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Abstract7

This paper is concerned with a predator-prey model with prey-taxis and8

linear prey harvesting under the homogeneous Neumann boundary condition.9

The stability of the unique positive constant solution of the predator-prey10

model without prey-taxis is derived. Also, the emergence of Hopf bifurcation11

is concluded by choosing the proper Hopf bifurcation parameters. Moreover,12

the existence of non-constant positive steady states is investigated by the13

introduce of prey-taxis. The conclusions show that prey harvesting and14

prey-taxis can enrich the dynamics.15
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1 Introduction18

In paper [1], based on the assumption that the prey exhibits herd behavior and

the predator interacts with the prey along the outer corridor of the herd of prey,

Braza proposed the predator-prey model with square root functional responses.

Considering the spatial diffusion of populations, the model proposed by Braza was

extended to a diffusive model in paper [2]. The diffusive predator-prey model is

as follows:

∂u

∂t
− d1∆u = u(1− u)−

√
uv, (x, t) ∈ (−∞,+∞)× (0,∞),

∂v

∂t
− d2∆v = v(c

√
u− sv), (x, t) ∈ (−∞,+∞)× (0,∞),

∂u

∂n
=
∂v

∂n
= 0, x = −∞,+∞, t ∈ (0,∞),

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ (−∞,+∞),
(1)
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where u, v represent the populations of the prey and predator respectively; positive1

constants d1 and d2 are the random diffusion coefficients of prey and predator pop-2

ulation respectively; positive constant c represents the rate of biomass conversion;3

positive constant s represents the scaled death rate. And in paper [3, 26], the4

pattern formation of system (1) has been studied.5

Predator-prey models are basic differential equation models for describing the

interactions between two species, and are of great interest to researchers in math-

ematics and ecology. Both the functional response and harvesting can affect

dynamical properties of biological and mathematical models. For different species,

constant harvesting [5, 6, 7, 13], proportional harvesting [8, 9], and nonlinear

harvesting [10, 25] are currently investigated by many authors. In particular,

in paper [14], results were obtained for optimal harvesting. In this paper, we

introduce the linear harvesting term into the model (1), and consider the following

model:

∂u

∂t
− d1∆u = u(1− u)−

√
uv − hu, (x, t) ∈ Ω× (0,∞),

∂v

∂t
− d2∆v = v(c

√
u− sv), (x, t) ∈ Ω× (0,∞),

∂u

∂n
=
∂v

∂n
= 0, x ∈ ∂Ω, t ∈ (0,∞),

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(2)

where Ω is a bounded domain in <ℵ, ℵ ≥ 1, n is the outward unit normal vector6

of the boundary of ∂Ω which we will assume is smooth. hu represents linear prey7

harvesting.8

Bifurcation is a very important issue in dynamic system theory. It reflects the9

qualitative variation of the topology of the flow caused by changes in parameters.10

It has great significance both in mathematical theory and practical applications11

[30]. Hopf bifurcation has been widely investigated in [24, 31, 32, 33, 34]. In12

this paper, we will treat h as a Hopf bifurcation parameter, and demonstrate the13

importance role of the harvesting in the dynamical behaviour.14

In addition to the random movements of predators and prey in space predation

activities, there is also a chemotaxis phenomenon, that is, the spatiotemporal

changes in the predator population density are also affected by the gradient of

the prey population. The biochemotaxis model is not only used to describe the

biological movement process at the micro-scale, but also applied to the study of

population dynamics at the macro-scale. Due to the existence and important

role of chemotaxis, more and more scholars have begun to carry out research.

For example, in paper [11], the authors dealed with a prey-predator model with

indirect prey-taxis; in paper [12], the global boundedness and stability of the

predator-prey model with prey-taxis were obtained. And a prey-taxis equation
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was derived in paper [28] and was extended in [29]. Therefore, it is necessary to

study the predator-prey model with prey-taxis term. Next, we will further study

the above model of (2) with prey-taxis term, and the corresponding model is as

follows:

∂u

∂t
− d1∆u = u(1− u)−

√
uv − hu, (x, t) ∈ Ω× (0,∞),

∂v

∂t
− d2∆v +∇ · (αv∇u) = v(c

√
u− sv), (x, t) ∈ Ω× (0,∞),

∂u

∂n
=
∂v

∂n
= 0, x ∈ ∂Ω, t ∈ (0,∞),

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(3)

where α denotes the prey-tactic sensitivity. The term αv∇u gives the velocity by

which predators move up the gradient of the prey. Motivated by the ”volume-

filling” mechanism [4, 15], we have

α = α(v) =

 χ(1− v
vm

), 0 < v < vm,

0, v ≥ vm,
(4)

where χ and vm are positive constants. In the following research, we mainly study1

the case 0 ≤ v < vm.2

The outline of this paper is as follows. In Section 2, after analyzing the3

characteristic equations, we conclude the stability of constant equilibrium solutions4

of problem (2). In Section 3, we research the existence of periodic solutions5

bifurcating from the unique positive constant solution of problem (2). We analyze6

the existence of the non-constant steady states of problem (3) by the fixed point7

index theory in Section 4. In Section 5, we will adapt simulations to carry out our8

conclusions.9

Throughout the paper, µk denotes the eigenvalues of −∆ in Ω under the

homogeneous Neumann boundary condition satisfying

0 = µ0 < µ1 ≤ µ2 < · · ·µk < · · · <∞.

2 Stability of equilibrium points of problem (2)10

In this section we will study the stability of constant equilibrium points of problem11

(2).12

It is easy to see that the trivial equilibrium point (0, 0) always exists. If 0 <

h < 1, semi-trivial equilibrium point (1− h, 0) exists. Especially if

0 < h < 1− c

s
, (5)
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a unique positive constant solution (u?, v?) also exists, where

u? = 1− h− c

s
, v? =

c

s

√
u?.

Theorem 2.1 For problem (2),1

2

(1) (0, 0) is unstable;3

4

(2) If 0 < h < 1 holds, (1− h, 0) is unstable;5

6

(3)Assume that

0 < h < h?, and 1− 3c

2s
> 0 (6)

hold, where h? will be determined in the later, then (u?, v?) is locally asymptotically7

stable.8

Proof In what follows, we will only prove the case (3), the similar method can9

be used to prove the other two cases. We consider the linearization near (u?, v?)10

of problem (2):11

Denote

D =

 d1 0

0 d2

 .

It is easy to see that the Jacobi matrix at (u?, v?) of problem (2) is as follows:

−µkD + L? =

 −µkd1 + 1− 2u? − v?
2
√
u?
− h −√u?

cv?
1

2
√
u?

−µkd2 + c
√
u? − 2sv?

 .

Hence, λ satisfies the characteristic equation:

λ2 +B1kλ+B2k = 0,

where

B1k = µkd1 + µkd2 − (1− 2u? −
v?

2
√
u?
− h− sv?),

B2k = [µkd1 − (1− 2u? −
v?

2
√
u?
− h)](µkd2 + sv?) +

1

2
cv?.

Let Z(h) = 1− 2u? − v?
2
√
u?
− h− sv?, and through a series of calculations, we

obtain

Z(h) = −1 + h+
3c

2s
− c
√

1− h− c

s
,
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and

Z(1− c

s
) =

c

s
> 0,

Z(1− 3c

2s
) = −c

√
c

s
< 0.

According to

Z ′(h) = 1− −c
2
√

1− h− c
s

> 0, (7)

we have that Z(h) monotonically increases with respect to h. Then there exists a1

h? ∈ (1− 3c
2s , 1−

c
s ) satisfying Z(h?) = 0. So we could acquire that if h ∈ (0, h?),2

Z(h) < 0 holds; if h ∈ (h?, 1 − c
s ), Z(h) > 0 holds. Therefore, by (6), we have3

B1k > 0, B2k > 0 for all k, which imply that (u?, v?) is locally asymptotically4

stable.5

3 Hopf bifurcation of problem (2)6

In this section we are going to analyze the conditions about the parameters under7

which the Hopf bifurcation occurs near the unique positive constant solution8

(u?, v?) of problem (2). From Theorem 2.1, we know that if h ∈ (0, h?), (u?, v?)9

is locally asymptotically stable. So the possible Hopf bifurcation interval is h ∈10

[h?, 1− c
s ) .11

Denote

W = sv?(1− h−
c

s
)−

[d1sv? − d2(−1 + h+ 3c
2s )]2

4d1d2
.

Theorem 3.1 For problem (2). If h? ≤ h < 1− c
s , 1− 3c

2s > 0, and W > 0 hold.12

Let Ω be a bounded smooth domain so that the spectral set S = {µi} satisfies13

(S1) All the eigenvalues µi are simple for i ≥ 0.14

Then there exists n0 ∈ ℵ such that hHn0
< 1− c

s < hHn0+1, and for problem (2),

there are (n0 + 1) Hopf bifurcation points satisfying

h? = hH0 < hH1 < hH2 < · · · < hHn0
< 1− c

s
,

where hHi = hH(µi), i = 0, 1, · · · , n0.15

Moreover,16

(1) The bifurcating periodic orbits from h = hH0 are spatially homogeneous, which17

coincide with the periodic orbits of the corresponding ODE system;18

(2) The bifurcating periodic orbits from h = hHi are spatially nonhomogeneous,19

1 ≤ i ≤ n0.20
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Proof From problem (2), we define21

T (h, µk) = −µk(d1 + d2) + (1− 2u? − v?
2
√
u?
− h− sv?),

D(h, µk) = [µkd1 − (1− 2u? − v?
2
√
u?
− h)](µkd2 + sv?) + 1

2cv?,

H = {(h, µk) ∈ (0,∞)× (0,∞) : T (h, µk) = 0}.

Then H is the Hopf bifurcation curve.22

Let hH be possible Hopf bifurcation value, by [16, 17], to identify hH be the1

Hopf bifurcation point, we recall the following sufficient conditions:2

(AH) There exists i ∈ ℵ0 := ℵ ∪ {0} such that Ti(h
H) = 0 and Di(h

H) > 03

hold, and as i 6= j, Tj(h
H) 6= 0 and Dj(h

H) 6= 0. And the unique pair of complex4

eigenvalues λ(h) = σ(h) ± iω(h) near the imaginary axis satisfy σ′(hH) 6= 0,5

ω(hH) > 0, where Ti(h
H) = T (hH , µi), Di(h

H) = D(hH , µi).6

A series of calculations are performed as follows: Let T (h, µi) = 0, that is

µi(d1 + d2) = Z(h), and due to (7), we have µ(h) monotonically increases with

respect to h. When i = 0, that is µ0 = 0, then h = h?. There exists n0 such that

µ? ∈ (µn0
, µn0+1) satisfying µ?(d1 + d2) = Z(1 − c

s ). Hence there are (n0 + 1)

possible Hopf bifurcation points satisfying

h? = hH0 < hH1 < hH2 < · · · < hHn0
< 1− c

s
.

According to the above discussion, we get

σ′(hHi ) =
dReλ(h)

dh
|h=hH

i
=

1

2
(1 +

c

2
√

1− h− c
s

) > 0.

Next we will show that under some additional conditions, Dj(h
H
i ) > 0 holds7

for 0 ≤ i ≤ n0 and j ∈ ℵ0, then we must have Di(h
H
i ) > 0 and Dj(h

H
i ) 6= 0 for8

0 ≤ i ≤ n0 and j ∈ ℵ0 as required in the condition (AH).9

We find10

Dj(h) = [µjd1 − (1− 2u? − v?
2
√
u?
− h)](µjd2 + sv?) + cv?

2

= d1d2µ
2
j + µjG− sv?(−1 + h+ 3c

2s ) + cv?
2

= [
√
d1d2µj + G

2
√
d1d2

]2 − M2

4d1d2
− sv?(−1 + h+ 3c

2s ) + cv?
2

= [
√
d1d2µj + G

2
√
d1d2

]2 +W,

where

G = d1sv? − d2(−1 + h+
3c

2s
).
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If W > 0, then we verify Dj(h
H
i ) > 0, especially Di(h

H
i ) > 0.11

Collecting the above analysis, we have that when i 6= j, Tj(h
H
i ) 6= 0 holds, and

σ′(hHi ) > 0, ω(hHi ) =
√
Dj(hHi ) > 0.

So the proof is accomplished by the Hopf bifurcation theorem in [16, 27].12

4 Existence of non-constant positive steady-states1

of problem (3)2

In the section, we mainly analyze the existence of non-constant positive steady-

states of problem (3) with the assumption ∂Ω ∈ C2+α(0 < α < 1), that is to say,

we will deal with the following model:

−d1∆u = u(1− u)−
√
uv − hu, x ∈ Ω,

−d2∆v +∇ · (αv∇u) = v(c
√
u− sv), x ∈ Ω,

∂u

∂n
=
∂v

∂n
= 0, x ∈ ∂Ω.

(8)

Notice that the constant equilibrium solutions of the above model is the same3

with problem (3). By using the fixed point index theory to calculate the indexes,4

we provide some sufficient conditions for non-constant positive solutions of (8).5

We first introduce fixed point index theory as follows:6

Let E be a Banach space and W be the natural positive cone of E. For y ∈W ,7

define Wy={x ∈ E : y + kx ∈ W for some k > 0} and Sy={x ∈ W̄y : −x ∈ W̄y}.8

Let y? be a fixed point of compact operator A : W → W and L = A′(y?) be the9

F derivative of A at y?. We say that A′ has property γ on W̄y? if there exist10

t ∈ (0, 1) and ω ∈ W̄y? \ Sy? such that ω − tA′ω ∈ Sy? . For an open subset11

U ⊂W , define indexW (A,U) = indexW (A,U,W ) = degW (I −A,U, 0), where I is12

the identity map. Furthermore, the fixed point index of A at y? in W is defined by13

indexW (A, y?) = indexW (A, y?,W ) = indexW (A,Uy? ,W ), where U(y?) is a small14

open neighborhood of y? in W . Then the following lemma can be obtained from15

the result in [18, 19, 20, 21].16

Lemma 4.1 Assume that I − L is invertible on W̄y? ,17

(i) If L has property γ on W̄y? , then indexW (A, y?) = 0.18

(ii) If L does not have property γ on W̄y? , then indexW (A, y?) = (−1)δ, where19

δ is the sum of algebraic multiplicities of the eigenvalues of L which are greater20

than 1.21

The following theorem gives a priori bound for positive solutions of (8).22
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Theorem 4.1 Any positive solution (u, v) of (8) satisfies

u(x), v(x) ≤ max{1− h, c
s

√
1− h, vm} in Ω̄,

where vm is defined in (4).23

Proof For the first equation of (8), define u(x0) = max
Ω̄

u, we use the maximum

principle of elliptic equation, we obtain

[u(1− u)−
√
uv − hu]|x=x0

≥ 0,

then 1− h− u(x0) ≥ 0, so we get

u(x0) ≤ 1− h.

For the second equation of (8), when v ≥ vm, by the maximum principle

similarly, we have

v ≤ c

s

√
1− h.

Hence,

u(x), v(x) ≤ max{1− h, c
s

√
1− h, vm} in Ω̄.

This completes the proof.1

Remark2

(i) E := C1
n(Ω̄)⊕ C1

n(Ω̄), where C1
n(Ω̄) := {φ ∈ C1(Ω̄) : ∂φ∂n = 0 on ∂Ω};3

(ii) D := Du ⊕ Dv, where Du := {φ ∈ C1
n(Ω̄) : φ < 1 − h + 1 in Ω̄} and4

Dv := {φ ∈ C1
n(Ω̄) : φ < c

s

√
1− h+ 1 in Ω̄};5

(iii) W := Q⊕Q, where Q := {φ ∈ C1
n(Ω̄) : φ(x) ≥ 0, x ∈ Ω̄};6

(iv) D′ := D ∩W .7

By Theorem 4.1, the standard regularity theory of elliptic equations, the em-8

bedding theorems and assumption ∂Ω ∈ C2+α(0 < α < 1), we can obtain that9

(u, v) ∈ C2 × C2 for elliptic system (8) in [23]. Thus there exists a positive10

constant M1, such that ‖∇u‖C1 ≤ M1, ‖∇v‖C1 ≤ M1. According to the first11

equation of (8) and Theorem 4.1, we get ‖∆u‖C1 ≤ M1. Hence, there exists12

sufficiently large positive constant M such that u(1 − u) −
√
uv − hu + Mu and13

−χ(1− 2v
vm

)∇v ·∇u−αv∆u+v(c
√
u−sv)+Mv are monotone increasing functions14

with respect to u and v respectively.15

Define a compact map A : C2(Ω̄)⊕ C2(Ω̄)→ C1(Ω̄)⊕ C1(Ω̄) by

A(u, v) =

 (−d1∆ +M)−1(u(1− u)−
√
uv − hu+Mu)

(−d2∆ +M)−1(−χ(1− 2v
vm

)∇v · ∇u− αv∆u+ v(c
√
u− sv) +Mv)

 .

By using a technical device developed by [18], we calculate the fixed point16

index of A over IntD′ with respect to W .17
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Theorem 4.2 indexW (A, IntD′) = 1.18

Proof For θ ∈ (0, 1), define a homotopy invariance Aθ : C2(Ω̄) ⊕ C2(Ω̄) →
C1(Ω̄)⊕ C1(Ω̄) by

Aθ(u, v) =

 (−d1∆ +M)−1[θ(u(1− u)−
√
uv − hu) +Mu]

(−d2∆ +M)−1[θ(−∇ · (αv∇u) + v(c
√
u− sv)) +Mv]

 .

According to the proof of Theorem 4.1, it can be shown that any positive fixed

point (u, v) of Aθ also satisfies

u(x), v(x) ≤ max{1− h, c
s

√
1− h, vm} in Ω̄

since 0 ≤ θ ≤ 1. Hence using homotopy invariance, it follows that

indexW (A1, IntD′) = indexW (A0, IntD′) = indexQ(Hu, IntDu)indexQ(Hv, IntDv),

where

Hu(u) = (−d1∆ +M)−1(Mu),

Hv(v) = (−d2∆ +M)−1(Mv),

so the spectral radius of Hu,0 and Hv,0 is as follows:

r(Hu,0) = r(Hv,0) = 1.

Using Lemma 13.1 in [22], we get

indexQ(Hu, IntDu) = indexQ(Hv, IntDv) = 1.

Hence, the proof is accomplished.1

2

Next, we will calculate indexW (A, (0, 0)), indexW (A, (1−h, 0)), and indexW (A, (u?, v?)),3

respectively.4

Theorem 4.3 indexW (A, (0, 0)) = 0.5

Proof Through a series of analyses, we have W̄(0,0) = W , S(0,0) = {(0, 0)} and

A′(0, 0) =

 (−d1∆ +M)−1(1− h+M) 0

0 (−d2∆ +M)−1M

 .

Assume that (I −A′(0, 0))(φ, ψ)T = 0 for (φ, ψ)T ∈W , we get
−d1∆φ = (1− h)φ, x ∈ Ω,

−d2∆ψ = 0, x ∈ Ω,

∂φ

∂n
=
∂ψ

∂n
= 0, x ∈ ∂Ω.
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It follows from the strong maximum principle and Hopf’s Lemma that (φ, ψ) =1

(0, 0). It shows that (I −A′(0, 0)) is invertible on W̄(0,0).2

Let (I − tA′(0, 0))(1, 0)T = (0, 0)T , that is,

1− t(−d1∆ +M)−1(1− h+M) = 0,

we obtain t = M
1−h+M ∈ (0, 1). Therefore, A′(0, 0) has property γ. The proof is3

accomplished.4

Theorem 4.4 When 0 < h < 1, indexW (A, (1− h, 0)) = 0.5

Proof By calculations, we have W̄(1−h,0) = C1
n(Ω̄)⊕Q, S(1−h,0) = C1

n(Ω̄)⊕{0}
and

A′(1−h, 0) =


(−d1∆ +M)−1(−1 + h+M) (−d1∆ +M)−1(−

√
1− h)

0 (−d2∆ +M)−1(c
√

1− h+M)

 .

Let (I −A′(1− h, 0))(φ, ψ)T = 0 for (φ, ψ)T ∈ W̄(1−h,0) , that is
−d1∆φ+ (1− h)φ+

√
1− hψ = 0, x ∈ Ω,

−d2∆ψ − c
√

1− hψ = 0, x ∈ Ω,

∂φ

∂n
=
∂ψ

∂n
= 0, x ∈ ∂Ω.

By the strong maximum principle and Hopf’s lemma, we have (φ, ψ) = (0, 0).6

Hence, (I −A′(1− h, 0)) is invertible on W̄(1−h,0).7

Assume that (I − tA′(1− h, 0))(0, 1)T ∈ S(1−h,0), that is

1− t(−d2∆ +M)−1(c
√

1− h+M) = 0,

we get t = M
c
√

1−h+M
∈ (0, 1). Therefore, A′(1−h, 0) has property γ. The proof is8

accomplished.9

10

Denote11

N = −1 + h+ 3c
2s ,

F = α?v?
√
u? + d1sv? − d2N.

Theorem 4.5 Assume that (5) hold.

(1) If

N < min{ 1

d1
,

1

d2
}(α?v?

√
u? + d1sv?), (9)

10



then indexW (A, (u?, v?)) = 1;

(2) If

N >
1

d2
(α?v?

√
u? + d1sv?) (10)

and F 2 − 4d1d2cu
3
2
? > 0, then1

indexW (u?, v?) =


1, if

∑k2
k=k1+1mk is even,

−1, if
∑k2
k=k1+1mk is odd,

where α? = χ(1− v?
vm

), mk is the multiplicity of µk, and k1, k2 will be determined2

in the later.3

4

Proof (1) Observe that W̄(u?,v?) = S(u?,v?) = E and

A′(u?, v?) =

(
A1 A2

A3 A4

)
,

where5

A1 = (−d1∆ +M)−1(N +M),

A2 = (−d1∆ +M)−1(−√u?),

A3 = (−d2∆ +M)−1[α?v?
d1

N + c2

2s ],

A4 = (−d2∆ +M)−1(−α?v?
d1

√
u? − sv? +M).

Let A′(u?, v?)(u, v)T = (u, v)T , then using the eigenfunction expansions (2.6)

in [18] for u and v, we have
d1µk −N

√
u?

−α?v?
d1

N − c2

2s d2µk + α?v?
d1

√
u? + sv?


 rkj

˜rkj

 = 0,

and

D(µk) := det


d1µk −N

√
u?

−α?v?
d1

N − c2

2s d2µk + α?v?
d1

√
u? + sv?

 ,

11



that is1

D(µk) = d1d2µ
2
k + [d1(α?v?

d1

√
u? + sv?)− d2N ]µk − sv?N + c2

2s

√
u?

= d1d2µ
2
k + [d1(α?v?

d1

√
u? + sv?)− d2N ]µk + 1− h− c

s .

We notice that 1− h− c
s > 0. Therefore, the solution of D(µk) = 0 is as follows:2

(i) If F > 0, D(µk) = 0 has no positive solutions and D(µk) > 0 for all k ≥ 0;3

(ii) If F < 0, and F 2 − 4d1d2cu
3
2
? < 0, then D(µk) = 0 has no positive solutions;4

(iii) If F < 0, and F 2 − 4d1d2cu
3
2
? = 0, then D(µk) = 0 has two identical positive5

solutions;6

(iv) If F < 0, and F 2 − 4d1d2cu
3
2
? > 0, then D(µk) = 0 has two different positive7

solutions.8

Moreover, due to W̄(u?,v?) = S(u?,v?), thus A′(u?, v?) does not have property γ9

on W̄(u?,v?).10

Now, according to the Lemma 4.1(ii) in this section, we use indexW (A, (u?, v?)) =11

(−1)δ, where δ =
∑
k≥0

∑
λk
mλk

mk, andmλk
is the multiplicity of λk as a positive12

root of detB(λ, µk) = 0, where B(λ, µk) = 0 will be determined in the later.13

To make the above purpose, we research for λ > 0 the eigenvalue problem

(A′(u?, v?)− I)(φ, ψ)T = λ(φ, ψ)T , (φ, ψ) 6= 0,

that is

−d1(λ+ 1)∆φ = (N − λM)φ−
√
u?ψ, x ∈ Ω,

−d2(λ+ 1)∆ψ = (
α?v?
d1

N +
c2

2s
)φ− (

α?v?
d1

+ sv? + λM)ψ, x ∈ Ω,

∂φ

∂n
=
∂ψ

∂n
= 0, x ∈ ∂Ω,

φ 6= 0, ψ 6= 0, x ∈ Ω.

(11)

Thus, we have14

B(λ, µk) =

(
B1 B2

B3 B4

)
,

where15

B1 = d1(λ+ 1)µk + λM −N,

B2 =
√
u?,

B3 = −α?v?
d1

N − c2

2s ,

B4 = d2(λ+ 1)µk + λM + α?v?
d1

√
u? + sv?.

12



Next, consider the characteristic equation det(B(λ, µk)) = 0 for k ≥ 0, that is1

(d1µk +M)(d2µk +M)λ2 + [(d1µk +M)(d2µk + α?v?
d1

√
u? + sv?)

+(d2µk +M)(d1µk −N)]λ+D(µk) = 0.

If N < 1
d2

(α?v?
√
u? + d1sv?), then D(µk) = det(B(0, µk)) > 0, that is to2

say, I − A′(u?, v?) is invertible. And if N < 1
d1

(α?v?
√
u? + d1sv?), we con-3

clusion that det(B(λ, µk)) = 0 has no positive solutions, thus δ = 0, that is4

indexW (A, (u?, v?)) = 1.5

(2) If D(µk) = 0 has two positive solutions, we assume that the two roots are6

µ−? and µ+
? satisfying µ−? ∈ (µk1 , µk1+1) and µ+

? ∈ (µk2 , µk2+1) for 1 ≤ k1 < k2.7

It follows that D(µk) 6= 0 for k ≥ 0, thus we have I − A′(u?, v?) is invertible on8

W̄(u?,v?).9

First of all, we consider the case for k = 0. If k = 0, then µk = 0, so we get

det(B(λ, 0)) = M2λ2 +M [(
α?v?
d1

√
u? + sv?)−N ]λ+ 1− h− c

s
= 0.

Therefore, det(B(λ, 0)) = 0 may have no positive solutions; or two identical10

positive solutions; or two different positive solutions, thus δ = 0 or 2.11

Next, we consider the case for k ≥ 1. If k1 + 1 ≤ k ≤ k2, D(µk) < 0, then12

det(B(λ, µk)) = 0 has one positive solution. If 1 ≤ k ≤ k1 or k ≥ k2+1,D(µk) > 0,13

then det(B(λ, µk)) = 0 may have no positive solutions; or two identical positive14

solutions; or two different positive solutions, thus δ = 0 or 2. Finally, we conclusion15

that δ =
∑k2
k=k1+1mk + p, p is an even number. The proof has been completed.16

17

Theorem 4.6 Assume that 1 − 3c
2s < h < 1 − c

s and N < 1
d1

(α?v?
√
u? + d1sv?)18

hold. If N
d1
∈ (µk? , µk?+1) for some k? ≥ 1, then there exists a positive constant19

d?2 such that20

indexW (u?, v?) =


1, if

∑k?

k=1mk is even,

−1, if
∑k?

k=1mk is odd

for d2 ≥ d?2.21

Proof In the proof of Theorem 4.5, we get that I −A′(u?, v?) is invertible on22

W̄ (u?, v?), and A′(u?, v?) does not have property γ, and thus we investigate the23

sum of algebraic multiplicities of the positive eigenvalues of A′(u?, v?)− I.24

13



By calculating, we find that1

lim
d2→∞

µ−? = lim
d2→∞

−α?v?
√
u?−d1sv?+d2N−

√
[α?v?

√
u?+d1sv?−d2N ]2−4d1d2(1−h− c

s )

2d1d2

= 0,

lim
d2→∞

µ+
? = lim

d2→∞

−α?v?
√
u?−d1sv?+d2N+

√
[α?v?

√
u?+d1sv?−d2N ]2−4d1d2(1−h− c

s )

2d1d2

= N
d1
.

Thus there exists a positive constant d?2 such that µ−? < µ1 and µk? < µ+
? for

d2 ≥ d?2 since N
d1
∈ (µk? , µk?+1). And we notice that if

d2 > τ1 :=
(α?v?

√
u? + d1sv?)µ1 + 1− h− c

s

Nµ1 − d1µ2
1

,

then D(µ1) < 0, and if

d2 > τ2 :=
(α?v?

√
u? + d1sv?)µk? + 1− h− c

s

Nµk? − d1µ2
k?

,

then D(µk?) < 0.2

Take a positive constant d?2 with d?2 > max{τ1, τ2}, then for each 1 ≤ k ≤ k?3

it is easy to see that the equation det(B(λ, µ)) = 0 has only one simple positive4

root since D(µk) < 0 for 1 ≤ k ≤ k?. On the other hand, for k ≥ k? + 1,5

by N < 1
d1

(α?v?
√
u? + d1sv?), the equation det(B(λ, µ)) = 0 has no positive6

root since (d1µk +M)(d2µk + α?v?
d1

√
u? + sv?) + (d2µk +M)(d1µk −N) > 0 and7

D(µk) > 0 for k ≥ k? + 1. Therefore we obtain δ =
∑k?

k=1mk + 0 which derives8

the result.9

10

Collecting the above analysis, we conclude the following two conclusions about11

the existence of non-constant positive solutions of problem (8).12

Theorem 4.7 Assume that (5), (10) and F 2−4d1d2cu
3
2
? > 0 hold. If

∑k2
k=k1+1mk13

is odd, then problem (8) has at least one non-constant positive solution.14

Proof Assume that problem (8) has no non-constant positive solution. Through15

the previous theorems, we have16

1 = indexW (A, IntD′)

= indexW (A, (0, 0)) + indexW (A, (1− h, 0)) + indexW (A, (u?, v?))

= 0 + 0 + (−1)

= −1

which gives a contradiction. The proof has been complicated.17

14



Theorem 4.8 Assume that 1 − 3c
2s < h < 1 − c

s and N < 1
d1
{α?v?

√
u? + d1sv?}1

hold, N
d1
∈ (µk? , µk?+1) for some k? ≥ 1 and

∑k?

k=1mk is odd. Then there exists a2

positive constant d?2 such that for d2 ≥ d?2 problem (8) has at least one non-constant3

positive solution.4

Proof The proof of the theorem is similar to that of Theorem 4.7. So we omit5

the proof.6

5 Numerical Simulation7

In this section, by using mathematical software Matlab, we show some numerical8

simulations to depict our theoretical analysis of the existence of homogeneous9

periodic solutions.10

For problem (2), we choose that d1 = 1, d2 = 0.8, h = 0.2412, c = 0.5, s = 0.8,11

then we find that c, s satisfy 1 − c
s > 0, 1 − 3c

2s > 0, and h satisfies 0 < h <12

1− c
s ,W > 0 under the conditions in Theorem 3.1. Theorem 3.1 tell us that when13

0 < h < 0.2437, the unique positive constant solution is locally asymptotically14

stable, and problem (2) has a homogeneous Hopf bifurcation near (u?, v?) with the15

first bifurcation value hH0 = 0.2437 when 0.2437 ≤ h < 0.3750. When h = 0.095 <16

0.2437, the local stability of (u?, v?) is depicted in Fig 1, and the period solutions17

bifurcating from (u?, v?) at hH0 ≈ 0.2412 are illustrated in Fig 2, respectively.18

6 Conlusions19

In this paper, we introduce the prey harvesting and prey-taixs into a predator-prey20

model. Using the Hopf bifurcation theorem, we investigate Hopf bifurcation by21

choosing prey harvesting parameter. And by the degree method and fixed point22

index theorem, we study the existence of non-negative steady states depongding on23

prey-taixs and predator’s self-diffusion coefficient respectively. The results show24

that the introductions of prey harvesting and prey-taixs are necessary and they25

can enrich the dynamics.26
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Figure 1: When h = 0.095 < h? = 0.2437, the unique positive constant solution

(u?, v?) = (0.28, 0.3307) with (u0, v0) = (0.26, 0.32) is locally stable. Left:

component u. Right: component v.
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Figure 2: The homogeneous periodic solutions bifurcate from (u?, v?) =

(0.1338, 0.2286) with (u0, v0) = (0.14, 0.22), when h = 0.2412 ≈ 0.2437 = hH0 .

Left: component u. Right: component v.
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