Treatment:
If ALS is due to mycotoxins generated by opportunistic fungi growing in patients, then treatment would require aggressive control of the fungal infection. Fusarium species are prime suspects presenting the added problem of resistance to almost all the standard antifungal agents. Voraconazole has shown some promise controlling Fusarium species. The literature out of Brazil, Herkert, P.F. et al 201941suggest combined therapy with Amphotericin B and Voraconazole. A large part of the resistance of these fungi could be due to the profound immune suppression caused by the mycotoxins. Treatment with plasma exchange would help to lower the body burden of toxins. More selective treatment with affinity columns or activated charcoal dialysis could help. The effort to overcome the immune resistance could require gammaglobulin, interferon and/or interleukin therapy.  One of the most intriguing possibilities is the use of immunotherapy. The new monoclonal antibodies might reverse immune suppression such as PD-1/PD-L1 inhibitors28,42. Finally, there needs to be a search for the focus on infection with an effort to remove it.
_____________ ________
William K. Reid Date
1. Wolfgram F, Myers L. Amyotrophic lateral sclerosis: effect of serum on anterior horn cells in tissue culture. Science.1973;179(4073):579-580.
2. Field EJ, Hughes D. Toxicity of motor neurone disease serum for myelin in tissue culture. Br Med J. 1965;2(5475):1399-1401.
3. Silani V, Scarlato G, Valli G, Marconi M. Plasma Exchange Ineffective in Amyotrophic Lateral Sclerosis. Archives of Neurology.1980;37(8):511-513.
4. Reid W. Immunosuppression & Mycotoxins Causing Amyotrophic Lateral Sclerosis. the Winnower. Published 2017. Accessed.
5. Bennett JW, Klich M. Mycotoxins. Clin Microbiol Rev.2003;16(3):497-516.
6. Eskola M, Kos G, Elliott CT, Hajslova J, Mayar S, Krska R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ’FAO estimate’ of 25. Crit Rev Food Sci Nutr. 2019:1-17.
7. Gruber-Dorninger C, Jenkins T, Schatzmayr G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins (Basel).2019;11(7).
8. Auchtung TA, Fofanova TY, Stewart CJ, et al. Investigating Colonization of the Healthy Adult Gastrointestinal Tract by Fungi.mSphere. 2018;3(2).
9. de Hoog S, Monod M, Dawson T, Boekhout T, Mayser P, Gräser Y. Skin Fungi from Colonization to Infection. Microbiol Spectr.2017;5(4).
10. Al-Jaal BA, Jaganjac M, Barcaru A, Horvatovich P, Latiff A. Aflatoxin, fumonisin, ochratoxin, zearalenone and deoxynivalenol biomarkers in human biological fluids: A systematic literature review, 2001-2018. Food Chem Toxicol. 2019;129:211-228.
11. Omotayo OP, Omotayo AO, Mwanza M, Babalola OO. Prevalence of Mycotoxins and Their Consequences on Human Health. Toxicol Res.2019;35(1):1-7.
12. Dejardins AE. Fusarium Mycotoxins: Chemistry, Genetics and Biology. The American Phytopathological Society, St. Paul, Minnesota; 2006.
13. Braun H, Buzina W, Freudenschuss K, Beham A, Stammberger H. ’Eosinophilic fungal rhinosinusitis’: a common disorder in Europe?Laryngoscope. 2003;113(2):264-269.
14. deShazo RD, Chapin K, Swain RE. Fungal sinusitis. N Engl J Med. 1997;337(4):254-259.
15. Ponikau JU, Sherris DA, Kern EB, et al. The diagnosis and incidence of allergic fungal sinusitis. Mayo Clin Proc. 1999;74(9):877-884.
16. Waitzman AA, Birt BD. Fungal sinusitis. J Otolaryngol.1994;23(4):244-249.
17. Dai C, Xiao X, Sun F, et al. T-2 toxin neurotoxicity: role of oxidative stress and mitochondrial dysfunction. Arch Toxicol.2019;93(11):3041-3056.
18. Gabal MA, Awad YL, Morcos MB, Barakat AM, Malik G. Fusariotoxicoses of farm animals and mycotoxic leucoencephalomalacia of the equine associated with the finding of trichothecenes in feedstuffs. Vet Hum Toxicol. 1986;28(3):207-212.
19. Raymond SL, Smith TK, Swamy HV. Effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on feed intake, metabolism, and indices of athletic performance of exercised horses.J Anim Sci. 2005;83(6):1267-1273.
20. Riet-Correa F, Rivero R, Odriozola E, Adrien Mde L, Medeiros RM, Schild AL. Mycotoxicoses of ruminants and horses. J Vet Diagn Invest. 2013;25(6):692-708.
21. Mishra S, Srivastava S, Dewangan J, Divakar A, Kumar Rath S. Global occurrence of deoxynivalenol in food commodities and exposure risk assessment in humans in the last decade: a survey. Crit Rev Food Sci Nutr. 2019:1-29.
22. Li M, Cuff CF, Pestka JJ. T-2 toxin impairment of enteric reovirus clearance in the mouse associated with suppressed immunoglobulin and IFN-gamma responses. Toxicol Appl Pharmacol. 2006;214(3):318-325.
23. Pestka JJ, Zhou HR, Moon Y, Chung YJ. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol Lett.2004;153(1):61-73.
24. Obremski K, Podlasz P, Zmigrodzka M, et al. The effect of T-2 toxin on percentages of CD4+, CD8+, CD4+ CD8+ and CD21+ lymphocytes, and mRNA expression levels of selected cytokines in porcine ileal Peyer’s patches. Pol J Vet Sci. 2013;16(2):341-349.
25. Wu Q, Wu W, Franca TCC, Jacevic V, Wang X, Kuca K. Immune Evasion, a Potential Mechanism of Trichothecenes: New Insights into Negative Immune Regulations. Int J Mol Sci. 2018;19(11).
26. Ostermeyer-Shoaib B, Patten BM. IgG subclass deficiency in amyotrophic lateral sclerosis. Acta Neurol Scand.1993;87(3):192-194.
27. Beers DR, Zhao W, Wang J, et al. ALS patients’ regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate and severity. JCI Insight. 2017;2(5):e89530.
28. Qin W, Hu L, Zhang X, et al. The Diverse Function of PD-1/PD-L Pathway Beyond Cancer. Front Immunol. 2019;10:2298.
29. Schönrich G, Raftery MJ. The PD-1/PD-L1 Axis and Virus Infections: A Delicate Balance. Front Cell Infect Microbiol. 2019;9:207.
30. Maresca M. From the gut to the brain: journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol.Toxins (Basel). 2013;5(4):784-820.
31. Thorne RG, Pronk GJ, Padmanabhan V, Frey WH, 2nd. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration.Neuroscience. 2004;127(2):481-496.
32. Thorne RG, Hanson LR, Ross TM, Tung D, Frey WH, 2nd. Delivery of interferon-beta to the monkey nervous system following intranasal administration. Neuroscience. 2008;152(3):785-797.
33. Lochhead JJ, Kellohen KL, Ronaldson PT, Davis TP. Distribution of insulin in trigeminal nerve and brain after intranasal administration.Sci Rep. 2019;9(1):2621.
34. Avgerinos KI, Kalaitzidis G, Malli A, Kalaitzoglou D, Myserlis PG, Lioutas VA. Intranasal insulin in Alzheimer’s dementia or mild cognitive impairment: a systematic review. J Neurol. 2018;265(7):1497-1510.
35. Rickels MR, Ruedy KJ, Foster NC, et al. Intranasal Glucagon for Treatment of Insulin-Induced Hypoglycemia in Adults With Type 1 Diabetes: A Randomized Crossover Noninferiority Study. Diabetes Care. 2016;39(2):264-270.
36. Pardridge WM. Drug transport in brain via the cerebrospinal fluid.Fluids Barriers CNS. 2011;8(1):7.
37. Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32(11):1959-1972.
38. Thakore NJ, Pioro EP. Laughter, crying and sadness in ALS. J Neurol Neurosurg Psychiatry. 2017;88(10):825-831.
39. Vu LT, Bowser R. Fluid-Based Biomarkers for Amyotrophic Lateral Sclerosis. Neurotherapeutics. 2017;14(1):119-134.
40. Vidal A, Mengelers M, Yang S, De Saeger S, De Boevre M. Mycotoxin Biomarkers of Exposure: A Comprehensive Review. Compr Rev Food Sci Food Saf. 2018;17(5):1127-1155.
41. Herkert PF, Al-Hatmi AMS, de Oliveira Salvador GL, et al. Molecular Characterization and Antifungal Susceptibility of Clinical Fusarium Species From Brazil. Front Microbiol. 2019;10:737.
42. Boussiotis VA. Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. N Engl J Med. 2016;375(18):1767-1778.