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Abstract: Direct skin contact with chemical or physical substances is predisposed to allergic contact dermatitis (ACD), in which the skin contact area develops various allergic reactions. ACD can be triggered by extremely complicated adverse outcome pathways. A variety of non-animal in vitro tests such as direct peptide reactivity assay (DPRA), KeratinoSens™, human cell line activation test (h-CLAT), U-SENSTM, and SENS-IS based on different mechanisms have been developed to identify the sensitizers. Additionally, a broad spectrum of in silico models to predict skin sensitization have emerged based on various animal and non-animal data using assorted modeling schemes.
1. Introduction

There are four types of skin hypersensitivity based on the immunologic mechanism that mediates the disease, namely type I (immediate/IgE-related); type II (antibody and complement related cytotoxicity); type III (antigen-antibody complex mediated); and type IV or delayed type hypersensitivity (DTH) response, which can take place after the skin exposure to allergens in 48–72 hours.
 ADDIN EN.CITE 
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 Skin sensitization or allergic contact dermatitis (ACD) is a type IV DTH or type IV allergy.3 ACD can substantially affect the quality of life in patients with skin rash, blister, and/or swollen that could persist for a lifetime in some cases.
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The adverse outcome pathways (AOPs) of skin sensitization are the sequential events from the initial skin exposure to chemicals, followed by triggering the downstream cascade pathways, which include induction and elicitation phases. The chemical sensitization pathway (CSP) is initialized by the adduct formation, viz. a covalent bond between chemical and skin protein to subsequently form a full antigen.
 ADDIN EN.CITE 
5
 As such, those skin sensitizers may act as electrophiles, whereas the skin protein functions as a nucleophile in the process of adduction formation. This interaction with cysteine and/or lysine leads to the formation of covalent bonds and production of the hapten‒protein complex consequently that processed by both epidermal and dermal dendritic cells (DCs), which constitute the skin immune system.
 ADDIN EN.CITE 
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 The second exposure to the same allergen will initiate the elicitation phase, in which the activated T cells are triggered to secrete specific cytokines to attract inflammatory cells into the epidermis of infected parts, causing rash, itchy, and burning on the exposed skin surface. Additionally, the response in the elicitation phase of the immune system is faster than that in the induction phase.8
Cosmeceuticals is a burgeoning industry, in which cosmetic products can show therapeutic effects.
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 Some skincare products also include the ingredients with pharmaceutical properties as exemplified by Oz. Or. Oil 30, which cannot only soften the skin but also show the potential in antibacteria and ameliorating dermal wound healing.
 ADDIN EN.CITE 
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 Sargafuran, which is extracted from marine brown alga, is a promising compound to be used in skincare cosmetics to prevent acne because of its antibacterial properties.11 In addition, Food and Drug Administration (FDA) has already approved some antibiotics such as linezolid, quinupristin-dalfopristin, and daptomycin for the treatment of skin-structure infections.
 ADDIN EN.CITE 
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Skin sensitization is an increasingly important issue that can be manifested by the number of publications about skin sensitization as illustrated in Figure 1. It can be observed that the number of publications has gradually increased in recent years, especially the dramatic increase after 2000. The consumption and interest in the cosmetic market have progressively increased 5% every year and it is expected to reach 31.75 billion US dollars by 2023.
 ADDIN EN.CITE 
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 The potential benefits and demand are still high and the information about toxicity, physicochemical, bioactivity properties of the cosmetics ingredients need to be promoted,
 ADDIN EN.CITE 
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 the annual growth of the global cosmetics market is updated at http://www.statista.com/statistics/297070/growth-rate-of-the-global-cosmetics-market/.

2. Skin sensitization assay

Various tests have been devised to evaluate the potential of the human skin sensitization of new substance and they can be basically classified into human tests, animal tests, and non-animal tests (Table 1).

2.1. Human tests

Human tests for skin sensitization include human maximization test (HMT) and human repeat insult patch test (HRIPT).
 ADDIN EN.CITE 
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 In both tests, the human skin reaction is recorded after the secondary contact between a tested substance and human skin. The response of tested substance is classified into 5 levels according to the incidence of the positive response from test subjects in the HMT system: weak (0–2/25), mild (3–7/25), moderate (8–13/25), strong (14–20/25), or extreme sensitizer (21–25/25).17 The HRIPT classification system is instituted according to the grades of skin reactions: 1. erythema; 2. erythema and induration; 3. vesiculation; and 4. bulla formation and only the substances of grade 1 are qualified as non-sensitizers.16 In the globally harmonized system of classification and labeling of chemicals (GHS), chemicals are classified as subcategory 1A or 1B if their HRIPT or HMT values are ≤ 500 µg/cm2 or HRIPT or HMT values are > 500 µg/cm2, respectively. Both subcategories are experimentally considered as skin sensitizers. Non sensitizers are not classified in this classification system.
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 Nevertheless, another classification system has also been proposed, in which chemicals are classified into six skin sensitization categories based on their HRIPT no observed effect level (NOEL) values as enlisted in Table 2.
 ADDIN EN.CITE 
21
 

2.2. Animal tests

There are various animal tests have been constructed to evaluate the potential of the human skin sensitization for new substance, namely local lymph node assay (LLNA), which depends on the nature of AOP key events as listed in Table 1,8 Guinea pig maximization test (GPMT), and Buehler tests. Of various animal assay systems, LLNA,
 ADDIN EN.CITE 
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 which is based on the characteristics of induced proliferative responses in draining lymph nodes after the topical exposure of chemicals to mice (stimulation index, SI), is the preferred animal test model and has been adopted by various regulatory agencies.
 ADDIN EN.CITE 
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 The risk potential of skin sensitizers is categorized according to the measured LLNA EC3 values as summarized in Table 3.20 It has been found that the EC3 value can be used to quantitatively estimate the skin sensitization potency in human since EC3 values can be highly correlated with NOELs25 that also has been confirmed by Api et al.
 ADDIN EN.CITE 
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The GPMT method is another popular animal model, in which the guinea pig skin is initially exposed to the test substances by intradermal injection and/or epidermal application in induction periods. The skin sensitization potential of chemicals can be classified depending on the induction concentration and the incidence of subjects as listed in Table 4.20 The Buehler method is another test to use guinea pig skin. The only difference between GPMT and Buehler is the way of sample preparation in that the test substance is mixed with Freund's complete adjuvant (FCA) in the GPMT test, whereas that step is absent in the non-adjuvant Buehler method.27 

It has been shown that the LLNA model can foretell human skin sensitization better than GPMT in case of discordance between LLNA and GPMT assays.
 ADDIN EN.CITE 
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 This discrepancy can be realized by the fact that LLNA predictions are able to well correlate with human tests as long as those sensitizers lie within the applicability domain of the LLNA model that, in turn, will severely limit the LLNA applications when applied to structurally novel compounds. Moreover, animal tests for skin sensitization that have been adopted for a long time still comprised some controversial issues concerning their effectiveness and ethical problems.29 There is a growing trend, nevertheless, to use non-animal tests as an alternative approach to assess skin sensitization.
 ADDIN EN.CITE 
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2.3. Non-animal assays

Animal testing approaches for cosmetic products have been banned by the EU Cosmetics Directive in Europe since 2013.
 ADDIN EN.CITE 
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 Notably, some non-animal testing methods have been developed to resolve this challenge and approved by the European Union Reference Laboratory (EURL ECVAM).31 Nevertheless, non-animal test data may still have limitations in predicting skin sensitization. For instance, those methods accepted by Organization for Economic Co-operation and Development (OECD) only focus on one AOP key event or activation of some specific genes, such as cysteine and/or lysine degradation in Direct Peptide Reactivity Assay (DPRA),33 CD86 and CD54 overexpression in human cell line activation test (h-CLAT),34 induction of nuclear factor-erythroid-2 related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1)-antioxidant/electrophile response element (ARE) pathway in KeratinoSens™,35 CD86 overexpression for U-SENSTM test,36 and the expressions of anti-oxidation, inflammation, and cell migration genes in SENS-IS test.
 ADDIN EN.CITE 
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DPRA is a non-animal model focused on the hapten and protein interaction due to skin exposure to chemical substances. Nevertheless, DPRA can be limited by solubility and complex mixture.38 In addition, the accuracy of measurement results would be hampered by the fact that chemicals could be co-eluted with the peptide.
 ADDIN EN.CITE 
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The KeratinoSens™ method takes a different approach by focusing on a second AOP key event (Table 1), namely the inflammatory responses and gene expression associated with specific cell signaling pathways such as ARE-dependent pathways. Keap1 binds to the transcription factor Nrf2 in the un-induced state that helps ubiquitin to bind to Nrf2 by CuI2-mediated ubiquitinylation, which, in turn, can degrade Nrf2 into the proteasome.
 ADDIN EN.CITE 
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 The released Nrf2 protein binds to ARE sequence in the promoter regions of detoxification, antioxidant, and anti-inflammatory genes, triggering the expression of target genes.
 ADDIN EN.CITE 
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The activation of DCs is the AOP key event investigated in the h-CLAT method (Table 1). It is of interest to note that this method has been submitted to OECD and the drafted proposal has been publicized in the OCED website.
 ADDIN EN.CITE 
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SENS-IS is another non-animal method to measure the skin sensitivity of chemicals using the commercially reconstituted human skin (EpiSkin),
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 in which the gene expression levels of Redox and SENS-IS gene groups are measured. The former includes 17 genes contained an antioxidant responsive element in their promoter,
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 which are related to the target genes modulated by the Nrf2-Keap1-ARE signaling pathway, whereas the latter includes 21 genes, which are linked to the activities of DCs and associated with inflammation, danger signals, and cell migration. Those genes measured in the SENS-IS group can be triggered by sensitizers but not under the control of the Nrf2-Keap1-ARE pathway.
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 When the number of expressed genes is more than 7 and less than 20 in both groups, the test chemicals are defined as sensitizers and subsequently categorized as weak, moderate, strong, or extreme sensitivity depending on the chemical concentrations that, in fact, is similar to the classification system adopted by LLNA. The test chemical concentration will be lowered when there are 20 genes expressed that are termed overexpression. Moreover, a chemical is considered as negative in case of failures in all tested concentrations.
 ADDIN EN.CITE 
37

Various research groups have published their assay data using those above-mentioned methods and the results are summarized in Table S1, which provides affluence of data source for building in silico models. Until now, there are still many researchers endeavoring to improve the accuracy of in vitro assay for assessing the skin sensitization potential such as finding new biomarkers for predicting skin sensitization
 ADDIN EN.CITE 
44
 or developing a novel assay like Genomic Allergen Rapid Detection (GARD™) to define the skin sensitization activity by only one assay.
 ADDIN EN.CITE 
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 GARDTM depends on the changes of the gene expression when myeloid cells are exposed to the chemicals.
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 This method was validated by numerous laboratories with an inter-laboratory reproducibility of 92.0% in 2019, suggesting that GARDTM is a reliable method and plausibly can be used stand-alone to measure the skin sensitization potential.
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 Another way is to modify or to improve the current non-animal methods to increase the accuracy. For instance, the spectro-DPRA method using 5,5-dithiobis-2-nitrobenzoic acid or fluorescamineTM as the detection reagent was designed to investigate the unreacted peptide in 2014. It was demonstrated that the accuracy of this method could increase to 91.5% and 94.9% when compared with LLNA and human data, respectively.
 ADDIN EN.CITE 
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Most of the non-animal tests such as U-SENS, h-CLAT, and KeratinoSens™ are qualitative per se, in which compounds are divided into skin sensitization positive and negative, viz. a binary classification fashion,
 ADDIN EN.CITE 
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 whereas DPRA and SENS-IS are basically quantitative, in which the levels of skin sensitization potential are determined.33 Additionally, the non-animal tests such as DPRA, h-CLAT, and KeratinoSen™ are routinely used as the preliminary screening by European, whereas others such as U-SENS and SENS-IS can be implemented to further characterize the nature of skin sensitization.
 ADDIN EN.CITE 
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 The non-animal models for skin sensitization have been adopted for a long time and the first non-animal DPRA model has accepted by OECD since 2015. However, not all chemicals such as insoluble chemicals, pro-haptens, and chemicals co-eluting with the model peptide can be assessed by DPRA that can severely limit their applications. These chemicals, nevertheless, can be evaluated by in silico models in the preliminary phase.
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3. In silico models

3.1. Data source

European has banned the animal tests to verify the safety of the cosmetic product such as toxicity in repeated dose system, skin sensitization, carcinogenicity, reproductive toxicity, and toxicokinetics since 2013.54 Alternatively, various non-animal tests, namely DPRA, KeratinoSens™, and h-CLAT, have been derived and accepted by OCED (vide supra). In addition, various skin sensitization data have been published and are listed in Table S1. Some online skin sensitization data can be used to build predictive models and are listed in Table S2.
Various predictive models and packages to predict skin sensitization have been published.
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 ToxAlerts was established in 2012 serving a valuable data source for model development to predict the chemical toxicity. Initially, 600 structural alerts for carcinogenicity, mutagenicity, skin sensitization, acute aquatic toxicity, and potential idiosyncratic drug toxicity were issued,
 ADDIN EN.CITE 
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 and the number has increased to more than 3,000 structural alerts to date. The Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM)is responsible for evaluating the toxic potential, developing and validating the toxicology methods, collecting the data to strengthen the scientific base for risk assessment. ICCVAM has established a database for skin sensitization with the collection of 1,060 chemicals for the LLNA test and 208 chemicals for the GPMT and Buehler tests.20 Vitic is a commercial toxicity database and information management system developed by Lhasa, consisting of more than 38,000 skin sensitization data for more than 10,000 structures. eChemPortal, which has been developed by OECD, is a free public source and provides the chemical characteristics of physical-chemical properties, ecotoxicity, environmental fate and behavior, and toxicity. The chemical information can be searched using chemical names and numbers or GHS classifications.

3.2. Commercial package

Computer automated structure evaluation (CASE) Ultra program is a commercial package to issue the structure alerts, in which, principally, molecular structures are divided into various subunits and those ones responsible for specific activities are identified and termed biophore.57 

A non-sensitizer might be converted into a sensitizer through a biodegradation metabolism pathway.
 ADDIN EN.CITE 
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 CATABOL (http://oasis-lmc.org/products/models/environmental-fate-and-ecotoxicity/catabol-301c.aspx) is an online package that can simulate the metabolic pathways of chemicals by predicting the abiotic molecular transformation and enzyme-mediated reactions such as oxidative, redox, reductive, hydrolytic, conjugative reactions, reactions with skin protein, as well as predicting the chemical transformation through spontaneous reactions, enzyme-catalyzed metabolism reactions, and reactions with protein nucleophiles.
 ADDIN EN.CITE 
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 The tissue metabolism simulator (TIMES) model based on the prediction from CATABOL consists of simulators: I) generation of metabolic maps from the training samples using the microbial metabolism simulator; II) evaluation of skin sensitization potential in light of the metabolic maps and structural alerts.
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 The TIMES model for skin sensitization (TIMES-SS) package is commercially available and the information about skin metabolism associated with skin sensitization is available online (http://oasis-lmc.org/products/models/metabolism-simulators/skin-metabolism.aspx). The training samples were excerpted from LLNA, GMPT and human datasets.
 ADDIN EN.CITE 
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Unlike the other packages, Computer Aided Discovery and Redesign-Skin Sensitization (CADRE-SS) is focused on such biological transformation and is comprised of three modules to analyze the reaction in each step: I) skin permeability; II) haptenation and hapten-activation mechanisms, and III) conjugation with protein. The interaction potential between chemicals and skin protein is analyzed by module II using the Smiles ARbitary Target Specification (SMARTS) pattern structure, and compounds are subjected to further analysis by module III once the chemicals are identified as potential haptens. The key event in this process is the adduct formation between the chemical and the Keap1 protein, which contains highly reactive cysteine and lysine amino acids.61
3.3. Models based on animal tests

SMARTS patterns have been mined by ToxTree
 ADDIN EN.CITE 
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 to identify the potential of skin sensitization. A series of SMARTS patterns based on the previously identified mechanisms of action have been identified, namely aromatic nucleophilic substitution (SNAr), Schiff base formation (SB), Michael-type addition (MA), aliphatic nucleophilic substitution (SN2), and acylation (Ac),63 in which the covalent bond can be formed between skin protein and sensitizer.
 ADDIN EN.CITE 
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 Totally, 104 structural alerts were issued in 2011
 ADDIN EN.CITE 
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 and the most updated version is available at https://www.daylight.com/.

Deductive estimation of risk from existing knowledge (DEREK) is an expert knowledge system-based commercial predictive package, in which the structure alerts are proposed to predict the binding potential between electrophilic chemicals and skin protein. The modified version of Derek Nexus was released in 2017 using the LLNA EC3 value from over 650 compounds in the Lhasa EC3 dataset (https://www.lhasalimited.org/products/skin-sensitization-assessment-using-derek-nexus.htm) instead of GPMT, which was used in the previous versions. This version features the qualitative prediction for mammalian skin sensitization and the quantitative EC3 prediction for skin sensitizers.
 ADDIN EN.CITE 
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Computer Assisted Evaluation of Industrial Chemical Substances According to Regulations (CAESAR) was developed according to the QSAR validation principles issued by OECD. This model was built by the EU
 ADDIN EN.CITE 
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 and is freely available (http://www.caesar-project.eu). CAESAR can be used to develop QSAR models for five endpoints, namely bioconcentration factor, skin sensitization, carcinogenicity, mutagenicity, and developmental toxicity. 

Virtual models for property Evaluation of chemicals within a Global Architecture (VEGA) is another embedded CAESAR model to predict skin sensitization based on the LLNA data. This binary classifier is freely accessible and can be downloaded at http://www.vega-qsar.eu.65 Fitzpatrick et al. compared the performance of VEGA, TIME-SS and Derek Nexus in skin sensitization by applying 1,249 substances from the eChemportal skin sensitization dataset (http://www.echemportal.org/echemportal/index.action) and 515 substances from the Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) LLNA database (https://ntp.niehs.nih.gov/pubhealth/evalatm/test-method-evaluations/immunotoxicity/index.html).
 ADDIN EN.CITE 
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 This comparison, in fact, is consistent with the observation made by Teubner et al., in which it has been demonstrated that TIME-SS executed better than the others such as VEGA and DEREK.
 ADDIN EN.CITE 
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3.4. Models based on non-animal tests

Otsubo et al. have built a binary classifier based on KeratinoSens™ and h-CLAT, and chemicals are designated as skin sensitizers if they have positive results by either one of the assays and non-sensitizers otherwise. The predictions produced the sensitivity values of 93.4% and 94.4% as compared with the LLNA and human data, respectively.
 ADDIN EN.CITE 
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Asturiol et al. took a different approach to develop a qualitative skin sensitization predictive model using decision tree (DT).
 ADDIN EN.CITE 
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 The model was derived by combining 3 non-animal test data types, namely DPRA, KeratinoSens™, and h-CLAT. The accuracy of the model was defined by comparing with the LLNA classification (sensitizer/non-sensitizer). The model showed 93% accuracy, 98% sensitivity, and 85% specificity for 269 chemicals.
 ADDIN EN.CITE 
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 Additionally, various models were developed according to binary combinations of those three non-animal tests, namely DPRA, h-CLAT, and KeratinoSens™. More importantly, it was observed that all of the models based on combinations of non-animal tests usually performed better than their counterparts based on a single test that, actually, is consistent with the previous observation (vide supra),
 ADDIN EN.CITE 
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 suggesting that predictive models based on single non-animal test are not sufficient to comprehensively render the skin sensitization complicated process.
 ADDIN EN.CITE 
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3.5. Models based on mixed test types

Most of the published packages or models are binary classification systemsbased on one or more than one non-animal tests. Integrated approaches to testing and assessment (IATA) has taken a different approach by combining various animal tests, non-animal tests, and in silico models to predict the potential of skin sensitization.72 IATA includes the models, which are flexible and non-formalized judgment based, e.g. grouping and read-across or more structured, rule based approaches such as Integrated Testing Strategy (ITS).72 ITS can combine DPRA, KeratinoSens™, and h-CLAT,
 ADDIN EN.CITE 
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 DPRA, SENS-IS and/or h-CLAT,
 ADDIN EN.CITE 
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 two of 3 non-animal tests, namely DPRA, KeratinoSens™, and h-CLAT, to generate the predictive model
 ADDIN EN.CITE 
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 based on in silico, in chemico, and in vitro data.
 ADDIN EN.CITE 
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 It has been found that the models based on this strategy showed better performance. 

SkinSensPred, which is a skin sensitization predictive function, was developed in 2019 based on SkinSensDB, is freely accessed at https://cwtung.kmu.edu.tw/skinsensdb/predict.
 ADDIN EN.CITE 
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 This multitask learning model is based on three AOP key events and human skin sensitization test using protein binding (DPRA), keratinocyte activation, dendritic cell activation to binarily classify results in the human test. This model can analyze the application domain (AD) and structure alerts (SA) to predict the human sensitization potential of a chemical. When applied to novel chemicals within the defined AD, this model could reach an accuracy of 84.3%.
 ADDIN EN.CITE 
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 In addition, a majority voting model (2 out of 3)
 ADDIN EN.CITE 
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 and a DT model
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 can be implemented as the read-across predictive methods.
Pred-skin, which is accessible at http://predskin.labmol.com.br/, is a consensus Naïve Bayes model that employs multiple QSAR models based on various human, LLNA, and non-animal data to predict skin sensitization. This model exhibited a good performance in predicting human skin sensitization with sensitivity (94%) and specificity (84%). When applied to 11 new potential sensitizers, which were not included in the dataset, Pred-skin exerts an efficient approach to  identify 9 sensitizers.


80,81 ADDIN EN.CITE 
Ohtake et al. have published a predictive model based on highly heterogeneous data, namely in silico Derek Nexus, in chemico DPRA, and in vitro h-CLAT, in which the results of DPRA and h-CLAT were scaled between 0 and 3, and the outcomes from Derek Nexus were reduced between 0 and 1, and the final total score was generated by summing those scores. A compound is defined as a strong sensitizer when its total score is larger than 7, and a weak sensitizer when its total score is between 2 to 6.
 ADDIN EN.CITE 
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 However, only 9 isocyanates were included and the prediction results indicated that this model underestimated the skin sensitization potential when compared with LLNA data.

3.6. Machine learning-based models

A number of machine learning-based schemes, namely DT, artificial neural network (ANN), support vector machine (SVM), AdaBoost, iterative least squares linear discriminant (TILSQ), logistic regression (LR), and K-step yard sampling (KY) method (U.S. Patent No. 7725413),83 have been adopted to build a variety of skin sensitization predictive models.

The SH test is designed to measure changes in cell surface thiols on hapten-treated cells and was used it to develop the first version of ANN-based iSENS to predict skin sensitization with the combination of h-CLAT data.
 ADDIN EN.CITE 
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 Further extended versions of the ANN model were based on various combinations of h-CLAT, DPRA, KeratinoSens™, and SH test.
 ADDIN EN.CITE 
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 It has been observed that the performance of an ANN model actually depended on the combination of data types. For instance, the ANN model based on the combination of h-CLAT and DPRA showed better correlation with LLNA than other combinations such as DPRA and ARE assay or the SH test and ARE assay. The predictive models based on three descriptors such as the selection of h-CLAT, DPRA, and ARE assay or h-CLAT, SH test, and ARE assay produced higher correlation coefficients, viz. r values, and smaller prediction errors than their two-data-type counterparts.
 ADDIN EN.CITE 
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Macmillan and Chilton have combined Derek Nexus and non-animal KeratinoSens™, h-CLAT, DPRA, and U-SENS tests to develop a DT model. The derived DT model showed great performance with 73% and 76% accuracy of LLNA and human data, respectively, depending on the GHS classification.
 ADDIN EN.CITE 
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 A variety of machine learning-based schemes, namely ANN, SVM, AdaBoost, and TILSQ, were employed to build skin sensitization predictive models based on linear and non-linear discriminant analyses of 291 samples. It was found that SVM and AdaBoost models based on 32 descriptors to encode the 2-D and 3-D structural characteristics showed the highest performance with 100% accuracy of negative and positive.
 ADDIN EN.CITE 
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 This investigation was further extended by including more samples (593 compounds) and adopting a novel KY scheme.
 ADDIN EN.CITE 
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Strickland et al. have adopted the LR and SVM schemes to develop predictive models based on non-animal tests, namely DPRA, h-CLAT, and KeratinoSens™ using 6 physicochemical properties, namely log P, water solubility, vapor pressure, melting point, boiling point, and molecular weight. It was found that log P was the most pivotal factor in determining skin sensitization among various physicochemical properties. Current in vitro assays have low accuracy in analyzing pre- and pro-hapten sensitizers, which need to go through chemical transformation through air exposure
 ADDIN EN.CITE 
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 or metabolism pathway
 ADDIN EN.CITE 
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 prior to the sensitization process. Accordingly, a novel tri-culture assay system, which includes MUTZ-3-derived Langerhans cells, HaCaT keratinocytes, and primary dermal fibroblasts, and then measures the secretion levels of cytokines after these cells are exposed to test compounds, viz. sensitizer or non-sensitizer, has been proposed. Numerous SVM models were developed based on the stimulation indices (SI) of 27 human cytokines array. It was observed that the SVM model based on top three ranking biomarkers, namely IL-8, MIP-1β, and GM-CSF, in tri-culture assay showed the highest performance with the prediction accuracy of 91% and the detection of pre- and pro-hapten was improved accordingly.
 ADDIN EN.CITE 
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4. Future perspectives and conclusion
Data quality plays a critical role in model development and it is almost impossible to build a sound in silico model based on contaminated or impure data, especially for the quantitative predictive models.
 ADDIN EN.CITE 
95
 Accordingly, it is of necessity to implement data curation prior to model development by removing those assay data obtained from impurity or mixture to maintain data integrity.

There is no doubt that an in silico model to predict skin sensitization based on human data will be more realistic and much needed. However, the scarcity in consistent human data in the public domain has created an unsurmountable hurdle for creating a sound predictive model due to their small amount of available data and limited structural diversity.
 ADDIN EN.CITE 
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 The applications of animal tests on cosmetics products have been prohibited in Europe since 2013.54 Nevertheless, animal tests, especially GMPT and LLNA, are still available and required by numerous countries such as Canada, China, Brazil, Japan, and the United States.
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 Additionally, the applications of animal tests for pesticides, plant protection products, pharmaceuticals, household products, art materials, industrial chemicals, medical devices, and workplace chemicals are needed and still acceptable in many industries, even in Europe.
 ADDIN EN.CITE 
96
 These data provide valuable resources for building some in silico models to assess the potential of skin sensitization. To date, all of the published skin sensitization models are qualitative predictions, viz. binary classification of sensitizers or non-sensitizers, and no multiple-class classification models have been published yet. Nevertheless, it has been observed that a quaternary predictive model would execute better than its ternary counterpart, which, in turn, performed better than a binary one in the case of drug-induced liver injury (DILI) prediction.97 Accordingly, it is plausible to expect a multiple-class qualitative model to predict skin sensitization can function better than a two-class one. However, it is extremely difficult, if not absolutely impossible, to build a quantitative model that can be substantially attributed to the limitations of in vitro, in vivo, and in chemico tests, since skin sensitization can take place through various reactions in AOP and non-animal tests (vide supra). Indeed, it is of necessity to construct an ensemble of predictive models to take into consideration various reactions in AOP using a variety of non-animal tests to accurately determine the skin sensitization.
 ADDIN EN.CITE 
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 Therefore, qualitative in silico or non-animal models have hindered applications for those weak or moderate sensitizers in pharmaceuticals or cosmeceuticals markets, more importantly, a quantitative prediction model can be truly useful.

Supplementary Materials

Table S1. Non-animal skin sensitization assay types and data sources.

Table S2. Online skin sensitization databases
Table 1. Animal and non-animal tests to evaluate the potential of the human skin sensitization of new substance depending on key events in AOP 8.

	Key event
	Function and focus 
	Method
	Reference

	1
	The molecular interaction with skin proteins through cysteine and/or lysine residue
	DPRA
	33

	2
	The inflammatory response through keratinocyte
	KeratinoSens™
	98,99


	3
	The activation of dendritic cells
	h-CLAT

U-SENSTM
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	4
	The proliferation of T cells
	LLNA
	
 ADDIN EN.CITE 
22,23


	OECD: Organization for Economic Co-operation and Development (France, 1961)


Table 2. The skin sensitization categories based on the HRIPT NOEL value.

	Category
	Characteristics
	HRIPT NOEL value

	1
	High intrinsic skin sensitization potency
	Less than 25 µg/cm2

	2
	Less sensitizing than category 1, the contact with moderate concentration can trigger 1% to 10% positive induction of subjects
	Between 25 and 500 µg/cm2

	3
	Substances known as contact allergens produce sensitization in 0.01% to 0.1% of those exposed
	Between 500 and 2500 µg/cm2

	4
	Chemicals in this category require prolonged exposure to higher dose level to produce sensitization and are rarely regarded as important clinical allergens
	More than 2500 µg/cm2

	5
	Very low intrinsic ability to cause skin sensitization. Even in the highly selected patient groups, the incidence should not exceed 1%.
	The NOEL values are variable or absents, because of the inaccuracy of determination of a threshold

	6
	Free from skin sensitization activity
	


Table 3. The skin sensitization potency based on LLNA EC3 values

	Potency category
	Threshold (%)

	Extreme
	EC3 < 0.1

	Strong
	0.1 ≤ EC3 <1

	Moderate
	1 ≤ EC3 <10

	Weak 
	10 ≤ EC3 ≤100


Table 4. The skin sensitization potential based on GPMT.

	Induction concentration (%)
	GPMT incidence (%)

	
	30 to <60
	≥60

	< 0.1
	Strong
	Extreme

	≥0.1 to <1
	Moderate
	Strong

	≥1 to <10
	Weak
	Moderate

	≥10 to ≤100
	Weak
	Weak
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Figure 1. The number of publications searched by Google Scholar and PubMed with the keyword "Skin sensitization.” 
