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[bookmark: _Hlk19647089][bookmark: _Hlk20139359]Abstract.  A new procedure introduced as variational iterative stiffness method (VISM) to overcome the difficulties of the application of variational iteration method to free vibration analysis of higher order beams consist of sixth order differential equation with complex boundaries. A higher order trigonometric shear deformation theory denoted Touratier beam which is considering rotary inertia is used for the mathematical model to perform free vibration analysis of beams with a uniform cross-section, subjected to a compressive axial load, resting on Winkler and Pasternak foundations with various boundary conditions, in this study. Circular frequencies obtained by using VISM are compared with DSM and analytical method (ANM) results based on Touratier and Timoshenko beam theories where a very good agreement is observed. In addition to the obtained circular frequency values, normalised lateral displacements, bending rotation, rotation of the normal to the axis, shear forces and bending moments diagrams of first modes are represented in graphics. 
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1. Introduction

Euler-Bernoulli beam theory which is based on the plane sections of the cross-section remain plane and perpendicular after deformation, neglecting the shear angle and rotatory inertia of mass have been performed by many researchers in the literature over years. This theory is not as effective as Timoshenko beam theory especially on thick beams as the shear modes become more significant by increasing thickness. Timoshenko beam theory is the first order shear deformation theory that needs determination of the shear correction factor [1,2]. Especially on the numerical analysis of composite beams, shear locking problem may have arised [3,4]. Higher order beam theories have been developed to overcome these problems by many researchers [5-19]. The common feature of the higher order shear deformation theories is that the conditions of shear deformation in the upper and lower boundaries of longitudinal section of the beam are identical to zero which reflects the actual structural behavior more precisely. Touratier has developed a trigonometric shear deformation theory that eliminates the determination of Timoshenko’s shear correction factor with the assumption of distribution of cosine shear deformation through the thickness direction of the beam which is kinematically richer than the polynomial shear deformation theories [12,20,21].

[bookmark: _Hlk19695120][bookmark: _Hlk19695130][bookmark: _Hlk19695204][bookmark: _Hlk19695216]WWA is a powerful method that provides the number of frequencies under any arbitrarily chosen modal frequency [22,23,24]. Calio and Greco performed free vibration analysis of Timoshenko beams resting on Winkler and Pasternak foundations where circular frequencies obtained by using WWA [25]. Tanriverdi and Catal obtained circular frequencies by using DSM with WWA based on Touratier plate theory with different boundary conditions of Levy solution procedure [26]. The significance of the rotary inertia upon circular frequencies is criticized with the results compared with those obtained from analytical method, Mindlin plate and elasticity theory.  Bozyigit and Yesilce obtained harmonic responses of infilled multi-storey frames based on single variable shear deformation theory by using DSM and differential transformation method (DTM) [27]. Bozyigit et al. investigated the effects of axial compressive load and internal viscous damping on the free vibration of Timoshenko beams by using DSM [28].
[bookmark: _Hlk19695228][bookmark: _Hlk19695253][bookmark: _Hlk19695269][bookmark: _Hlk19695295][bookmark: _Hlk19695316][bookmark: _Hlk19695329][bookmark: _Hlk19695339][bookmark: _Hlk19695350][bookmark: _Hlk19695364][bookmark: _Hlk19695382][bookmark: _Hlk19695392][bookmark: _Hlk19695497]VISM has developed as a new implementation of VIM to apply on structural analysis based on higher order beam theories. VIM is a powerful mathematical method which has proven itself with wide applications in physics and engineering. The basics of VIM proposed by He for the first time in the literature, presented by Inokuti et. al. [29] on the general use of the method of Lagrange multipliers on mathematical physics [30-35]. Abassy developed modified variational iteration method (MVIM) and compared the results obtained by performing the solution of non-homogenous initial value problems with the results obtained using standard VIM [36]. Algorithms of VIM and MVIM compiled in Mathematica software are provided the opportunity to compare the results and the analyze time. Baghani et al. performed nonlinear free vibration analysis of conservative pendulums using VIM [37]. Ji et al. improved fractional variational iteration method (FVIM) with Adomian series [38]. Wu made a new contribution to VIM by using Laplace transformation [39]. Siddiqi and Iftikhar solved seventh order differential equation of the mathematical model related with an induction motor [40]. Salkuyeh and Tavakoli introduced interpolated variational iteration method (IVIM) and demonstrated the effectiveness of the method over VIM with numerical examples of the Riccati differential equation and initial boundary value problem [41]. Martin solved the forced vibration of viscoelastic Euler-Bernoulli beam [42]. Chen et al. performed free vibration analysis of rotating tapered Timoshenko beam with linearly varying height [43]. Li and Yang employed VIM to free vibration analysis of pipes carrying fluid [44]. The results obtained are compared with differential transform method (DTM) and revealed that the method converges as fast as DTM. El-Sayed and El-Mongy applied MVIM to free vibration analysis of conical Euler-Bernoulli beam connected to two degree of freedom mass-spring-damper subsystems where the change of conical ratio and subsystem parameters were considered [45]. It has been pointed out that MVIM is very convergent to some analytical solutions in the literature up to the higher modes where the shear effects are prominent. In a study in which dynamic and stability analyzes of fluid-bearing multi-span pipe systems were performed, transfer matrix method was used to apply VIM [46]. The effects of semi-rigid boundary conditions and their positions on critical speed and stability are investigated. Tian et al. examined the nonlinear vibrations of rotating beams using MVIM [47]. The non-linear effects of bending-elongation, bending-torsion and torsion-elongation coupling as well as coriolis effects are considered in the analysis.
Although VIM is a powerful method, difficulties may have arised while obtaining circular frequencies in the free vibration analysis of higher order shear deformation theories such as Touratier beams that can be represented by a sixth order differential equation with complex boundary conditions. VISM is a refined procedure of VIM combined with DSM and WWA as a remedy of these hassles [48].

In this paper, free vibration analysis of Touratier beams having uniform rectangular cross-section, subjected to an axial compressive load, resting on Winkler and Pasternak foundations with different boundary conditions such as simply supported, one end simply supported, the other end fixed and fixed supported at both ends are investigated by using ANM, DSM and VISM. Governing equations of motion and natural boundary conditions are obtained by using Hamilton’s principle. Dynamic stiffness matrices of the beam are constructed analytically and variationally to perform DSM and VISM solutions, respectively. WWA is also applied to obtain circular frequencies for each method except ANM. Circular frequency values of first five modes calculated by using DSM and VISM are tabulated to compare the results with ANM solutions based on Touratier and Timoshenko beam theories to show the reliability and effectiveness of the methods. Moreover, lateral displacements, bending rotation, rotation of the normal to the axis, shear forces and bending moments diagrams are represented in graphics.


2. The mathematical model and formulation

[bookmark: _Hlk19649752]A Touratier beam resting on Pasternak foundation is shown in Fig. 1. Assuming that, beam subjected to an axial compressive load  along the  direction. The following assumptions are made when developing governing differential equations of motion:
i- Materials are isotropic and behave linear-elastic.
ii- Small displacement theory is valid.
iii- The cross-sectional area of the beam is uniform.
iv- Compressive axial force is constant along the beam.
v- The damping is neglected.


Insert Fig. 1 

According to Touratier beam theory, the displacements can be written as follows [12,21]
	
	(1)

	
	(2)


where  and  are the axial and lateral displacements of the beam respectively,  is the lateral displacement of the beam neutral axis,  denotes the rotation of a normal to the axis of the beam,  is the beam position;  is the distance from the beam neutral axis,  is time variable,  and  are the width and the height of the beam, respectively.
Governing equations of motion and boundary conditions for a rectangular and axial compressive loaded Touratier beam resting on Pasternak foundation obtained using Hamilton’s principle can be written as [48]

	
	(3)

	
	(4)


where  and  denote elasticity and shear modulus of the beam respectively, A is the area of cross-section,  is distributed mass per length,  is unit mass of the beam. For Pasternak foundation model  is taken as
	
	(5)


where  and  are spring constant and shear modulus of the foundation, respectively. For Winkler foundation model  must be taken zero. ,  and  can be written as follows
	
	(6)

	
	(7)

	
	(8)


We substitute for  and  assuming the motion is harmonic
	
	(9)

	
	(10)


and obtain two coupled ordinary differential equations as
	
	

(11)

	
	

	
	(12)


where  and  is natural frequency of the beam. From Eqs. (11)-(12), one can construct the coefficient matrix considering 
	
	(13)

	
	(14)


as follows:
	 
	(15)


where  and  are unknown coefficients and
	
	(16)

	
	(17)

	
	(18)

	
	(19)


The determinant of the matrix shown in Eq. (13) must be identical to zero for the non-trivial solution. The natural boundary conditions; shear force function  associated with , bending moment function  associated with  and bending moment  associated with  obtained using Hamilton’s principle can be written as
	[bookmark: _Hlk19492614]
	(20)

	
	(21)

	
	(22)


The bending rotation of the beam  can be written as
	
	(23)




3. Dynamic Stiffness Method and Wittrick-Williams Algorithm

Displacement () and force () vectors of Touratier beam element subjected to a compressive axial force resting on Pasternak foundation can be written as follows respectively
	
	(24)

	
	(25)


where  is a vector of unknowns and coefficient matrix  is defined as follows

	
	(26)

	
	(27)


where , , , ,  and . Using Eqs. (13)-(14) and (23) following elements of matrix  can be obtained by using Eqs. (13)-(14) as follows
	
	(28)

	
	(29)

	
	(30)

	
	(31)

	
	(32)

	
	(32)


where 
	
	
(33)


Coefficient matrix  in Eq. (25) is defined as follows: 
	
	(34)


where , , , ,  and . Substitute Eqs. (13)-(14) and Eq. (23) and their related derivatives respect to  in Eqs. (20)-(22) to obtain following elements of matrix  as
	
	(35)

	
	(36)

	
	(37)

	
	(38)

	
	(39)

	
	(40)


where
	; 
	(41)

	; 
	(42)

	; 
	(43)

	; 
	(44)

	; 
	(45)

	; 
	(46)


and
	
	(47)

	
	(48)

	
	(49)

	
	(50)

	
	(51)

	
	(52)

	
	(53)

	
	(54)


One can construct stiffness matrix of the beam element by eliminating unknown vector  by using the relations between Eqs. (24)-(25) as follows [49]
	 
	(55)


where  denotes the dynamic stiffness matrix of a beam element. Determinant of the dynamic stiffness matrix given above must be zero for non-trivial solution as force vector is identical to zero for the free vibration analysis. 
One of the accurate and reliable techniques, Wittrick-Williams algorithm can be employed to dynamic stiffness matrix of the beam to investigate the numbers of frequencies lie below any arbitrarily chosen trial frequency [22,23]. The algorithm should be implemented to a beam divided into an adequate number of elements to ensure any of the clamped-clamped frequencies aren’t missed [49]. Firstly, the dynamic stiffness matrix of the beam elements calculated by Eq. (55) can be assembled to construct global dynamic stiffness matrix of the beam. Secondly, the boundary conditions associated with displacements are applied to the corresponding diagonal members of global dynamic stiffness matrix. Finally, eigenvalues of the dynamic stiffness matrix can be calculated by an appropriate method. The number of negative or zero eigenvalues indicates the number of frequencies lies below the trial frequency.


4. Variational Iterative Stiffness Method (VISM)

Consider the general form of a nonlinear differential equation to illustrate the basic concept of variational iteration method [50]
	
	(56)


where  and  are linear and nonlinear operators and  is a known analytical function. A correction functional according to the variational iteration method can be constructed as [39]
	
	(57)


[bookmark: _Hlk19575557]where the subscript  denotes the rth approximation,  is a general Lagrange multiplier which can be identified optimally via variational theory and  is considered as a restricted variation, namely =0. Lagrange multiplier can be obtained via variational principle performed on Eq. (57). Consequently, once Lagrange multiplier is procured, one can use the following form of the variational iteration algorithm to obtain the solution function as follows [51]
	
	(58)


Now, to derive the coupled differential equations of the beam into a form of Eq. (56), Eqs. (11)-(12) are combined into a sixth order ordinary differential equation as follows
	
	(59)


where
	

	(60)


	

	(61)

	

	  (62)


Rotation of a normal to the axis  can be expressed via following form by using Eqs. (11)-(12)
	

	(63)


where
	

	(64)

	

	(65)

	

	(66)


Finally, lateral displacement function of Touratier beam can be obtained in the form of Eq (58) as follows
	

	(67)


If we apply variational principle to Eq. (59) in order to obtain Lagrange multiplier, we get
	

	(68)


with boundary conditions below
	

	(69)

	

	(70)

	

	
(71)

	

	(72)

	

	(73)

	

	(74)


From Eqs. (68)-(74), one can calculate Lagrange multiplier as follows
	

	(75)


Substitute Eq. (75) into Eq. (67) we get
	

	(76)


The initial predicted vertical displacement function  can be determined as the first six terms of the Taylor series as presented below [50]
	

	(77)


where  are unknown coefficients. Consequently, the exact solution may be obtained with the following assumption:
	

	(78)


Once the lateral displacement function is obtained by using Eq. (76), bending rotation and rotation of the normal to the axis can be calculated by using Eq. (23) and Eq. (63) respectively. Then, internal forces in matrix  given in Eq. (34) can be obtained by using lateral displacement function and rotation of the normal to the axis and their derivatives respect to . It is suggested that the use of a program with a symbolic toolbox such as Matlab or Mathematica to derive the stiffness matrix symbolically as the lateral displacement function is connected to number of steps of the iteration given in Eq. (67).  and  matrices given in Eq. (27) and Eq. (34) respectively are constructed to obtain dynamic stiffness matrix of the beam element. Finally, dynamic stiffness matrix of the beam which Wittrick-Williams algorithm may be implemented to investigate circular frequencies with any desired accuracy can be obtained.


5. Analysis Results and Discussion

Simply supported, one end simply supported, the other end fixed and fixed supported Touratier beams (TB) subjected to axial compressive load resting on Winkler and Pasternak foundations are considered for the free vibration analysis. The first five non-dimensionalised circular frequencies () are investigated by using the programs compiled in Matlab for this study, where  can be calculated as follows
	 
	(79)


ANM solution is based on construction of the boundary conditions matrix which is identical to zero for the rigidly supported beams. The determinant of the coefficient matrix must be zero for non-trivial solution. In order to find the circular frequency values, algorithm based on the change of sign for real or imaginary parts of the determinant exhibits a frequency lies between two trial values is employed. Axial compressive load factors (=0, 0.25 and 0.5) used are determined as follows
	
	(79)


where  is critical Euler buckling load defined as
	
	(80)


and the following data is adopted for the free vibration analysis of beams:

  
The shear correction factor for Timoshenko beam theory (TBT) is assumed  and  is taken zero for Winkler foundation model.
	The first three non-dimensionalised circular frequency values obtained by using ANM, DSM and VISM solutions with Winkler and Pasternak foundation models and non-dimensionalised factors for axial compressive force are presented in Tables 1-3 for simple-simple, simple-fixed and fixed-fixed boundary conditions, respectively.
In addition to the obtained circular frequency values, normalized vertical displacements, bending rotation, rotation of the normal to the axis, shear forces, bending moments associated with lateral displacements and bending moments associated with bending rotation of normal to the axis diagrams of first modes are shown in graphics for aforementioned boundary conditions in Figs. 2-7, respectively.
The results shown in Tables 1-3 divulge that the circular frequency values decrease with an increasing axial compressive force. The values obtained considering Pasternak foundation model are higher than Winkler foundation model as shear layer behaves contrary to axial compressive load is revealed evidently. The third circular frequency values obtained by using VISM are overlapped with analytical results when iteration steps are taken 7, 8 and 10 for simple-simple, simple-fixed and fixed-fixed boundary conditions as it is seen in Tables 1-3. 

	[bookmark: _Hlk46318763]Table 1. Non-dimensionalised circular frequency values of beams resting on elastic foundations under simple-simple supported boundary conditions

	
	Method (beam theory)
	Winkler
	Pasternak

	
	
	
	
	
	
	
	

	0

	ANM (TBT)
	3.3265
	10.8549
	22.6296
	3.4613
	11.0191
	22.8036

	
	VISM (TB)
	3.3265
(r=6)
	10.8562
(r=6)
	22.6384
(r=7)
	3.4613
(r=6)
	11.0204
(r=7)
	22.8123
(r=7)

	
	DSM (TB)
	3.3265
	10.8562
	22.6384
	3.4613
	11.0204
	22.8123

	
	ANM (TB)
	3.3265
	10.8562
	22.6384
	3.4613
	11.0204
	22.8123

	0.25
	ANM (TBT)
	3.0086
	10.4846
	22.2419
	3.1570
	10.6544
	22.4189

	
	VISM (TB)
	3.0087
(r=7)
	10.4860
(r=7)
	22.2509
(r=7)
	3.1571
(r=7)
	10.6558
(r=7)
	22.4278
(r=7)

	
	DSM (TB)
	3.0087
	10.4860
	22.2509
	3.1571
	10.6558
	22.4278

	
	ANM (TB)
	3.0087
	10.4860
	22.2509
	3.1571
	10.6558
	22.4278

	0.5
	ANM (TBT)
	2.6529
	10.1007
	21.8473
	2.8201
	10.2769
	22.0275

	
	VISM (TB)
	2.6530
(r=6)
	10.1022
(r=7)
	21.8566
(r=7)
	2.8202
(r=6)
	10.2783
(r=6)
	22.0366
(r=7)

	
	DSM (TB)
	2.6530
	10.1022
	21.8566
	2.8202
	10.2783
	22.0366

	
	ANM (TB)
	2.6530
	10.1022
	21.8566
	2.8202
	10.2783
	22.0366



	Table 2. Non-dimensionalised  circular frequency values of beams resting on elastic foundations under simple-fixed supported boundary conditions

	
	Method (beam theory)
	Winkler
	Pasternak

	
	
	
	
	
	
	
	

	0

	ANM (TBT)
	4.6425
	13.1972
	25.3837
	4.7539
	13.3402
	25.5430

	
	VISM (TB)
	4.6445
(r=7)
	13.2175
(r=8)
	25.4597
(r=8)
	4.7561
(r=8)
	13.3607
(r=8)
	25.6194
(r=8)

	
	DSM (TB)
	4.6445
	13.2175
	25.4597
	4.7561
	13.3607
	25.6194

	
	ANM (TB)
	4.6445
	13.2175
	25.4597
	4.7561
	13.3607
	25.6194

	0.25
	ANM (TBT)
	4.3863
	12.8768
	25.0296
	4.5047
	13.0234
	25.1911

	
	VISM (TB)
	4.3881
(r=7)
	12.8965
(r=8)
	25.1047
(r=8)
	4.5066
(r=7)
	13.0433
(r=7)
	25.2667
(r=8)

	
	DSM (TB)
	4.3881
	12.8965
	25.1047
	4.5066
	13.0433
	25.2667

	
	ANM (TB)
	4.3881
	12.8965
	25.1047
	4.5066
	13.0433
	25.2667

	0.5
	ANM (TBT)
	4.1124
	12.5481
	24.6703
	4.2393
	12.6986
	24.8342

	
	VISM (TB)
	4.1140
(r=7)
	12.5671
(r=8)
	24.7445
(r=8)
	4.2410
(r=8)
	12.7178
(r=7)
	24.9089
(r=8)

	
	DSM (TB)
	4.1140
	12.5671
	24.7445
	4.2410
	12.7178
	24.9089

	
	ANM (TB)
	4.1140
	12.5671
	24.7445
	4.2410
	12.7178
	24.9089

	
Table 3. Non-dimensionalised circular frequency values of beams resting on elastic foundations under fixed-fixed supported boundary conditions

	
	Method (beam theory)
	Winkler
	Pasternak

	
	
	
	
	
	
	
	

	0

	ANM (TBT)
	6.3138
	15.6168
	28.0981
	6.3999
	15.7433
	28.2452

	
	VISM (TB)
	6.3216
(r=9)
	15.6697
(r=10)
	28.2556
(r=10)
	6.4080
(r=9)
	15.7969
(r=9)
	28.4136
(r=10)

	
	DSM (TB)
	6.3216
	15.6697
	28.2556
	6.4080
	15.7969
	28.4136

	
	ANM (TB)
	6.3216
	15.6697
	28.2556
	6.4080
	15.7969
	28.4136

	0.25
	ANM (TBT)
	6.1194
	15.3343
	27.7714
	6.2086
	15.4634
	27.9203

	
	VISM (TB)
	6.1265
(r=9)
	15.3859
(r=9)
	27.9371
(r=9)
	6.2160
(r=9)
	15.5156
(r=9)
	28.0868
(r=10)

	
	DSM (TB)
	6.1265
	15.3859
	27.9371
	6.2160
	15.5156
	28.0868

	
	ANM (TB)
	6.1265
	15.3859
	27.9371
	6.2160
	15.5156
	28.0868

	0.5
	ANM (TBT)
	5.9175
	15.0459
	27.4407
	6.0102
	15.1777
	27.5914

	
	VISM (TB)
	5.9241
(r=9)
	15.0962
(r=9)
	27.6045
(r=9)
	6.0170
(r=9)
	15.2286
(r=9)
	27.7561
(r=10)

	
	DSM (TB)
	5.9241
	15.0962
	27.6045
	6.0170
	15.2286
	27.7561

	
	ANM (TB)
	5.9241
	15.0962
	27.6045
	6.0170
	15.2286
	27.7561





6. Conclusions

The free vibration analysis of Touratier beams, subjected to an axial compressive force resting on Winkler and Pasternak foundations are performed by using DSM and VISM. Circular frequency values are investigated with WWA. VISM is developed by combining He’s variational iteration method on dynamic stiffness approach. Various rigid boundary conditions such as simply supported, one end simple, the other end fixed and fixed supported are considered. The effects of axial compressive force and foundation model on free vibration characterictics are examined. The analysis of aforementioned methods is performed by the computer programs developed for this study in Matlab. Solution functions of VISM are obtained from symbolic toolbox of Matlab for various iteration steps. Circular frequency values calculated by using DSM and VISM are compared with ANM solutions based on Touratier and Timoshenko beam theories where a very good agreement is observed. In addition to the circular frequency values, normalized lateral displacements, bending rotation, rotation of the normal to the axis, shear forces and bending moments diagrams of first modes are represented in graphics. VISM is proved its effectiveness and reliability by coinciding values with the results obtained from analytical method even a few iteration steps are exerted.

Insert Fig 2.
Insert Fig 3.
Insert Fig 4.
Insert Fig 5.
Insert Fig 6.
Insert Fig 7.
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