References
1. Antibody therapeutics approved or in regulatory review in the EU or US. The Antibody Society. Accessed April 14, 2020. https://www.antibodysociety.org/resources/approved-antibodies/
2. Grilo AL, Mantalaris A. The Increasingly Human and Profitable Monoclonal Antibody Market. Trends Biotechnol . 2019;37(1):9-16. doi:10.1016/j.tibtech.2018.05.014
3. Hudis CA. Trastuzumab — Mechanism of Action and Use in Clinical Practice. N Engl J Med . 2007;357(1):39-51. doi:10.1056/NEJMra043186
4. Weiner GJ. Monoclonal antibody mechanisms of action in cancer.Immunol Res . 2007;39(1):271-278. doi:10.1007/s12026-007-0073-4
5. Chenoweth AM, Wines BD, Anania JC, Mark Hogarth P. Harnessing the immune system via FcγR function in immune therapy: A pathway to next‐gen mAbs. Immunol Cell Biol . Published online March 11, 2020:imcb.12326. doi:10.1111/imcb.12326
6. Bordron A, Bagacean C, Tempescul A, et al. Complement System: a Neglected Pathway in Immunotherapy. Clin Rev Allergy Immunol . 2020;58(2):155-171. doi:10.1007/s12016-019-08741-0
7. Ho NI, Camps MGM, Haas EFE de, Trouw LA, Verbeek JS, Ossendorp F. C1q-Dependent Dendritic Cell Cross-Presentation of In Vivo–Formed Antigen–Antibody Complexes. J Immunol . 2017;198(11):4235-4243. doi:10.4049/jimmunol.1602169
8. Fransen MF, Benonisson H, van Maren WW, et al. A Restricted Role of FcγR in the Regulation of Adaptive Immunity. J Immunol Baltim Md 1950 . 2018;200(8):2615-2626. doi:10.4049/jimmunol.1700429
9. DiLillo DJ, Ravetch JV. Differential Fc-Receptor Engagement Drives an Anti-tumor Vaccinal Effect. Cell . 2015;161(5):1035-1045. doi:10.1016/j.cell.2015.04.016
10. Treffers LW, van Houdt M, Bruggeman CW, et al. FcγRIIIb Restricts Antibody-Dependent Destruction of Cancer Cells by Human Neutrophils.Front Immunol . 2019;9. doi:10.3389/fimmu.2018.03124
11. Bruhns P, Jönsson F. Mouse and human FcR effector functions.Immunol Rev . 2015;268(1):25-51. doi:10.1111/imr.12350
12. Nimmerjahn F. Divergent Immunoglobulin G Subclass Activity Through Selective Fc Receptor Binding. Science . 2005;310(5753):1510-1512. doi:10.1126/science.1118948
13. Furness AJS, Vargas FA, Peggs KS, Quezada SA. Impact of tumour microenvironment and Fc receptors on the activity of immunomodulatory antibodies. Trends Immunol . 2014;35(7):290-298. doi:10.1016/j.it.2014.05.002
14. Pyzik M, Sand KMK, Hubbard JJ, Andersen JT, Sandlie I, Blumberg RS. The Neonatal Fc Receptor (FcRn): A Misnomer? Front Immunol . 2019;10. doi:10.3389/fimmu.2019.01540
15. Brüggemann M, Williams GT, Bindon CI, et al. Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J Exp Med . 1987;166(5):1351-1361.
16. Saunders KO. Conceptual Approaches to Modulating Antibody Effector Functions and Circulation Half-Life. Front Immunol . 2019;10. doi:10.3389/fimmu.2019.01296
17. Shields RL, Lai J, Keck R, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem . 2002;277(30):26733-26740. doi:10.1074/jbc.M202069200
18. Junttila TT, Parsons K, Olsson C, et al. Superior In vivo Efficacy of Afucosylated Trastuzumab in the Treatment of HER2-Amplified Breast Cancer. Cancer Res . 2010;70(11):4481-4489. doi:10.1158/0008-5472.CAN-09-3704
19. Beck A, Reichert JM. Marketing approval of mogamulizumab.mAbs . 2012;4(4):419-425. doi:10.4161/mabs.20996
20. Goede V, Fischer K, Engelke A, et al. Obinutuzumab as frontline treatment of chronic lymphocytic leukemia: updated results of the CLL11 study. Leukemia . 2015;29(7):1602-1604. doi:10.1038/leu.2015.14
21. Pereira NA, Chan KF, Lin PC, Song Z. The “less-is-more” in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. mAbs . 2018;10(5):693-711. doi:10.1080/19420862.2018.1466767
22. Nordstrom JL, Gorlatov S, Zhang W, et al. Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcγ receptor binding properties. Breast Cancer Res BCR . 2011;13(6):R123. doi:10.1186/bcr3069
23. Research AA for C. “Super Trastuzumab” Extends PFS in Late-Line Breast Cancer. Cancer Discov . 2019;9(8):OF5-OF5. doi:10.1158/2159-8290.CD-NB2019-069
24. Rogers LM, Veeramani S, Weiner GJ. Complement in Monoclonal Antibody Therapy of Cancer. Immunol Res . 2014;59(0):203-210. doi:10.1007/s12026-014-8542-z
25. Di Gaetano N, Cittera E, Nota R, et al. Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol Baltim Md 1950 . 2003;171(3):1581-1587. doi:10.4049/jimmunol.171.3.1581
26. Sato F, Ito A, Ishida T, et al. A complement-dependent cytotoxicity-enhancing anti-CD20 antibody mediating potent antitumor activity in the humanized NOD/Shi-scid, IL-2Rγ(null) mouse lymphoma model. Cancer Immunol Immunother CII . 2010;59(12):1791-1800. doi:10.1007/s00262-010-0905-2
27. Goulet DR, Atkins WM. Considerations for the Design of Antibody-Based Therapeutics. J Pharm Sci . Published online June 2019:S0022354919303648. doi:10.1016/j.xphs.2019.05.031
28. Rasche L, Menoret E, Dubljevic V, et al. A GRP78-Directed Monoclonal Antibody Recaptures Response in Refractory Multiple Myeloma with Extramedullary Involvement. Clin Cancer Res Off J Am Assoc Cancer Res . 2016;22(17):4341-4349. doi:10.1158/1078-0432.CCR-15-3111
29. Rasche L, Duell J, Morgner C, et al. The Natural Human IgM Antibody PAT-SM6 Induces Apoptosis in Primary Human Multiple Myeloma Cells by Targeting Heat Shock Protein GRP78. PLOS ONE . 2013;8(5):e63414. doi:10.1371/journal.pone.0063414
30. Natsume A, In M, Takamura H, et al. Engineered Antibodies of IgG1/IgG3 Mixed Isotype with Enhanced Cytotoxic Activities. Cancer Res . 2008;68(10):3863-3872. doi:10.1158/0008-5472.CAN-07-6297
31. Moore GL, Chen H, Karki S, Lazar GA. Engineered Fc variant antibodies with enhanced ability to recruit complement and mediate effector functions. mAbs . 2010;2(2):181-189. doi:10.4161/mabs.2.2.11158
32. Goldberg BS, Ackerman ME. Antibody-mediated complement activation in pathology and protection. Immunol Cell Biol . 2020;98(4):305-317. doi:10.1111/imcb.12324
33. Tammen A, Derer S, Schwanbeck R, et al. Monoclonal Antibodies against Epidermal Growth Factor Receptor Acquire an Ability To Kill Tumor Cells through Complement Activation by Mutations That Selectively Facilitate the Hexamerization of IgG on Opsonized Cells. J Immunol . 2017;198(4):1585-1594. doi:10.4049/jimmunol.1601268
34. Josephs DH, Spicer JF, Corrigan CJ, Gould HJ, Karagiannis SN. Epidemiological associations of allergy, IgE and cancer. Clin Exp Allergy . 2013;43(10):1110-1123. doi:10.1111/cea.12178
35. Ferastraoaru D, Rosenstreich D. IgE deficiency is associated with high rates of new malignancies: Results of a longitudinal cohort study.J Allergy Clin Immunol Pract . 2020;8(1):413-415. doi:10.1016/j.jaip.2019.06.031
36. Josephs DH, Spicer JF, Karagiannis P, Gould HJ, Karagiannis SN. IgE immunotherapy: A novel concept with promise for the treatment of cancer.mAbs . 2014;6(1):54-72. doi:10.4161/mabs.27029
37. Leoh LS, Daniels-Wells TR, Penichet ML. IgE Immunotherapy Against Cancer. In: Lafaille JJ, Curotto de Lafaille MA, eds. IgE Antibodies: Generation and Function . Vol 388. Springer International Publishing; 2015:109-149. doi:10.1007/978-3-319-13725-4_6
38. Daniels TR, Martínez-Maza O, Penichet ML. Animal models for IgE-meditated cancer immunotherapy. Cancer Immunol Immunother . 2012;61(9):1535-1546. doi:10.1007/s00262-011-1169-1
39. Gould HJ, Mackay GA, Karagiannis SN, et al. Comparison of IgE and IgG antibody-dependent cytotoxicity in vitro and in a SCID mouse xenograft model of ovarian carcinoma. Eur J Immunol . 1999;29(11):3527-3537. doi:10.1002/(SICI)1521-4141(199911)29:11<3527::AID-IMMU3527>3.0.CO;2-5
40. Josephs DH, Bax HJ, Dodev T, et al. Anti-Folate Receptor-α IgE but not IgG Recruits Macrophages to Attack Tumors via TNFα/MCP-1 Signaling.Cancer Res . 2017;77(5):1127-1141. doi:10.1158/0008-5472.CAN-16-1829
41. Karagiannis SN, Wang Q, East N, et al. Activity of human monocytes in IgE antibody-dependent surveillance and killing of ovarian tumor cells. Eur J Immunol . 2003;33(4):1030-1040. doi:10.1002/eji.200323185
42. Karagiannis SN, Bracher MG, Hunt J, et al. IgE-Antibody-Dependent Immunotherapy of Solid Tumors: Cytotoxic and Phagocytic Mechanisms of Eradication of Ovarian Cancer Cells. J Immunol . 2007;179(5):2832-2843. doi:10.4049/jimmunol.179.5.2832
43. Pellizzari G, Bax HJ, Josephs DH, et al. Harnessing Therapeutic IgE Antibodies to Re-educate Macrophages against Cancer. Trends Mol Med . 2020;26(6):615-626. doi:10.1016/j.molmed.2020.03.002
44. Daniels TR, Leuchter RK, Quintero R, et al. Targeting HER2/neu with a fully human IgE to harness the allergic reaction against cancer cells.Cancer Immunol Immunother CII . 2012;61(7):991-1003. doi:10.1007/s00262-011-1150-z
45. Daniels-Wells TR, Helguera G, Leuchter RK, et al. A novel IgE antibody targeting the prostate-specific antigen as a potential prostate cancer therapy. BMC Cancer . 2013;13:195. doi:10.1186/1471-2407-13-195
46. Platzer B, Elpek KG, Cremasco V, et al. IgE/FcεRI-mediated antigen cross-presentation by dendritic cells enhances anti-tumor immune responses. Cell Rep . 2015;10(9):1487-1495. doi:10.1016/j.celrep.2015.02.015
47. Josephs DH, Nakamura M, Bax HJ, et al. An immunologically relevant rodent model demonstrates safety of therapy using a tumour‐specific IgE.Allergy . 2018;73(12):2328-2341. doi:10.1111/all.13455
48. Williams IP, Crescioli S, Sow HS, et al. In vivo safety profile of a CSPG4-directed IgE antibody in an immunocompetent rat model.mAbs . 2019;12(1). doi:10.1080/19420862.2019.1685349
49. Leusen JHW. IgA as therapeutic antibody. Mol Immunol . 2015;68(1):35-39. doi:10.1016/j.molimm.2015.09.005
50. Aleyd E, Heineke MH, van Egmond M. The era of the immunoglobulin A Fc receptor FcαRI; its function and potential as target in disease.Immunol Rev . 2015;268(1):123-138. doi:10.1111/imr.12337
51. Heemskerk N, van Egmond M. Monoclonal antibody‐mediated killing of tumour cells by neutrophils. Eur J Clin Invest . 2018;48(Suppl Suppl 2). doi:10.1111/eci.12962
52. Valerius T, Stockmeyer B, van Spriel AB, et al. FcalphaRI (CD89) as a novel trigger molecule for bispecific antibody therapy. Blood . 1997;90(11):4485-4492.
53. Brandsma AM, Bondza S, Evers M, et al. Potent Fc Receptor Signaling by IgA Leads to Superior Killing of Cancer Cells by Neutrophils Compared to IgG. Front Immunol . 2019;10. doi:10.3389/fimmu.2019.00704
54. van Egmond M, van Vuuren AJ, Morton HC, et al. Human immunoglobulin A receptor (FcalphaRI, CD89) function in transgenic mice requires both FcR gamma chain and CR3 (CD11b/CD18). Blood . 1999;93(12):4387-4394.
55. Pascal V, Laffleur B, Debin A, et al. Anti-CD20 IgA can protect mice against lymphoma development: evaluation of the direct impact of IgA and cytotoxic effector recruitment on CD20 target cells.Haematologica . 2012;97(11):1686-1694. doi:10.3324/haematol.2011.061408
56. Boross P, Lohse S, Nederend M, et al. IgA EGFR antibodies mediate tumour killing in vivo. EMBO Mol Med . 2013;5(8):1213-1226. doi:10.1002/emmm.201201929
57. Meyer S, Nederend M, Jansen JHM, et al. Improved in vivo anti-tumor effects of IgA-Her2 antibodies through half-life extension and serum exposure enhancement by FcRn targeting. mAbs . 2015;8(1):87-98. doi:10.1080/19420862.2015.1106658
58. Lohse S, Meyer S, Meulenbroek LAPM, et al. An Anti-EGFR IgA That Displays Improved Pharmacokinetics and Myeloid Effector Cell Engagement In Vivo. Cancer Res . 2016;76(2):403-417. doi:10.1158/0008-5472.CAN-15-1232
59. Borrok MJ, Luheshi NM, Beyaz N, et al. Enhancement of antibody-dependent cell-mediated cytotoxicity by endowing IgG with FcαRI (CD89) binding. mAbs . 2015;7(4):743-751. doi:10.1080/19420862.2015.1047570
60. Mellor JD, Brown MP, Irving HR, Zalcberg JR, Dobrovic A. A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer. J Hematol OncolJ Hematol Oncol . 2013;6(1):1. doi:10.1186/1756-8722-6-1
61. Liu F, Ding H, Jin X, et al. FCGR3A 158V/F Polymorphism and Response to Frontline R-CHOP Therapy in Diffuse Large B-Cell Lymphoma. DNA Cell Biol . 2014;33(9):616-623. doi:10.1089/dna.2013.2333
62. Dantas E, Erra Díaz F, Pereyra Gerber P, et al. Low pH impairs complement-dependent cytotoxicity against IgG-coated target cells.Oncotarget . 2016;7(45):74203-74216. doi:10.18632/oncotarget.12412
63. Goldberg BS, Ackerman ME. Antibody-mediated complement activation in pathology and protection. Immunol Cell Biol . n/a(n/a). doi:10.1111/imcb.12324
64. Lu J, Marjon KD, Mold C, Marnell L, Du Clos TW, Sun P. Pentraxins and IgA share a binding hot-spot on FcαRI. Protein Sci Publ Protein Soc . 2014;23(4):378-386. doi:10.1002/pro.2419
65. Lu J, Mold C, Du Clos TW, Sun PD. Pentraxins and Fc Receptor-Mediated Immune Responses. Front Immunol . 2018;9. doi:10.3389/fimmu.2018.02607
66. Luan Y, Yao Y. The Clinical Significance and Potential Role of C-Reactive Protein in Chronic Inflammatory and Neurodegenerative Diseases. Front Immunol . 2018;9. doi:10.3389/fimmu.2018.01302
67. Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH. Coinhibitory Pathways in Immunotherapy for Cancer. Annu Rev Immunol . 2016;34(1):null. doi:10.1146/annurev-immunol-032414-112049
68. Dahan R, Sega E, Engelhardt J, Selby M, Korman AJ, Ravetch JV. FcγRs Modulate the Anti-tumor Activity of Antibodies Targeting the PD-1/PD-L1 Axis. Cancer Cell . 2015;28(3):285-295. doi:10.1016/j.ccell.2015.08.004
69. Sow HS, Benonisson H, Breukel C, et al. FcγR interaction is not required for effective anti-PD-L1 immunotherapy but can add additional benefit depending on the tumor model. Int J Cancer . 2019;144(2):345-354. doi:10.1002/ijc.31899
70. Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity . 1994;1(5):405-413. doi:10.1016/1074-7613(94)90071-x
71. Simpson TR, Li F, Montalvo-Ortiz W, et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti–CTLA-4 therapy against melanoma. J Exp Med . 2013;210(9):1695-1710. doi:10.1084/jem.20130579
72. Selby MJ, Engelhardt JJ, Quigley M, et al. Anti-CTLA-4 Antibodies of IgG2a Isotype Enhance Antitumor Activity through Reduction of Intratumoral Regulatory T Cells. Cancer Immunol Res . 2013;1(1):32-42. doi:10.1158/2326-6066.CIR-13-0013
73. Arce Vargas F, Furness AJS, Litchfield K, et al. Fc Effector Function Contributes to the Activity of Human Anti-CTLA-4 Antibodies.Cancer Cell . 2018;33(4):649-663.e4. doi:10.1016/j.ccell.2018.02.010
74. Korman AJ, Engelhardt J, Loffredo J, et al. Abstract SY09-01: Next-generation anti-CTLA-4 antibodies. Cancer Res . 2017;77(13 Supplement):SY09-01-SY09-01. doi:10.1158/1538-7445.AM2017-SY09-01
75. Lo M, Kim HS, Tong RK, et al. Effector-attenuating Substitutions That Maintain Antibody Stability and Reduce Toxicity in Mice. J Biol Chem . 2017;292(9):3900-3908. doi:10.1074/jbc.M116.767749
76. Chao MP, Takimoto CH, Feng DD, et al. Therapeutic Targeting of the Macrophage Immune Checkpoint CD47 in Myeloid Malignancies. Front Oncol . 2020;9. doi:10.3389/fonc.2019.01380
77. Wajant H. Principles of antibody-mediated TNF receptor activation.Cell Death Differ . 2015;22(11):1727-1741. doi:10.1038/cdd.2015.109
78. White AL, Chan HTC, Roghanian A, et al. Interaction with FcγRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody.J Immunol Baltim Md 1950 . 2011;187(4):1754-1763. doi:10.4049/jimmunol.1101135
79. Wilson NS, Yang B, Yang A, et al. An Fcγ Receptor-Dependent Mechanism Drives Antibody-Mediated Target-Receptor Signaling in Cancer Cells. Cancer Cell . 2011;19(1):101-113. doi:10.1016/j.ccr.2010.11.012
80. Li F, Ravetch JV. Antitumor activities of agonistic anti-TNFR antibodies require differential FcγRIIB coengagement in vivo. Proc Natl Acad Sci . 2013;110(48):19501-19506. doi:10.1073/pnas.1319502110
81. Waight JD, Gombos RB, Wilson NS. Harnessing co-stimulatory TNF receptors for cancer immunotherapy: Current approaches and future opportunities. Steinitz M, ed. Hum Antibodies . 2017;25(3-4):87-109. doi:10.3233/HAB-160308
82. Li F, Ravetch JV. Inhibitory Fcγ receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science . 2011;333(6045):1030-1034. doi:10.1126/science.1206954
83. Dahan R, Barnhart BC, Li F, Yamniuk AP, Korman AJ, Ravetch JV. Therapeutic Activity of Agonistic, Human Anti-CD40 Monoclonal Antibodies Requires Selective FcγR Engagement. Cancer Cell . 2016;29(6):820-831. doi:10.1016/j.ccell.2016.05.001
84. Verbeek JS, Hirose S, Nishimura H. The Complex Association of FcγRIIb With Autoimmune Susceptibility. Front Immunol . 2019;10. doi:10.3389/fimmu.2019.02061
85. Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies.Blood . 2018;131(1):49-57. doi:10.1182/blood-2017-06-741041
86. Byrne KT, Leisenring NH, Bajor DL, Vonderheide RH. CSF-1R-Dependent Lethal Hepatotoxicity When Agonistic CD40 Antibody Is Given before but Not after Chemotherapy. J Immunol Baltim Md 1950 . 2016;197(1):179-187. doi:10.4049/jimmunol.1600146
87. Compte M, Harwood SL, Muñoz IG, et al. A tumor-targeted trimeric 4-1BB-agonistic antibody induces potent anti-tumor immunity without systemic toxicity. Nat Commun . 2018;9(1):4809. doi:10.1038/s41467-018-07195-w
88. Ganesan LP, Kim J, Wu Y, et al. FcγRIIb on Liver Sinusoidal Endothelium Clears Small Immune Complexes. J Immunol . 2012;189(10):4981-4988. doi:10.4049/jimmunol.1202017
89. Martinez T, Guo A, Allen MJ, et al. Disulfide Connectivity of Human Immunoglobulin G2 Structural Isoforms. Biochemistry . 2008;47(28):7496-7508. doi:10.1021/bi800576c
90. White AL, Chan HTC, French RR, et al. Conformation of the human immunoglobulin G2 hinge imparts superagonistic properties to immunostimulatory anticancer antibodies. Cancer Cell . 2015;27(1):138-148. doi:10.1016/j.ccell.2014.11.001
91. Yu X, Chan HTC, Orr CM, et al. Complex Interplay between Epitope Specificity and Isotype Dictates the Biological Activity of Anti-human CD40 Antibodies. Cancer Cell . 2018;33(4):664-675.e4. doi:10.1016/j.ccell.2018.02.009
92. Yu X, Chan HTC, Fisher H, et al. Isotype Switching Converts Anti-CD40 Antagonism to Agonism to Elicit Potent Antitumor Activity.Cancer Cell . Published online May 21, 2020. doi:10.1016/j.ccell.2020.04.013
93. Merz C, Sykora J, Marschall V, et al. The Hexavalent CD40 Agonist HERA-CD40L Induces T-Cell-mediated Antitumor Immune Response Through Activation of Antigen-presenting Cells. J Immunother Hagerstown Md 1997 . 2018;41(9):385-398. doi:10.1097/CJI.0000000000000246
94. Thiemann M, Richards DM, Heinonen K, et al. A Single-Chain-Based Hexavalent CD27 Agonist Enhances T Cell Activation and Induces Anti-Tumor Immunity. Front Oncol . 2018;8:387. doi:10.3389/fonc.2018.00387
95. Bulliard Y, Jolicoeur R, Windman M, et al. Activating Fc γ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J Exp Med . 2013;210(9):1685-1693. doi:10.1084/jem.20130573
96. Bulliard Y, Jolicoeur R, Zhang J, Dranoff G, Wilson NS, Brogdon JL. OX40 engagement depletes intratumoral Tregs via activating FcγRs, leading to antitumor efficacy. Immunol Cell Biol . 2014;92(6):475-480. doi:10.1038/icb.2014.26
97. Buchan SL, Dou L, Remer M, et al. Antibodies to Costimulatory Receptor 4-1BB Enhance Anti-tumor Immunity via T Regulatory Cell Depletion and Promotion of CD8 T Cell Effector Function.Immunity . 2018;49(5):958-970.e7. doi:10.1016/j.immuni.2018.09.014
98. Wang B, Wang L, Kothambawala T, et al. IGM-8444 as a potent agonistic Death Receptor 5 (DR5) IgM antibody: Induction of tumor cytotoxicity, combination with chemotherapy and in vitro safety profile.J Clin Oncol . 2020;38(15_suppl):3595-3595. doi:10.1200/JCO.2020.38.15_suppl.3595
99. de Jong RN, Beurskens FJ, Verploegen S, et al. A Novel Platform for the Potentiation of Therapeutic Antibodies Based on Antigen-Dependent Formation of IgG Hexamers at the Cell Surface. PLoS Biol . 2016;14(1). doi:10.1371/journal.pbio.1002344
100. Overdijk MB, Strumane K, Buijsse AO, et al. Abstract 2391: DR5 agonist activity of HexaBody®-DR5/DR5 (GEN1029) is potentiated by C1q and independent of Fc-gamma receptor binding in preclinical tumor models. Cancer Res . 2019;79(13 Supplement):2391-2391. doi:10.1158/1538-7445.AM2019-2391