat vulnerability change for future climatic scenario was assessed. The assessment was done based on(Dai et al., 2019; Duan et al., 2016; Li et al., 2018; Li et al., 2017; Yan et al., 2020). The key for vulnerability evaluation criteria are: i) unsuitable habitats: the areas where current and future (2050 and 2070) remains unsuitable habitats overlap; ii) new suitable habitats: these areas that are currently unsuitable habitats but predicted to be converted into suitable habitats by the 2050 and 2070; iii) suitable habitats that have not changed: these areas currently predicted as suitable habitats that overlap with future (2050 and 2070) suitable habitats; iv) vulnerable areas: the areas currently suitable habitat which is projected as unsuitable habitat by the 2050s and 2070s. 
The following different measure of indicators used to calculate the effect of climate changes on the potential habitat suitability of S. didymobotrya invasion rate under current and future climatic conditions: suitable habitat invasion change rate in percentage (AC); (ii) percentage of current suitable habitat invasion area loss (SHc); and (iii) percentage of increased suitable habitat invasion rate under the future climate scenario (2050 and 2070) (SHf) (Dai et al., 2019; Duan et al., 2016; Li et al., 2018; Li et al., 2017; Yan et al., 2020). 
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Where Af is the area predicted as suitable habitat by 2050  and 2070 climatic conditions; Ac is the current suitable habitat area predicted; and Acf is the suitable habitat found/overlapping in both the current and future climatic conditions(2050 and 2070), respectively. 
Results 
Model performance statistics
The overall models mean of AUC and TSS value was 95% and 81%, respectively (Table 2), which is higher than expected random value (table 2). The ensemble model performance based AUC and TSS statistics showed a higher predicting capability for S. didymobotrya. The highest model AUC value was attained when using RF algorithms (AUC=99%), while the lowest performance was found in FDA and GLM algorithm (AUC=92%). The minimum and maximum TSS value from the eight algorithms was found in FDA and GLM (TSS=76%) and RF (TSS=92%) algorithms, respectively. The overall model prediction accuracy index based on the mean AUC and TSS value is grouped under high/excellent range (table1).  
Table 2 Mean model performance statistics of the eight models using test dataset for predicting the current and future area suitability of S. didymobotrya tree species under different climatic scenarios  
	Measure of 

statistics 
	Models
	

	
	GLM
	SVM
	RF
	BRT
	MARS
	GAM
	MDA
	FDA
	Mean value

	AUC
	0.92    
	0.96   
	0.99    
	0.95    
	0.95   
	0.95  
	0.94   
	0.92   
	0.95

	TSS
	0.76    
	0.83    
	0.92    
	0.81  
	0.80   
	0.83  
	0.78  
	0.77  
	0.81

	Deviance
	0.68    
	0.52  
	0.30    
	0.76     
	0.59     
	0.82     
	0.67    
	0.71   
	0.63

	Cor
	0.76
	0.84
	0.91
	0.81
	0.81
	0.83
	0.79
	0.77
	0.82


Environmental variables relative importance 

Table 3 present the relative importance of environmental variables included in the model. The top most important temperature and precipitation related variables prevailing the distribution of S. didymobotrya were elevation (elev; 33%), minimum temperature of coldest month (bio6; 27.3%), annual mean temperature (bio1; 20.6%), and annual precipitation (boi12;10.8%). Nonetheless, environmental factors such as mean temperature of wettest quarter (boi8), mean temperature of driest quarter (bio9), and precipitation of warmest quarter (bio18) were the least explaining factors for this species with the overall contribution of 5.3%, 3.5% and 3.1%, respectively. 
Table 3 . The relative contribution (%) of the environmental variables based on correlation metric
	Environmental Variables 
	description
	Percentage  contribution 

	elev 
	Elevation 
	33

	bio6
	Min Temperature of Coldest Month
	27.3

	boi1
	Annual Mean Temperature
	20.6

	boi12
	Annual Precipitation
	10.8

	bio14
	Precipitation of Driest Month
	8.2

	boi17
	Precipitation of Driest Quarter
	7.8

	boi8
	Mean Temperature of Wettest Quarter
	5.3

	bio9
	Mean Temperature of Driest Quarter
	3.5

	bio18
	Precipitation of Warmest Quarter
	3.1



Current and future distribution of senna didymobotrya 
Under the current climatic condition 18.22 % of Africa (from low to high suitability) is suitable for S. didymobotrya invasion, whereas the majority of the continent (81.88%) is not suitable for S. didymobotrya invasion. The results of the study showed that 4.0%, 3.8% and 10.3% of Africa has a high, moderate and low suitability for S. didymobotrya invasion, respectively
The current suitability map (figure 2) depicted countries like: Rwanda, Uganda Western Kenya, Burundi, Tanzania, and most part of Ethiopia were found to be the most suitable habitats for the invasion of S.didymobotrya species. Similarly countries such as eastern Zambia, north eastern Zimbabwe, Mozambique, central part of Angola, Lesotho, Central Madagascar, Eastern broader of South Africa, Malawi, DRC eastern side, south Sudan bordering Kenya and Eritrea were among the low to moderately suitable habitat for S. didymobotrya invasion under current climatic scenario(figure2). Furthermore, the species suitable habitat ranges was observed in the elevation range between 750m to 3000m a.s.l., however, few patches of suitability range at lower elevation beyond 750 m a. s.l. was also visualized. 
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Figure 2 S.didymobotrya invasions under current climatic conditions
Future model projections map revealed that an overall areal increase in the invasion of S. didymobotrya compared to that of the current suitability (figure 3). The suitable area under category of the low and moderate class range of suitability increased is significantly over the considered period. The total share of habitat categorized as low and moderate class in the climatic scenarios of RCP 4.5 and RCP8.5 for the year 2050 was projected to be 16.98 % and 20 %, respectively.  Similarly, our result revealed an increased in suitability by the year 2070 by 18.62% and 21.98% for the RCP 4.5 and RCP 8.5 (Table4 , figure3) respectively. Nevertheless, a substantial decrease in the highly suitable habitat range is projected by the model. Accordingly, by  the year 2050 for the two considered RCPs, the total areas of highly suitable for S. didymobotrya establishment is projected to decrease by -15% (RCP4.5) and -20.75% (RCP8.5) in suitability compared to the moderately and low suitability classes (table 4). Similarly, in the2070s the highly suitable area has shown a progressive decrease in the overall trends by -20.5 % (RCP4.5) and -31.75 % (RCP 8.5) (table 4).  
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Figure 3 S.didymobotrya invasion suitability under future projected climatic condition for RCP 4.5 and RCP 8.5.
Under RCP4.5 & RCP8.5 for the two considered period (2050 and 2070) countries such as: Angola (south eastern), Zambia, Zimbabwe ,DRC(north east and central, partly to west), south African including Lesotho and Swaziland, Congo Brazzaville, western Namibia, southern  Cotdivore  , southern Ghana, and Cameron were found among the hotspot area for S. didymobotrya potential future invasion(figure 3). On the other side, Mozambique and Ethiopia (north eastern) has shown a progressive lose in current suitability of S.didymobotrya invasion. Likewise, a progressive decrease in the total suitability (highly suitable area, represented in deep red color) was observed for the eastern African countries which were previously considered as the main hotspot area for S. didymobotrya (figure3, table4).  However, in RCP8.5 (2050 and 2070), the percentage of areas invaded by the species is predicted to increase at higher rate than that of RCP4.5; mainly the increase is directed toward southern and slightly into central Africa. Nevertheless under both future climatic scenarios the continent, except Sub-Saharan countries was found non- suitable for S. didymobotry invasion. 
Table 4 Percentage of total suitability and suitable habitat change with respect to the current distribution. 
	
	
	
	
	
	
	
	
	
	

	 
	 

 Total suitability (%) in different ranges
	 
	Suitable habitat change rate (%)

	Years
	Scenarios
	Not suitable
	Low 
	Moderate
	High
	Not suitable
	Low 
	Moderate
	High

	Current
	-
	81.88
	10.27
	3.84
	4.00
	 
	 
	 
	 

	2050

 
	RCP4.5
	79.20
	13.18
	4.22
	3.40
	-3.27
	28.33
	9.90
	-15.00

	
	RCP8.5
	76.34
	15.82
	4.68
	3.17
	-6.77
	54.04
	21.88
	-20.75

	2070

 
	RCP4.5
	77.71
	14.69
	4.42
	3.18
	-5.09
	43.04
	15.10
	-20.50

	
	RCP8.5
	74.46
	17.79
	5.03
	2.73
	-9.06
	73.22
	30.99
	-31.75

	
	
	
	
	
	
	
	
	
	


Vulnerability of S. didymobotrya invasion to different climatic conditions

Our model predicted a significant increase in the vulnerability of habitat for invasion of S. didymobotrya under the future climatic scenarios. Our result demonstrations by the 2050s, an increase in the new invasion areas by 61.57% and 79.82% was projected under RCP 4.5 and RCP8.5, respectively (table 5). Similarly, this situation remains rose in suitability in the 2070s with 73.12% and 95.62 % under RCP4.5 and RCP8.5, respectively. However, our assessment suggests a progressive decrease in suitability for S. didymobotrya invasion under future climatic scenarios for the not suitable and highly suitable class (table5). 
Table 5 the percentage of future suitable habitat increase rate 
	 

Future suitable habitat increase rate in (%) by  2050 and 2070

	Years
	Scenarios
	Not suitable
	Low 
	Moderate
	High

	2050

 
	RCP4.5
	1.94
	36.48
	25.09
	2.71

	
	RCP8.5
	1.71
	47.05
	32.78
	3.05

	2070

 
	RCP4.5
	1.79
	42.42
	30.70
	3.41

	
	RCP8.5
	2.23
	55.23
	40.39
	3.01


Discussion 
Our present study used projected the current and future habitat invasion by S. didymobotrya using ensemble approach at the scale of African continent. The ensemble model predicted well the distribution of S. didymobotrya in the study area, which is evidenced by the mean AUC and TSS values, and this is inconsonance with (Allouche et al., 2006; Swets, 1988). The model predicted a high suitability of invasion for S. didymobotrya particularly in several part of the sub Sharan Africa countries. Particularly, under the current climatic scenarios a high habitat suitability of invasion is observed in countries like, Rwanda, Burundi, Uganda, Kenya, Tanzania, and Ethiopia. In contrary north African countries were projected to be non- suitable habitat for S. didymobotrya invasion under current and future climatic conditions. Our present result is in agreement with the report made by Witt & Luke,(2017),which put Senna spps (Fabaceae)as among the most occurring alien invasive species in many habitats of east African country. Similarly, our current invasion distribution model result is in consonance with studies conducted in different part of Africa (Dlamini, 2016; Fessehaie & Tessema, 2014; Fufa et al., 2017; Jaca & Condy, 2017; Nel et al., 2004). 
A topographic variable such as elevation was predicted as the most important variables governing the distribution of S. didymobotrya across the continent. Our result agrees with the study by Ibanez et al.(2019), who found elevation as the main predictor variables explaining (a strongest, negatively) the distribution of alien plant species than other bioclimatic variables. 
Under future climate change scenarios, suitability for S. didymobotrya will expand towards lower elevations. A higher species richness of invasive alien species was reported in the lower elevation ranges than higher elevation (Averett et al., 2016; Ibanez et al., 2019; Pauchard, 2017). Similarly, some invasive species are shifting their geographic distribution towards high altitude as the climate warms (Bradley, Blumenthal, Wilcove, & Ziska, 2010; Shrestha, Sharma, Devkota, Siwakoti, & Shrestha, 2018), and new invasive species are adding to those currently being successfully controlled. This is could be because higher elevation ranges are assumed to be isolated and distant from weed populations subsequently hindering accessibility by vehicular traffic and less human disturbance, lead for the less propagule pressure across the landscape resulting in low establishment. This means that in the long-run, the inherent characteristic of the species and lack of native competitors may cause niche shift in new ranges towards lower elevations; and it is more possibly that climate variability will facilitate the spread of the species into new areas.
Following topographic information, temperature variables (accounting 47.9%) (bio6: min temperature of coldest month and bio1: annual mean temperature) were among variables predicted to be important for S. didymobotrya establishment. Similarly, our ensemble model predicted precipitation variables which is accounting 26.8% (bio12: Annual precipitation; bio14: precipitation of driest month; and bio17: precipitation of driest quarter) as the third most important environmental variables affecting S. didymobotrya distribution. Ibanez et al.(2019) also reported positive effects of mean annual precipitation on alien species coverage. Averett et al. 2016 reported in their study the influence of temperature variables (minimum temperature records over 30yr) as the most predictor variables limiting the distribution of non- native species richness. 
Our future projection model showed a substantial increase in the new invasion areas both for the considered RCPs (4.5 and 8.5). Nevertheless, it is visualized that areas which are highly suitable under current climatic condition tends to lose their suitability into moderately and low suitability ranges under the future climatic condition. The model predicted compared to the current suitability, the southern Africa countries are expected to gain more new invaded areas than countries located in the eastern African and central Africa in the future climatic scenarios. This trend indicated a shifting in the future hotspot area invasion by S. didymobotrya into these countries as a result of climate changes. Nevertheless, despite the loss in higher range of suitability, east African countries remain the main hotspot location of S. didymobotrya future invasion. According to Witt & Luke (2017) and  Witt et al.(2018) the future alien invasive plants species distribution including S. didymobotrya  in mots habitat range of East African countries is high facilitated by an increased land degradation, overgrazing ,deforestation of native forest and associated impact of climate change. 
Climate change can cause alien species to migrate in to new place from the currently growing habitats Walther et al.(2009), similarly in our study we found a significant shift in the future range of niche of S. didymobotrya invasion from the current growing range, which is articulated as the effect of climate change. Moreover, our result suggests in the long run due to the ongoing climate changes potential shift in species habitat ranges. Furthermore, the movement of invasive species in to new area at global and local scale is favored by other mechanisms such as wind (cyclone), severs weather events, global circulation air, and water and climate changes (Burgiel & Muir, 2010).
Conclusion 
This study confirms for the first time the distribution of S. didymobotrya at continental scale in Africa. Both the present and future projection showed the presence of S. didymobotrya   in most part of African countries. We found eastern Africa countries are more vulnerable for S. didymobotrya invasion in the future, followed by southern African countries. The continuous ranges expansion of the species has already caused adverse effects on biodiversity, ecosystem services and economy. The current status and future tends of S. didymobotrya indicate a precautionary note calling for coordinated, inter-country and large scale interventions. Additionally, the outputs of this study will support management of the species through early detection strategy in its future potentially suitable area. Based on our study, we urge that the future conservation strategy and policy direction should target on how to limit the increasing expansion of invasion mainly by focusing the hotspot area through designing more feasible management and control measures through early identification and eradication actions. Moreover, we recommend the need of further study to acquaint more information on the distribution of S. didymobotrya at local scale, by incorporating other variables, land cover/use, population, proximity to water, and proximity to roads, and population parameters which are not considered in this study, but assumed to favor the establishment of the species.
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