REFERENCES
- Jen MHR, Tseng YC, Li PY. Fatigue response of hybrid
magnesium/carbon-fiber/PEEK nanocomposite laminates at elevated
temperature. J Jpn Soc Exp Mech . 2007;7: s56-s60.
- Jen MHR, Chang CK, Sung YC. Fabrication and mechanical properties of
Ti/APC-2 hybrid nanocomposite laminates at elevated temperatures.J Compos Mater . 2015;50: 2035-2045.
- Unger WJ, Hansen JS. The Effect of Thermal-Processing on Residual
Strain Development in Unidirectional Graphite Fiber Reinforced Peek.J Compos Mater . 1993;27: 59-82.
- Abdullah MR, Cantwell WJ. The impact resistance of polypropylene-based
fibre-metal laminates. Compos Sci Technol . 2006;66: 1682-1693.
- Villanueva GR. Processing and characterisation of the mechanical
properties of novel fibre-metal laminates. PhD. dissertation,
University of Liverpool; 2002.
- Sinke J. Development of Fibre Metal Laminates: concurrent multi-scale
modeling and testing. J Mater Sci . 2006;41: 6777-6788.
- Kim BC, Park SW, Lee DG. Fracture toughness of the nano-particle
reinforced epoxy composite. Compos Struct . 2008;86: 69-77.
- Jen MHR, Tseng YC, Wu CH. Manufacturing and mechanical response of
nanocomposite laminates. Compos Sci Technol . 2005;65: 775-779.
- Chang KJ. On the Maximum Strain Criterion-A New Approach to the Angled
Crack Problem. Eng Fract Mech . 1981;14: 107-124.
- Nuismer RJ. An Energy Release Rate Criterion for Mixed Mode Fracture.Int J Fract . 1975;11: 245-250.
- Hussain MA, Pu SL, Underwood J. Strain Energy Release Rate for a Crack
under Combined Mode I and II. Fracture analysis ASTM STP 560. American
Society for Testing and Materials, Philadelphia. 2-28; 1974.
- Ritchie RO, Yu W, Bucci RJ. Fatigue Crack Propagation in ARALL
Laminates: Measurement of the Effect of Crack-tip Shielding from Crack
Bridging, Eng Fract Mech . 1989;32: 361-377.
- Asghar A, Nasir MA, Qayyum F, Shah M, Azeem M, Nauman S, Khushnood S.
Investigation of fatigue crack growth rate in CARALL, ARALL and GLARE.Fatigue Fract Eng Mater Struct . 2017;40: 1086-1100.
- Li E, Johnson WS. An investigation into fatigue of a hybrid titanium
composite laminate. J Comp Technol Res . 1998;20: 3-12.
- Corte’s P, Cantwell WJ. The tensile and fatigue properties of carbon
fiber-reinforced PEEK-titanium fiber–metal laminates. J Reinf
Plast Compos . 2004;23: 1615-1623.
- Muhammad Ilham K, Anuar H, Norhashimah MS, Idris Yaacob I, Sapuan SM.
Matrix Cracking in Reinforced Polymer Nanocomposites: A Review.J Adv Rev Sci Res . 2015;11: 13-36.
- Borowski E, Soliman E, Kandi UF, Taha MR. Interlaminar Fracture
Toughness of CFRP Laminates Incorporating Multi-Walled Carbon
Nanotubes. Polymer . 2015;7: 1020-1045.
- Mefford CH, Qiao Y, Salviato M. Failure Behavior and Scaling of
Graphene Nanocomposites. Compos Struct . 2017;176: 961-972.
- Gross D, Seelig T. Fracture Mechanics: With an Introduction to
Micromechanics, first ed. Berlin Heidelberg, Germany: Springer-Verlag:
2006.
- Aliha MRM, Mousavi SS, Bahmani A, Linul E, Marsavina L. Crack
Initiation Angles and Propagation Paths in Polyurethane Foams under
Mixed Mode I/II and I/III Loading. Theor Appl Fract Mech .
2019;101: 152-161.
- Wang HT, Wu G, Pang YY. Theoretical and Numerical Study on Stress
Intensity Factors for FRP- Strengthened Steel Plates with Double-Edged
Cracks. Sensor. 2018;18: E2356.
- Guo YJ, Wu XR. A Theoretical Model for Predicting Fatigue Crack Growth
Rates in Fiber‐Reinforced Metal Laminates. Fatigue Fract Eng
Mater Struct . 1998;21: 1133-1145.
- Homan JJ. Fatigue Initiation in Fiber Metal Laminates. Int J
Fatigue . 2006;28: 366-374.
- Alderliesten RC. Analytical Prediction Model for Fatigue Crack
Propagation and Delamination Growth in Glare. Int J Fatigue .
2007;29: 628-646.
- Spronk SWF, Şen İ, Alderliesten RC. Predicting Fatigue Crack
Initiation in Fiber Metal Laminates Based on Metal Fatigue Test Data,Int. J Fatigue . 2015;70: 428-439.
- Gupta M. Directionality of Damage Growth in Fiber Metal Laminates and
Hybrid Structures. PhD Thesis, E.T.S.I.A. Universi dad Polytechnico de
Madrid; 2015.
- Jen MHR, Kuo GT, Wu YH, Chen YJ. Fatigue Responses of Cracked Ti/APC-2
Nanocomposite Laminates at Elevated Temperature, J Compos
Mater . 2019;54: 1705-1715.