References
Aparecido L.M., Miller G.R., Cahill A.T. & Moore G.W. (2017). Leaf
surface traits and water storage retention affect photosynthetic
responses to leaf surface wetness among wet tropical forest and semiarid
savanna plants. Tree Physiology , 37, 1285-1300.
Arsic M., Le Tougaard S., Persson D.P., Martens H.J., Doolette C., Lombi
E., Schjoerring J.K. & Husted S. (2020). Bio-imaging techniques reveal
foliar phosphate uptake pathways and leaf phosphorus status. Plant
Physiology . doi: https://doi.org/10.1104/pp.20.00484
Berry Z.C., White J.C. & Smith W.K. (2014). Foliar uptake, carbon
fluxes and water status are affected by the timing of daily fog in
saplings from a threatened cloud forest. Tree Physiology , 34,
459-470.
Berry Z.C., Emery N.C., Gotsch S.G. & Goldsmith G.R. (2019). Foliar
water uptake: Processes, pathways, and integration into plant water
budgets. Plant, Cell and Environment , 42, 410-423.
Blatt M.R. & Clint G.M. (1989). Mechanisms of
fusicoccin action: kinetic
modification and inactivation of K+ channels in guard
cells. Planta , 178, 509-523.
Binks O., Mencuccini M., Rowland L., da Costa A.C., de Carvalho C.J.,
Bittencourt P., Eller C., Sales Teodoro G., Carvalho E.J., Soza A. &
Ferreira L. (2019). Foliar water uptake in Amazonian trees: evidence and
consequences. Global Change Biology, 2019, 1-13.
Binks O., Coughlin I., Mencuccini M. & Meir P. (2020). Equivalence of
foliar water uptake and stomatal conductance?. Plant, Cell and
Environment , 43, 524-528.
Buckley T.N. (2019). How do stomata respond to water status? New
Phytologist , 224, 21-36.
Boanares D., Ferreira B.G., Kozovits A.R., Sousa H.C., Isaias R.M.S. &
França M.G.C. (2018). Pectin and cellulose cell wall composition enables
different strategies to leaf water uptake in plants from tropical fog
mountain. Plant Physiology and Biochemistry , 122, 57-64.
Boanares D., Kozovits A.R., Lemos‐Filho J.P., Isaias R.M., Solar R.R.,
Duarte A.A., Vilas‐Boas T. & França M.G. (2019). Foliar water‐uptake
strategies are related to leaf water status and gas exchange in plants
from a ferruginous rupestrian field. American Journal of Botany ,
106, 935-942.
Brodribb T. & Hill R.S. (1997). Imbricacy and stomatal wax plugs reduce
maximum leaf conductance in Southern Hemisphere conifers.Australian Journal of Botany , 45, 657-668.
Burkhardt J., Basi S., Pariyar S. & Hunsche M. (2012). Stomatal
penetration by aqueous solutions–an update involving leaf surface
particles. New Phytologist , 196, 774-787.
Burkhardt J. & Hunsche M. (2013). “Breath figures” on leaf
surfaces—formation and effects of microscopic leaf wetness.Frontiers in Plant Science , 4, 422.
Cassana F.F., Eller C.B., Oliveira R.S. & Dillenburg L.R. (2016).
Effects of soil water availability on foliar water uptake ofAraucaria angustifolia . Plant and Soil , 399, 147-157.
Cavallaro A., Pereyra D.A., Goldstein G., Scholz F.G. & Bucci S.J.
(2020). Foliar water uptake in arid ecosystems: seasonal variability and
ecophysiological consequences. Oecologia . doi:
https://doi.org/10.1007/s00442-020-04673-1.
Cheng Y.T., Rodak D.E., Angelopoulos A. & Gacek T. (2005). Microscopic
observations of condensation of water on lotus leaves. Applied
Physics Letters , 87, 194112.
Coupel-Ledru A., Tyerman S.D., Masclef D., Lebon E., Christophe A.,
Edwards E.J. & Simonneau T. (2017). Abscisic acid down-regulates
hydraulic conductance of grapevine leaves in isohydric genotypes only.Plant Physiology , 175, 1121-1134.
Cullen E. & Rudall P.J. (2016). The remarkable stomata of horsetails
(Equisetum ): patterning, ultrastructure and development.Annals of Botany , 118, 207-218.
Dawson T.E. & Goldsmith G.R. (2018). The value of wet leaves. New
Phytologist , 219, 1156-1169.
Earles M.J., Sperling O., Silva L.C., McElrone A.J., Brodersen C.R.,
North M.P. & Zwieniecki M.A. (2016). Bark water uptake promotes
localized hydraulic recovery in coastal redwood crown. Plant, Cell
and Environment , 39 , 320-328.
Edwards D., Kerp H. & Hass H.
(1998). Stomata in early land plants: an anatomical and ecophysiological
approach. Journal of Experimental Botany, 49, 255-278.
Eller C.B., Lima A.L. & Oliveira R.S. (2016). Cloud forest trees with
higher foliar water uptake capacity and anisohydric behavior are more
vulnerable to drought and climate change. New Phytologist, 211,
489-501.
Eichert T., Goldbach H.E., & Burkhardt J. (1998). Evidence for the
uptake of large anions through stomatal pores. Botanica Acta ,
111, 461-466.
Eichert T. & Burkhardt J. (2001). Quantification of stomatal uptake of
ionic solutes using a new model system. Journal of Experimental
Botany , 52, 771-781.
Eichert T., Kurtz A., Steiner U. & Goldbach H.E. (2008). Size exclusion
limits and lateral heterogeneity of the stomatal foliar uptake pathway
for aqueous solutes and water‐suspended nanoparticles. Physiologia
Plantarum , 134, 151-160.
Feild T.S., Zwieniecki M.A., Donoghue M.J. & Holbrook N.M. (1998).
Stomatal plugs of Drimys winteri (Winteraceae) protect leaves
from mist but not drought. Proceedings of the National Academy of
Sciences , 95, 14256-14259.
Fernández V. & Eichert T. (2009). Uptake of hydrophilic solutes through
plant leaves: current state of knowledge and perspectives of foliar
fertilization. Critical Reviews in Plant Sciences , 28, 36-68.
Fernández V., Sancho-Knapik D., Guzmán P., Peguero-Pina J.J., Gil L.,
Karabourniotis G., Khayet M., Fasseas C., Heredia-Guerrero J.A., Heredia
A. & Gil-Pelegrín E. (2014). Wettability, polarity, and water
absorption of holm oak leaves: effect of leaf side and age. Plant
Physiology , 166, 168-180.
Fuenzalida T.I., Bryant C.J., Ovington L.I., Yoon H.J., Oliveira R.S.,
Sack L. & Ball M.C. (2019). Shoot surface water uptake enables leaf
hydraulic recovery in Avicennia marina . New Phytologist ,
224, 1504-1511.
Gouvra E. & Grammatikopoulos G. (2003). Beneficial effects of direct
foliar water uptake on shoot water potential of five chasmophytes.Canadian Journal of Botany , 81, 1278-84.
Guzmán P., Fernández V., Khayet M., García M.L., Fernández A. & Gil L.
(2014a). Ultrastructure of plant leaf cuticles in relation to sample
preparation as observed by transmission electron microscopy. The
Scientific World Journal , 2014, 963921.
Guzmán P., Fernández V., Graça J., Cabral V., Kayali N., Khayet M.& Gil
L. (2014b). Chemical and structural analysis of Eucalyptus
globulus and E. camaldulensis leaf cuticles: a lipidized cell
wall region. Frontiers in Plant Science , 5, 481.
Guzmán-Delgado P., Fernández V., Venturas M., Rodríguez-Calcerrada J. &
Gil L. (2017). Surface properties and physiology of Ulmus laevisand U. minor samaras: implications for seed development and
dispersal. Tree Physiology , 37, 815-826.
Guzmán‐Delgado P., Earles M.J. & Zwieniecki M.A. (2018). Insight into
the physiological role of water absorption via the leaf surface from a
rehydration kinetics perspective. Plant, Cell and Environment ,41,
1886-1894.
Hayes M.A., Chapman S., Jesse A., O’Brien E., Langley J.A., Bardou R.,
Devaney J. Parker, J.D. & Cavanaugh K.C. (2020). Foliar water uptake by
coastal wetland plants: A novel water acquisition mechanism in arid and
humid subtropical mangroves. Journal of Ecology . doi:
https://doi.org/10.1111/1365-2745.13398.
Hinckley T.M., Duhme F., Hinckley A.R. & Richter H. (1980). Water
relations of drought hardy shrubs: osmotic potential and stomatal
reactivity. Plant, Cell and Environment , 3, 131-140.
Hunt L., Amsbury S., Baillie A., Movahedi M., Mitchell A., Afsharinafar
M., Swarup K., Denyer T., Hobbs J.K., Swarup R. & Fleming A.J. (2017).
Formation of the stomatal outer cuticular ledge requires a guard cell
wall proline-rich protein. Plant Physiology , 174, 689-699.
Jones R.J. & Mansfield T.A. (1970). Suppression of stomatal opening in
leaves treated with abscisic acid. Journal of Experimental
Botany , 21, 714-719.
Jordan G.J., Carpenter R.J. & Hill R.S. (1998). The macrofossil record
of Proteaceae in Tasmania: a review with new species. Australian
Systematic Botany , 11, 465-501.
Kerhoulas L.P., Weisgrau A.S., Hoeft E.C. & Kerhoulas N.J. (2020).
Vertical gradients in foliar physiology of tall Picea sitchensistrees. Tree Physiology , 40, 321-332.
Laur J. & Hacke U.G. (2014). Exploring Picea glauca aquaporins
in the context of needle water uptake and xylem refilling. New
Phytologist , 203, 388-400.
Li C., Wang P., van der Ent A., Cheng M., Jiang H., Lund Read T., Lombi
E., Tang C., de Jonge M.D., Menzies N.W. & Kopittke P.M. (2018).
Absorption of foliar-applied Zn in sunflower (Helianthus annuus ):
importance of the cuticle, stomata and trichomes. Annals of
Botany , 123, 57-68.
Lawson T., James W. & Weyers J. (1998). A surrogate measure of stomatal
aperture. Journal of Experimental Botany , 49, 1397-1403.
Limm E.B., Simonin K.A., Bothman A.G. & Dawson T.E. (2009). Foliar
water uptake: a common water acquisition strategy for plants of the
redwood forest. Oecologia , 161, 449-459.
Maier-Maercker U. (1983). The role of peristomatal transpiration in the
mechanism of stomatal movement. Plant, Cell and Environment , 6,
369-380.
Marsal J. & Girona J. (1997). Effects of water stress cycles on turgor
maintenance processes in pear leaves (Pyrus communis ). Tree
Physiology , 17, 327-333.
Martin C.E. & von Willert A.D. (2000). Leaf epidermal hydathodes and
the ecophysiological consequences of foliar water uptake in species of
Crassula from the Namib Desert in southern Africa. Plant Biology ,
2, 229-242.
Merced A. & Renzaglia K.S. (2013). Moss stomata in highly elaboratedOedipodium (Oedipodiaceae) and highly reduced Ephemerum(Pottiaceae) sporophytes are remarkably similar. American Journal
of Botany, 100, 2318-2327.
Merilo E., Yarmolinsky D., Jalakas P., Parik H., Tulva I., Rasulov B.,
Kilk K. & Kollist H. (2018). Stomatal VPD response: there is more to
the story than ABA. Plant Physiology , 176, 851-864.
Pina A.L., Zandavalli R.B. Oliveira R.S., Martins F.R. & Soares A.A.
(2016). Dew absorption by the leaf trichomes of Combretum
leprosum in the Brazilian semiarid region. Functional Plant
Biology , 43, 851-861.
Resco de Dios V., Chowdhury F.I., Granda E., Yao Y. & Tissue D.T.
(2019). Assessing the potential functions of nocturnal stomatal
conductance in C3 and C4 plants. New Phytologist , 223, 1696-1706.
Romero P., Botia P. & Garcia F. (2004). Effects of regulated deficit
irrigation under subsurface drip irrigation conditions on vegetative
development and yield of mature almond trees. Plant and Soil ,
260, 169-181.
Rundel P.W. (1982). Water uptake by organs other than roots. In
Physiological plant ecology II (eds O.L. Lange, P.S. Nobel, C.B. Osmond
& H. Ziegler), pp 111-134. Springer, Berlin.
Schreiber L. & Schönherr J. (2009). Water and solute permeability of
plant cuticles. Berlin: Springer.
Schlegel T.K., Schönherr J. & Schreiber L. (2005). Size selectivity of
aqueous pores in stomatous cuticles of Vicia faba leaves.Planta , 221, 648-655.
Schreel J.D., Leroux O., Goossens W., Brodersen C., Rubinstein A. &
Steppe K. (2020). Identifying the pathways for foliar water uptake in
beech (Fagus sylvatica L.): a major role for trichomes. The
Plant Journal . doi: https://doi.org/10.1111/tpj.14770.
Schönherr J. & Bukovac M.J. (1972). Penetration of stomata by liquids:
dependence on surface tension, wettability, and stomatal morphology.Plant Physiology , 49, 813-819.
Schulze E.D., Lange O.L., Buschbom U., Kappen L. & Evenari M. (1972).
Stomatal responses to changes in humidity in plants growing in the
desert. Planta , 108, 259-270.
Shtein I., Shelef Y., Marom Z., Zelinger E., Schwartz A., Popper Z.A.,
Bar-On B. & Harpaz-Saad S. (2017). Stomatal cell wall composition:
distinctive structural patterns associated with different phylogenetic
groups. Annals of Botany , 119, 1021-1033.
Simonin K.A., Santiago L.S. & Dawson T.E. (2009). Fog interception bySequoia sempervirens (D. Don) crowns decouples physiology from
soil water deficit. Plant, Cell and Environment , 32, 882-892.
Spinelli G.M., Snyder R.L., Sanden B.L. & Shackel K.A. (2016). Water
stress causes stomatal closure but does not reduce canopy
evapotranspiration in almond. Agricultural Water Management , 168,
11-22.
Stone E.C. (1957). Dew as an ecological factor: I. A review of the
literature. Ecology , 38, 407-413.
Vesala T., Sevanto S., Grönholm T., Salmon Y., Nikinmaa E., Hari P. &
Hölttä T. (2017). Effect of leaf water potential on internal humidity
and CO2 dissolution: reverse transpiration and improved
water use efficiency under negative pressure. Frontiers in Plant
Science , 8, 54.
Turner N.C. & Graniti A. (1969). Fusicoccin: a fungal toxin that opens
stomata. Nature , 223, 1070-1071.
Zwieniecki M.A., Brodribb T.J. & Holbrook N.M. (2007). Hydraulic design
of leaves: insights from rehydration kinetics. Plant, Cell and
Environment , 30, 910-921.
Table 1. Stomatal conductance and hydraulic parameters of FWU
for Prunus dulcis and Pyrus communis leaves treated with
fusicoccin (FC), abscisic acid (ABA), and water (control).
gs: stomatal conductance of dehydrating leaves,
Qmax: maximum flux of water absorbed via the leaf
surface, Rmin: minimum resistance to water absorption
via the leaf surface, tQmax: time at maximum flux,
tRmin: time at minimum resistance ,
t50,ΔM: time when 50% of mass increment occurs,
t50,Ψ: time when 50% of water potential recovery
occurs.