Animal hormone |
Range |
Function
of hormones in plant |
Concentration |
Melatonin
Molecular: 232.28
Medical: 0.02-0.36 mg/kg (Jain et al., 2015; Braam et al., 2009)
(about 0.09~1.54*10-3 mM)
|
Physiology
|
Decrease ROS and reactive nitrogen
|
0.04 ng/g (Kang, Lee, Park, Byeon, & Back, 2013;
Murch, Alan, Cao, & Saxena, 2009)
|
|
|
Activate the growth of fruit and seeds |
0.01 μg/L
(Arnao & Hernández, 2014;
Sarropoulou et al., 2012; Byeon &
Back, 2014; Wei et al., 2015)
|
|
|
regulate the activity of antioxidant enzymes |
10 mM
(Zhao et al., 2017)
|
|
|
Promote lateral and adventitious rooting |
5*10-4
mM (Arnao & Hernández, 2014;
Sarropoulou et al., 2012; Byeon &
Back, 2014)
|
|
|
Modify the development pattern of stems and leaves |
10−4 mM (Arnao & Hernández,
2015)
|
|
|
Delay chlorophylls lost during leaf-induced senescence |
0.1 mM
(Zhao et al., 2015; Arnao &
Hernández, 2009)
|
|
|
Regulate photosynthetic systems, CO2 uptake and
biomass |
0.1 mM (Zhao et al., 2015;Zhao et al.,
2017)
|
|
|
Function as a chronoregulator in circadian rhythms
|
endogenous
0.25 ng/g ~158 ng/g (Arnao &
Hernández, 2015)
|
|
|
Affect the different stages of flowering development |
0.02 mM
(Huang et al., 2017; Kolář, Johnson,
& Macháčková, 2003)
|
|
|
Influence the early stages of photoperiodic flower induction |
0.5
mM (Huang et al., 2017; Kolář,
Johnson, & Macháčková,
2003)
|
|
Environmental stress
|
Improve resistance to biotic and abiotic stress
|
low temperatures
(10-4 mM) (Fu et al., 2017)
salt (0.015 mM) (Zeng et al., 2018),
drought (0.05 mM) (Wei et al., 2015),
UV irradiation (endogenous 8000 ng/g) (Arnao &
Hernández, 2015)
chemical stressors
(5 *10-3 mM) (Mandal et al.,
2018)
|
|
|
Strengthen the plant immune system by affect defense-related genes |
0.1 mM~1 mM (Shi et al., 2015; Yang et
al., 2010; Qian, Tan, Reiter, & Shi, 2015)
|
|
|
Regulate plant physiological ion balance |
0.03 mM
(Wei et al., 2015; Zeng et al., 2018)
|
|
|
Improve resistance to the fungal pathogen |
0.5~2.1
ng,g (Lee, Byeon, & Back, 2014; Yin et al., 2013; Li
et al., 2018)
|
|
|
Lead to the accumulation of soluble sugars |
0.02 mM
(Qian, Tan, Reiter, & Shi,
2015)
|
Dopamine (DA)
Molecular: 153.18
Medical: 1.6~ 7.7 mg/ kg (Schnuelle et al., 2017; Jaja
et al., 2020; Lou et al., 2016, Backer et al., 2010)
(about 10.5*10-3~5.3 mM)
|
Environmental stress
|
Alleviate inhibition of salt by mineral management
|
0.1 ~ 0.2 mM (Li et al., 2015)
|
|
|
Promote alkali tolerance of apple seedlings |
2*10-4 mM (Jiao et al.,
2019)
|
|
|
Alleviate drought stress in apple seedlings |
0.1 mM
(Gao et al., 2020)
|
|
|
Alleviate nutrient deficiency-induced stress |
0.1 mM
(Li et al., 2015, Gao et al., 2020)
|
|
|
Maintain photosynthetic capacity in plants |
0.1~0.2
mM (Li et al., 2015)
|
|
Physiology |
Change stomatal behavior |
0.1 mM (Gao
et al., 2020)
|
|
|
Affect the uptake of K, N, P, S, Cu and Mn |
0.1~0.2
mM (Li et al., 2015, Gao et al., 2020)
|
|
|
Regulate carbon metabolism and nitrogen metabolism |
0.05
~ 0.2 mM (Lan et al.,
2020)
|
|
|
Enhance antioxidant activity against ROS |
0.1~1.0
mM (Li et al., 2015; Gomes et al.,
2014)
|
|
|
Regulate the expression of five SOS pathway genes |
0.1
~ 0.2 mM (Li et al.,
2015)
|
Acetylcholine (ACh)
Molecular: 146.20
Medical:10−7−1 M (Kimura et al., 1985; Lee, & Tsai,
1976; Shibasaki et al., 2009)
(about 10−4~103
mM)
|
Physiology
|
Accelerate seed germination
|
10-6 mM~0.3 mM
(Tretyn, & Kendrick, 1991)
|
|
|
Accelerate plant growth |
10-2
~0.16 mM (Tretyn, & Kendrick, 1991;
Bamel, Gupta, & Gupta, 2015)
|
|
|
Inhibit lateral root development of soybean in higher doses |
>10-2 mM (Bamel, Gupta,
& Gupta, 2015, Sugiyama, & Tezuka, 2011)
|
|
|
Indirect stimulation of cell expansion |
10-4 mM
(Sansebastiano et al., 2014)
|
|
|
Affect photoperiodic induction of flowering |
10-2
mM (Tretyn, & Kendrick, 1991)
|
|
|
Interact with endogenous plant hormone |
0.1~1 mM
(Sansebastiano et al., 2014)
|
|
|
Adjust antioxidant enzyme activity |
0.1 mM (Kim,
Park, & Back, 2009)
|
|
|
Inhibit ATP synthesis |
10 mM (Tretyn, & Kendrick,
1991; Bamel, Gupta, & Gupta, 2015)
|
|
|
Control of stomatal movement |
10-4~1 mM (Tretyn, &
Kendrick, 1991; Bamel, Gupta, & Gupta,
2015)
|
|
Environmental stress |
Improve resistance to abiotic stress, such as
salt and drought stress |
10-2 mM
(Kim, Park, & Back, 2009)
|
|
|
Regulate plant physiological osmotic balance |
10-6 mM (Braga, Pissolato, & Souza,
2017)
|
Serotonin (SER)
Molecular: 176.22
Medical:0.5mg/ kg (Crockett et al., 2015; Ye et al., 2014; Wouters et
al., 2007)
(about 0.2~2.8*10-3 mM)
|
Environmental stress
|
Against invading pathogens infection and insect by strengthened cell
wall
|
10 mM (Ramakrishna, Giridhar, & Ravishankar, 2011,
Kang, Kim, Park, & Back, 2009)
|
|
|
Adaptation to environmental changes |
0.2 mM (Kang
et al., 2007)
|
|
|
Against abiotic stresses such as cold and salt stress |
0.015 mM
(Mukherjee et al., 2014; Ishihara et al.,
2008)
|
|
Physiology |
Induce seed germination and development |
10-5 mM (Ramakrishna, Giridhar, &
Ravishankar, 2011)
|
|
|
Regulate root development
|
stimulate,10~160 mM;
inhibit, 160~600 mM (Pelagio et al.,
2011)
|
|
|
Light mediated responses of plant |
10~50 mM
(Leclercq et al., 2002)
|
|
|
Protect plants from the oxidative damage and senescence |
10-4~5 *10-4 mM
(Kang et al., 2007)
|
|
|
Delay of senescence and maintenance of plant tissues |
0.1~0.5 mM (Erland et al., 2015;
Erland, Turi, & Saxena,
2016)
|
|
|
Induce root and shoot organogenesis |
0.005~0.03 mM
(Erland et al., 2018)
|
|
|
Interact with endogenous plant hormones |
0.01~0.03
mM (Erland et al., 2018)
|
|
|
Regulate in the reproductive flexibility of higher plants |
endogenous 1.2~1.3 μmol/g (Ramakrishna,
Giridhar, & Ravishankar, 2011)
|
Norepinephrine (NE)
Molecular: 169.18
Medical: 806.4-16000 μg/ kg (Venet et al., 2015; Permpikul et al., 2019;
Backer et al., 2010)
(about 4.76 ~95*10-3 mM)
|
Physiology
|
Induce flower-inducing activity in lemna
|
2 mM (Yokoyama et al., 2000)
|
|
|
Stimulate ethylene synthesis in some plant |
50 mM
(Elstner et al., 1976)
|
Epinephrine (Epi)
Molecular: 183.20
Medical:0.000045-0.016mg/kg (Perkins et al., 2018; Carpenter, Smith, &
Bridenbaugh, 1989; Tai-Cherng et al., 2006)
(about 0.024 ~8.7*10-5 mM)
|
Physiology
|
Release the inhibition of flowering by increasing cAMP and
Ca2+
|
0.01 and 0.05 mM (Ives & Posner, 1982)
|
|
|
Stimulate somatic embryogenesis from orchardgrass |
0.01~0.1 mM (Kuklin &
Conger, 1995)
|
|
|
Affect plant hormone levels such as ethylene |
0.1~0.5 mM (Elstner et al., 1976;
Kuklin & Conger, 1995)
|
Progesterone (PROG)
Molecular: 314.46
Medical:3.34-7.62 mg/ kg (Coomarasamy et al., 2015; Tosun et al., 2019;
Milivojevic, Sinha, Morgan, Sofuoglu, Fox, 2014; Fox, Sofuoglu, Morgan,
Tuit, & Sinha, 2013; Evans, & Foltin, 2006)
(about10.6 ~24.2*10-3 mM)
|
Physiology
|
Regulate growth of seedlings
|
stimulate, 10-4 mM;
inhibit, 0.1 mM (Iino et al., 2007)
|
|
|
Influence on plant mineral management |
10-12~0.1 mM
(Dumlupinar et al., 2011)
|
|
|
Induce the flower in winter wheat |
10-3 and
10-2 mM (Janeczko, Filek, Biesaga,
Marcińska, & Janeczko,2003)
|
|
|
Stimulate the elongation of shoots |
0.08 mM
(Bhattacharya & Gupta, 1981)
|
|
|
Stimulate the growth of sunflower roots |
0.032 mM
(Bhattacharya & Gupta, 1981)
|
|
Environmental stress |
Mitigate cold stress in maize by mitochondrial
respiratory pathway |
10-4 mM (Erdal
& Genisel, 2016)
|
|
|
Alleviate the oxidative damage by influence oxidative enzymes |
10−3 mM (Erdal, & Dumlupinar,
2011)
|
Androstenedione (AN)
Molecular: 286.41
Medical: 2.62-5 mg/ kg (Beckham, & Earnest, 2003; Judge et al., 2016;
Ballantyne et al., 2000)
(about 9.1 ~17.5*10-3 mM)
|
Environmental stress
|
Enhance frost resistance in wheat
|
10-3 mM (Janeczko et al.,
2018)
|
|
|
Alleviate chilling stress in maize seedlings |
10−9 mM (Erdal, 2012)
|
|
|
Alleviate the oxidative damage by changing multiple enzyme
activities |
10−9 mM (Erdal,
2012)
|
|
|
Alleviate drought stress by stimulating photosynthesis |
≈8.7*10-4 mM (Janeczko, Kocurek, &
Marcińska, 2012)
|
|
Physiology |
Interact with endogenous hormone like GA3
and CTK |
10-3 mM (Janeczko et al.,
2018)
|
|
|
Stimulate flowering in Arabidopsis thaliana
|
10-4 mM (Janeczko et al.,
2003)
|
|
|
AN-induced changes in redox homeostasis |
10-3 mM
(Janeczko et al., 2018)
|
Oxytocin
Molecular: 1007.19
Medical:0.2-0.4 IU/ kg (Tauber et al., 2017; Parker et al., 2017; Adnan
et al., 2018)
(about 3.3 ~6.7*10-7 mM)
|
Physiology
|
Effect on biomass accumulation and production of secondary plant
constituent glycyrrhizin in vitro
|
≈10-4 mM (Karwasara , Dixit, &
Tomar, 2011)
|
Insulin
Molecular: 5807.69
Medical:0.8-40U/ kg (Garcia et al., 2010; Raskin et al., 2000; Pettitt,
Ospina, Kolaczynski, Jovanovic, 2003, Kihara, Zollman Smithson, &
Lagerlund, 1994)
(about 0.05~2.4*10-4 mM)
|
Physiology
|
Influence on the increase of coleoptile
|
10−8 mM (Oliveira et al.,
2004)
|
|
|
Regulate the cell-cycle restart |
1.19*10-6 mM
(Avila et al., 2013)
|
|
|
Induce polyploidism associated with Feulgen-positive bodies in the
cytoplasm |
10−5 mM (Csaba &
Katalin, 1982)
|
|
|
Increase roots in lengths and weights |
10−5 mM
(Csaba & Katalin,
1982)
|