Analysis of dilatation waves propagation in an irregular single-walled carbon nanotube under initial compressional stresses
Mahmoud. M. Selim1, 2, *
1Department of Mathematics, Al-Aflaj College of Science and Humanities Studies, Prince Sattam bin Abdulaziz University, Al-Aflaj 710-11912 Saudi Arabia. 

2Department of Mathematics, Suez Faculty of Science, Suez University, Egypt.

* Corresponding author: m.selim@psau.edu.sa
ABSTRACT 

This work is the first attempt to show the impacts of irregularity and compressional initial stresses on the dilatation waves propagating in a single-walled carbon nanotube (SWCNT) with the use of Donnell thin shell approach. The irregularity is taken in the parabolic form at the surface of SWCNT. A new closed-form of the characteristics equation of the natural frequencies of propagation is derived and matched with the case of the absent of irregularity and compressional stresses effects. The theoretical analysis show that, the presence of irregularity and initial compressional stresses effects the natural frequency of dilatation waves propagating in SWCNT. The numerical results show that, the increasing of the initial stress and irregularity parameters decreasing the values of the natural frequencies of dilatation waves in SWCNTs. Thus, it can be concluded that, the investigation presented may be provide useful information for the next generation studies and accurate deigns of nanomachines and can be used as a useful reference for the designs of Nanodrive devices, Nanooscillators and Nanosensors.
KEYWORDS

Single-walled carbon nanotube, dilatation waves, irregularity, initial compressional stresses. 
MSC CLASSIFICATION

45.10.-b Computational methods in classical mechanics
1. INTRODUCTION
Carbon nanotube (CNT) has become one of the most promising materials for nanotechnology due to its distinct electronic and mechanical properties [1-5]. Various studies are carried out about composites that contains carbon nanotubes (CNT), which are known as the strongest materials today. As can be seen from the examples of [6-27], there are many experimental and theoretical investigation are done.  In recent years, many studies have focused on the mechanical behavior of single-walled and multi-walled carbon nanotubes such as Ru [28], Shen[29] and Thai[30]. Applicability of continuous mechanics views in explaining the behavior of nano-objects has been discussed in Young et al.[31], Duan et al.[32] and Windle[33]. Studies on the mechanical behavior of CNT and other types of nanostructures in areas where continuity approaches are applicable are discussed in Harik [34], Guz and Rushchidsky [35, 36]. In particular, to understand the dynamic behavior of carbon nanotubes, numerous researchers have been conducted the computational simulations to study the vibration and wave propagation in carbon nanotubes. Hoseinzadeh et al. [37, 38] studied the thermo-elastic vibration and damping analysis of double-walled carbon nanotubes based on shell theory. Tang and Ding [38] presented the nonlinear hydrothermal dynamics of a bi-directionally functionally graded beam with coupled transverse and longitudinal displacements. Selim [40-42] has showed how to construct and analyze the propagation of dilatation and transverse waves in a pre-stressed plate and single-wall carbon nanotube using local and nonlocal scale effects. Irregularities in the constructions of carbon nanotubes may occur as consequences of manufacturing defect, servicing reckless, environmental damages, etc. On the other hand, CNTs often suffer from initial compressional stresses due to residual stress, thermal effect, surface effect, mismatch between the material properties of CNTs and a surrounding medium, initial external load and may be due to any other physical causes. It is obvious that the varying of the surface structures of the nanotube as well as the presence of the compressional initial stresses influences the nature of the dilatation wave frequency. Hence, it is of great importance to deal with various constructions to study the propagation of the dilatation waves in irregular and pre-stressed single-walled carbon nanotubes. The author has investigated the longitudinal wave propagation in an irregular single-walled carbon nanotube using Donnell thin shell approach [43]. To the author best knowledge, the effects of both irregularity and initial compressional stresses on the dilatation wave propagation in the single-walled carbon nanotube has not yet been investigated and the present work is an extension of the previous work of the author to find out these effects of irregularity and initial stresses on propagation analysis of dilatation waves . Since the structures of carbon  nanotubes are similar to those of cylindrical shells. The Donnell thin shell approach is capable to tackle dilatation wave propagation in SWCNTs. To compute the natural frequency of dilatation waves, the computer software MATLAB is used. It is pointed out that, with minor substitution the present results can be used to analyze the effects of both irregularity and initial stresses on wave propagation. It is concluded that, the irregularity and initial compressional stress have significant effects on the dilatation waves frequencies and thus the results of this work can provide a useful information for the next generation studies and accurate deigns of nanomachines.
2. PRELIMINARIES
Elastic thin shell theory is employed to study dilatation long the shell, 
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 is the direction of the polar angle, and z is the radial direction and the compression initial stress (
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) is effected on the 
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-direction and the irregularity is considered in the form of parabola at the lower boundary of the SWCNT (Figure 1). The SWCNT has a thickness of h, radius of R and length of L. We denote the span of the surface irregularity and maximum depth of the irregularity by s and H′ respectively. In case of parabolic surface irregularity the boundary surface may be described as [43],  
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where 
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 is the maximum amplitude of irregular boundary (a perturbation parameter), which is assumed to be small and this assumption fits in those naturally or artificially constituted scenario where the depth H′ of the irregularity is typically very small with respect to the span of the irregularity s.
The Flügge basic equations of motion are proposed as the governing equations of the propagation of dilatation wave in the irregular single-walled carbon nanotubes wave under the effect of initial compressional stress (
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).  The equations of motion for this case can be written as [44], 
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where
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, E and 
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 are  the nanotube density, Young modulus and Poisson ratio, respectively. Eh is the in-plane rigidity, 
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is the mass density per unit lateral area, 
[image: image16.wmf]3

2

12(1)

Eh

b

=

-W

 is the effective bending stiffness of the carbon nanotube in shell theory, 
[image: image17.wmf](1)

,

x

P

E

z

+W

=

is the initial compressional stress parameter and t is the time.

3. EQUATION OF MOTION  
For the analysis of the dilatation wave propagation, the
[image: image18.wmf]q

-directional displacement
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is assumed zero [45], and the equations of motion (2), (3) and (4), become  
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In matrix form, we can write the above equations as 
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where
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are the differential operators given by 
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4. FREQUNCY EQUATION  

The functions 
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where 
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stand for the amplitude coefficients in the axial and radial directions. The angular frequency is designated by
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 and the fundamental frequency
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, where
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is the axial wave number related with an end condition. In view of the differential operators in equations (11)-(14) and using the expressions for 
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given in (20)–(22), the equation (10) is transformed into the propagation frequency equation of dilatation wave propagation in the irregular single-walled carbon nanotubes under initial compression stresses based on Donnell thin shell theory as:
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Where 
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 can be determined using the Appendix, as follows:
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In order to obtain non-zero solution of
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, which yields the propagation frequency and associated modes, the determinant of the matrix in equation (23) should vanish. Thus, one obtains the following characteristic equation:
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Where the lowest root of this equation gives, the eigenvalues are associated with longitudinal wave frequencies of irregular single-walled carbon nanotube. In the present study, we suppose the nanotube is simply supported in its ends, so the axial wave number 
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5. Particular case 

When the effect of initial compression stresses is absent
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, then equation (23) becomes
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where
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which coincides with the result obtained by Selim [43].
6. NUMERICAL SIMULATION
In this section, numerical results for the dilatation wave propagation in the irregular single-walled carbon nanotube under the effects of initial compression stresses are carried out using the simulation parameters presented in Table1[47]. The fundamental frequencies (THz) as a function of 
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for the case of simply supported- simply supported SWCNT have been evaluated using equation (26) and the results are compared with the cases of uniform and free initial stresses nanotube
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Table 1 Simulation parameters 
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	0.34nm
	3.6481 × 108 m2 / s2
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Figures 2-10, show the effects of surface irregularity and initial compression stresses on dilatation wave propagation in the single-walled carbon nanotube. To show the effects of surface irregularity, numerical computations are carried out for the natural frequencies for different values of aspect ratio (L/d) of the single-walled carbon nanotube. The frequency (THz) data verses length-to-diameter (L/d) are plotted in figures 2, 3,4,5,6,7,8,9 and 10, for various irregularity and initial compressional stress parameters 
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Figure 2 shows the variations of natural frequencies of dilatation wave propagation in the single-walled carbon nanotube at 
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 against aspect ratio (L/d=0-70). It is clearly seen from the figure that the range values of the natural frequencies change from (0- 0.1) terahertzes for the aspect ratio interval (0-70).
The effects of initial compression stresses (
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) on the natural frequencies of the dilatation wave for various aspect ratio (L/d=0-70) are demonstrated in figures 3 and 4. From these figures, it is observed that the initial compression stresses has a notable effects on the natural  frequencies of dilatiation wave compared with the case of  free of initial stresses
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, as shown in figure 2.  
Figure 3 shows that, the natural frequencies of the dilitation wave are effected by the initial comprissional  stress  at 
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x

z

=

. It is clearly seen  that, the values of the natural frequencies are quite different, compared with the case of the free initial stresses. The range values of the natural frequencies are (0-160) terahertzes compared with (0-0.1) terahertzes at
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. The reason is clear that the change is attributed to the presance of the initial comprissional stresses in the singel-walled carbon nanotube.
In figure 4, it is observed that, the natural frequencies of the dilatation wave are effected by the initial compressional stresses at 
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. From the figure, we can observe that, the range values of the natural frequencies are (10-110) terahertzes, which less than the range values  at 
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for the same values of the aspect ratio (L/d=0-70) as shown in figure 3. This mean that, the increase of the initial stress parameter decrease the values of the natural frequaincies of the dilitation wave propagating in the uniform single-walled carbon nanotube. 
The effect of irregularity parameter (
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) on the natural frequencies various aspect ratio (L/d=0-70) of single-walled carbon nanotube is shown in figure 5.  From figure 5, it is observed that, the natural frequencies of the dilatation wave are effected by the surface irregularity in SWCNTs. It is clearly seen  that, the values of the natural frequencies are quite different, compared with the case at (
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 ), as shown in figure 2. The range values of the natural frequencies are (0-0.07) terahertzes for compared with the range values (0-0.1) terahertzes at 
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. The reason is very clear that the increase of the irregularity parameter. This mean that, the increase of surafce irrigulirty decrease the values of the natural frequaincies of the dilitation wave propagating in SWCNT .
The effects of both initial compression stresses (
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) and surface irregularity 
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on the natural frequencies of the dilatation wave for different values of aspect ratio (L/d=0-70) are shown in figures 6 and 7.  From these figures, it is observed that the initial compression stresses and surface irregularity have notable effects on the natural frequencies of dilatation. 
From figure 6, it is observed that, the natural frequencies of the dilatation wave are effected by the initial compressional stress at
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 and surface irregularity
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. It is clearly seen that, the values of the natural frequencies are different, compared with the case at
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 and
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as shown in figure 2. The values of the range of the natural frequencies are (10-90) and (10-70) terahertzes compared with (0-0.1) terahertzes at
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. The reason is very clear that the change is attributed to the increase of both irregularity and initial stress parameters present in SWCNT.  

In figure 7, it is observed that, the natural frequencies of the dilatation wave are effected by increase of the initial stress parameters at
[image: image87.wmf](0.025)

x

z

=

. From figure 7, it is observed that, the range values of the natural frequencies are (10-70) terahertzes compared with (10-90) terahertzes at
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for the same aspect ratio (L/d=0-70) as shown in figure 6. This mean that, the increase of initial stress parameter decrease the values of the natural frequencies of the dilatation wave propagating in SWCNT. 
The surface irregularity effect is becomes obvious for the higher values of the surface irregularity parameter. In this case we present the effect of surface irregularity parameter (
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) on the natural frequencies as shown in figure 8. It is clearly seen that, the values of the natural frequencies are quite different, compared with the previous two cases (
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). The range values of the natural frequencies are (0-0.06) for the same aspect ratio intervals (0-70), which is different from the range values of the natural frequencies of the previous two cases (
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The effects of both initial compression stresses (
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) and surface irregularity 
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on the natural frequencies of the dilatation wave for different values of aspect ratio (L/d=0-70) are shown in figures 9 and 10.  From these figures, it is observed that, the effects of both the irregularity and initial stresses are becomes obvious. 
Figure 9 shows that, the range values of the natural frequencies of the dilatation waves are decreasing by increase of both the irregularity and initial stress parameters. It is clearly seen that, the range values of the natural frequencies are (10-70) terahertzes compared with (0-0.06) terahertzes for the previous as shown in figure 8. 
In figure 10, the variations between the natural frequencies and aspect ratio are shown at
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. From figure 10, it is observed that, the range values of the natural frequencies are (10-60) terahertzes compared with (10-70) terahertzes at
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 for the same irregularity parameter
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 as shown in figure 9. This mean that, the increase of initial stress parameter decrease the range values of the natural frequencies of the dilatation wave propagating in SWCNT at the same irregularity parameter
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.  
7. CONCLUDING REMARKS

In this article, we have reported a novel frequency equation of dilatation wave propagation in irregular and pre-stressed single-walled carbon nanotubes based on Donnell thin shell approach. The worth mentioning component of the present exploration is to examine the impacts of both surface irregularities and the initial compression stresses as well as aspect ratio on the natural frequencies of dilatation waves propagating in SWCNTs. The numerical results have been shown through graphs to show the dependence of the vibration characteristics of dilatation waves on the nanotube long as well as the irregularity and initial stresses parameters. It has been detected that the presence of irregularities and initial compressional stresses in the single-walled carbon nanotubes have notable effects on the propagation of the dilatation wave. From the numerical results, it is observed that, the increase of the initial stress and irregularity parameters decrease the values of the natural frequencies of dilatation waves propagating in SWCNTs. Thus, it can be concluded that, the investigation presented may be provide useful information for the next generation studies and accurate deigns of nanomachines.
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