Treatment:
If ALS is due to mycotoxins generated by opportunistic fungi growing in
patients, then treatment would require aggressive control of the fungal
infection. Fusarium species are prime suspects presenting the added
problem of resistance to almost all the standard antifungal agents.
Voraconazole has shown some promise controlling Fusarium species. The
literature out of Brazil, Herkert, P.F. et al 201941suggest combined therapy with Amphotericin B and Voraconazole. A large
part of the resistance of these fungi could be due to the profound
immune suppression caused by the mycotoxins. Treatment with plasma
exchange would help to lower the body burden of toxins. More selective
treatment with affinity columns or activated charcoal dialysis could
help. The effort to overcome the immune resistance could require
gammaglobulin, interferon and/or interleukin therapy. One of the most
intriguing possibilities is the use of immunotherapy. The new monoclonal
antibodies might reverse immune suppression such as PD-1/PD-L1
inhibitors28,42. Finally, there needs to be a search
for the focus on infection with an effort to remove it.
_____________ ________
William K. Reid Date
1. Wolfgram F, Myers L. Amyotrophic lateral sclerosis: effect of serum
on anterior horn cells in tissue culture. Science.1973;179(4073):579-580.
2. Field EJ, Hughes D. Toxicity of motor neurone disease serum for
myelin in tissue culture. Br Med J. 1965;2(5475):1399-1401.
3. Silani V, Scarlato G, Valli G, Marconi M. Plasma Exchange Ineffective
in Amyotrophic Lateral Sclerosis. Archives of Neurology.1980;37(8):511-513.
4. Reid W. Immunosuppression & Mycotoxins Causing Amyotrophic Lateral
Sclerosis. the Winnower. Published 2017. Accessed.
5. Bennett JW, Klich M. Mycotoxins. Clin Microbiol Rev.2003;16(3):497-516.
6. Eskola M, Kos G, Elliott CT, Hajslova J, Mayar S, Krska R. Worldwide
contamination of food-crops with mycotoxins: Validity of the widely
cited ’FAO estimate’ of 25. Crit Rev Food Sci Nutr. 2019:1-17.
7. Gruber-Dorninger C, Jenkins T, Schatzmayr G. Global Mycotoxin
Occurrence in Feed: A Ten-Year Survey. Toxins (Basel).2019;11(7).
8. Auchtung TA, Fofanova TY, Stewart CJ, et al. Investigating
Colonization of the Healthy Adult Gastrointestinal Tract by Fungi.mSphere. 2018;3(2).
9. de Hoog S, Monod M, Dawson T, Boekhout T, Mayser P, Gräser Y. Skin
Fungi from Colonization to Infection. Microbiol Spectr.2017;5(4).
10. Al-Jaal BA, Jaganjac M, Barcaru A, Horvatovich P, Latiff A.
Aflatoxin, fumonisin, ochratoxin, zearalenone and deoxynivalenol
biomarkers in human biological fluids: A systematic literature review,
2001-2018. Food Chem Toxicol. 2019;129:211-228.
11. Omotayo OP, Omotayo AO, Mwanza M, Babalola OO. Prevalence of
Mycotoxins and Their Consequences on Human Health. Toxicol Res.2019;35(1):1-7.
12. Dejardins AE. Fusarium Mycotoxins: Chemistry, Genetics and
Biology. The American Phytopathological Society, St. Paul, Minnesota;
2006.
13. Braun H, Buzina W, Freudenschuss K, Beham A, Stammberger H.
’Eosinophilic fungal rhinosinusitis’: a common disorder in Europe?Laryngoscope. 2003;113(2):264-269.
14. deShazo RD, Chapin K, Swain RE. Fungal sinusitis. N Engl J
Med. 1997;337(4):254-259.
15. Ponikau JU, Sherris DA, Kern EB, et al. The diagnosis and incidence
of allergic fungal sinusitis. Mayo Clin Proc. 1999;74(9):877-884.
16. Waitzman AA, Birt BD. Fungal sinusitis. J Otolaryngol.1994;23(4):244-249.
17. Dai C, Xiao X, Sun F, et al. T-2 toxin neurotoxicity: role of
oxidative stress and mitochondrial dysfunction. Arch Toxicol.2019;93(11):3041-3056.
18. Gabal MA, Awad YL, Morcos MB, Barakat AM, Malik G. Fusariotoxicoses
of farm animals and mycotoxic leucoencephalomalacia of the equine
associated with the finding of trichothecenes in feedstuffs. Vet
Hum Toxicol. 1986;28(3):207-212.
19. Raymond SL, Smith TK, Swamy HV. Effects of feeding a blend of grains
naturally contaminated with Fusarium mycotoxins on feed intake,
metabolism, and indices of athletic performance of exercised horses.J Anim Sci. 2005;83(6):1267-1273.
20. Riet-Correa F, Rivero R, Odriozola E, Adrien Mde L, Medeiros RM,
Schild AL. Mycotoxicoses of ruminants and horses. J Vet Diagn
Invest. 2013;25(6):692-708.
21. Mishra S, Srivastava S, Dewangan J, Divakar A, Kumar Rath S. Global
occurrence of deoxynivalenol in food commodities and exposure risk
assessment in humans in the last decade: a survey. Crit Rev Food
Sci Nutr. 2019:1-29.
22. Li M, Cuff CF, Pestka JJ. T-2 toxin impairment of enteric reovirus
clearance in the mouse associated with suppressed immunoglobulin and
IFN-gamma responses. Toxicol Appl Pharmacol. 2006;214(3):318-325.
23. Pestka JJ, Zhou HR, Moon Y, Chung YJ. Cellular and molecular
mechanisms for immune modulation by deoxynivalenol and other
trichothecenes: unraveling a paradox. Toxicol Lett.2004;153(1):61-73.
24. Obremski K, Podlasz P, Zmigrodzka M, et al. The effect of T-2 toxin
on percentages of CD4+, CD8+, CD4+ CD8+ and CD21+ lymphocytes, and mRNA
expression levels of selected cytokines in porcine ileal Peyer’s
patches. Pol J Vet Sci. 2013;16(2):341-349.
25. Wu Q, Wu W, Franca TCC, Jacevic V, Wang X, Kuca K. Immune Evasion, a
Potential Mechanism of Trichothecenes: New Insights into Negative Immune
Regulations. Int J Mol Sci. 2018;19(11).
26. Ostermeyer-Shoaib B, Patten BM. IgG subclass deficiency in
amyotrophic lateral sclerosis. Acta Neurol Scand.1993;87(3):192-194.
27. Beers DR, Zhao W, Wang J, et al. ALS patients’ regulatory T
lymphocytes are dysfunctional, and correlate with disease progression
rate and severity. JCI Insight. 2017;2(5):e89530.
28. Qin W, Hu L, Zhang X, et al. The Diverse Function of PD-1/PD-L
Pathway Beyond Cancer. Front Immunol. 2019;10:2298.
29. Schönrich G, Raftery MJ. The PD-1/PD-L1 Axis and Virus Infections: A
Delicate Balance. Front Cell Infect Microbiol. 2019;9:207.
30. Maresca M. From the gut to the brain: journey and pathophysiological
effects of the food-associated trichothecene mycotoxin deoxynivalenol.Toxins (Basel). 2013;5(4):784-820.
31. Thorne RG, Pronk GJ, Padmanabhan V, Frey WH, 2nd. Delivery of
insulin-like growth factor-I to the rat brain and spinal cord along
olfactory and trigeminal pathways following intranasal administration.Neuroscience. 2004;127(2):481-496.
32. Thorne RG, Hanson LR, Ross TM, Tung D, Frey WH, 2nd. Delivery of
interferon-beta to the monkey nervous system following intranasal
administration. Neuroscience. 2008;152(3):785-797.
33. Lochhead JJ, Kellohen KL, Ronaldson PT, Davis TP. Distribution of
insulin in trigeminal nerve and brain after intranasal administration.Sci Rep. 2019;9(1):2621.
34. Avgerinos KI, Kalaitzidis G, Malli A, Kalaitzoglou D, Myserlis PG,
Lioutas VA. Intranasal insulin in Alzheimer’s dementia or mild cognitive
impairment: a systematic review. J Neurol. 2018;265(7):1497-1510.
35. Rickels MR, Ruedy KJ, Foster NC, et al. Intranasal Glucagon for
Treatment of Insulin-Induced Hypoglycemia in Adults With Type 1
Diabetes: A Randomized Crossover Noninferiority Study. Diabetes
Care. 2016;39(2):264-270.
36. Pardridge WM. Drug transport in brain via the cerebrospinal fluid.Fluids Barriers CNS. 2011;8(1):7.
37. Pardridge WM. Drug transport across the blood-brain barrier. J
Cereb Blood Flow Metab. 2012;32(11):1959-1972.
38. Thakore NJ, Pioro EP. Laughter, crying and sadness in ALS. J
Neurol Neurosurg Psychiatry. 2017;88(10):825-831.
39. Vu LT, Bowser R. Fluid-Based Biomarkers for Amyotrophic Lateral
Sclerosis. Neurotherapeutics. 2017;14(1):119-134.
40. Vidal A, Mengelers M, Yang S, De Saeger S, De Boevre M. Mycotoxin
Biomarkers of Exposure: A Comprehensive Review. Compr Rev Food Sci
Food Saf. 2018;17(5):1127-1155.
41. Herkert PF, Al-Hatmi AMS, de Oliveira Salvador GL, et al. Molecular
Characterization and Antifungal Susceptibility of Clinical Fusarium
Species From Brazil. Front Microbiol. 2019;10:737.
42. Boussiotis VA. Molecular and Biochemical Aspects of the PD-1
Checkpoint Pathway. N Engl J Med. 2016;375(18):1767-1778.