
Decay mild solutions of fractional differential
hemivariational inequalities ∗

Xiuwen Li1 Zhenhai Liu1,2†

1 Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis,

Guangxi University for Nationalities,

Nanning 530006, Guangxi Province, P.R. China

2 Guangxi Colleges and Universities Key Laboratory of Complex System

Optimization and Big Data Processing,

Yulin Normal University, Yulin 537000, P.R. China.

Abstract

In this paper, we consider fractional differential hemivariational inequalities (FD-
HVIs, for short) in the framework of Banach spaces. The aim of this paper is three
folds. The first one is to investigate the existence of mild solutions for FDHVIs
and by means of a fixed point technique we are able to avoid the hypothesis of
compactness on the semigroup. The second aim is to study the existence of decay
mild solutions for FDHVI via giving asymptotic behavior of Mittag-Leffler function.
Finally, a mathematical model is provided to illustrate our abstract results.
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1 Introduction and problem formulation

Differential variational inequalities (DVIs, for short) were firstly systematically dis-
cussed by Pang–Stewart [32] in Euclidean spaces. Since DVIs can describe various models
in mechanical impact problems in engineering, operations research, and physical sciences
such as electrical circuits with ideal diodes, coulomb friction problems for contacting
bodies, economical dynamics, dynamic traffic networks and so forth, more and more
researchers have paid their attentions to the study of DVIs and a considerable effort
has been made in their analysis and numerical approximation. We refer the reader to
[7, 11, 19, 25, 26, 32] for some recent results on solvability, stability, and bifurcation
to finite dimensional DVIs. The study of DVIs in infinite dimensional spaces is more
recent. The reason is that, in contrast with the case of finite dimensional spaces, the
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study of DVIs in infinite dimensional spaces requires regularity results of the solution of
the associated variational inequalities such as measurability, continuity, or condensivity,
which enables us to convert them to differential inclusions. For more details, we refer to
[16, 17, 20, 21, 31] and the references therein.

It is noteworthy that fractional differential equations arise in a natural manner as
mathematical models of dynamic systems that exhibit such properties as long-term mem-
ory and self-similarity. For more details on this topics the reader is welcome to consult
[1, 11, 13, 14, 18, 23, 24, 34, 37, 38] and the references therein. In contrast to the more
conventional DVIs, FDHVIs represent an important extension of DVIs, which couple frac-
tional differential or partial differential equations with a hemivariational inequality or a
variational-hemivariational inequality. Very recently, Ke, Loi, and Obukhovskii [11] stud-
ied the decay solutions for a class of FDVIs in finite Banach spaces. However, until now,
FDVIs in infinite dimensional spaces have not been investigated. To fill this gap, in this
paper, we study a FDHVI in Banach spaces. In the present paper, by combining the
topological methods and the fractional calculus we consider the existence of decay mild
solutions to FDHVI. To introduce the problem we need some notations as follows.

Everywhere in this work, let E be a Banach space and U be a reflexive Banach space,
endowed with the norms ‖ · ‖E and ‖ · ‖U , respectively. We denote by U∗ the strong
topological dual of U and by 〈·, ·〉 the duality paring mapping between U∗ and U . Let
0U represent the zero element of U . Moreover, the notation L(U,E) denotes the space of
linear bounded operators from E to U endowed with the usual norm ‖ · ‖L(U,E) and we
abbreviate this notation to L(E) when U = E. Let R+ = [0,+∞). Below, I denotes
either a bounded interval of the form [0, b] with b > 0, or the unbounded interval R+. By
C(I;E) we denote the space of continuous functions on I with values in E. In the rest of
the manuscript we shall use the standard notation for the Lebesque and Sobolev spaces.

Let A : D(A) ⊆ E → E be the infinitesimal generator of a C0−semigroup T (t) (t ≥ 0)
on E and let B : I × E → L(U,E), F : I × E → P(E) (where P(E) is defined in
Section 2). Consider also the set K ⊂ U , the functions g : I × E → U∗, G : U → U∗,
ϕ : U × U → R and J : U → R. We suppose that J is a locally Lipschitz function and
J0 denotes its generalized (Clarke) directional derivative. With these data, we consider
the system consisting of a fractional differential hemivariational inequality (FDHVI, for
short) as follows:

CDα
t x(t) ∈ Ax(t) +B(t, x(t))u(t) + F (t, x(t)), a.e. t ∈ I, (1.1)

u(t) ∈ SOL(K, g(t, x(t)) +G(·), ϕ, J), a.e. t ∈ I, (1.2)

x(0) = x0 ∈ E. (1.3)

Here SOL(K, g(t, x(t)) +G(·), ϕ, J) stands for the solution set of the hemivariational
inequality (HVI, for short): find u = u(t) ∈ K such that

〈g(t, x(t)) +G(u(t)), v − u(t)〉+ ϕ(u(t), v)− ϕ(u(t), u(t)) (1.4)

+J0(u(t); v − u(t)) ≥ 0 for all v ∈ K

and CDα
t denotes the Caputo fractional derivative of order α ∈ (0, 1) with the lower limit

zero, i.e.,

CDα
t x(t) =

1

Γ(1− α)

d

dt

∫ t

0

(t− s)−α[x(s)− x(0)]ds, t > 0, 0 < α < 1.
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Therefore, inclusion (1.2) stands for u satisfying inequality (1.4) a.e. t ∈ I. With
this remark, we note that FDHVI represents a system which couples the fractional differ-
ential equation (1.1) with the hemivariational inequalities (1.4), associated to the initial
condition (1.3). Therefore, following the terminology in [16, 17, 20–22], we refer to (1.1)–
(1.3) as a fractional differential hemivariational inequality. The solution of FDHVI is
understood in the following sense.

Definition 1.1. A pair of functions (x, u), with x ∈ C(I;E) and u : I → K(⊂ U) measur-
able, is said to be a mild solution of FDHVI (1.1)–(1.3) if there exists f ∈ Lp(I;E) (p > 1

α
)

such that f(t) ∈ F (t, x(t)) for a.e. t ∈ I and

x(t) = Sα(t)x0 +

t∫
0

(t− s)α−1Tα(t− s)[B(s, x(s))u(s) + f(s)]ds, a.e. t ∈ I, (1.5)

where u(t) ∈ SOL(K, g(t, x(t)) +G(·), ϕ, J) for a.e. t ∈ I and

Sα(t) =

∫ ∞
0

Mα(θ)T (tαθ)dθ, Tα(t) = α

∫ ∞
0

θMα(θ)T (tαθ)dθ,

Mα(z) :=
∞∑
n=0

(−z)n

n!Γ(1− α(1 + n))
=

1

π

∞∑
n=0

(−z)n

(n− 1)!
Γ(nα) sin(nπα).

If (x, u) is a mild solution of FDHVI (1.1)–(1.3), then x(t) is called the mild trajectory
and u(t) is called the variational control trajectory.

The rest of the manuscript is structured as follows. In Section 2 we recall some ba-
sic definitions and results needed throughout this paper. In Section 3, the existence of
the mild solution for problem FDHVI (1.1)–(1.3) is presented. In Section 4, the exis-
tence of the decay mild solution associated to FDHVI (1.1)–(1.3) is obtained. Finally, a
mathematical model is provided to illustrate our abstract results.

2 Background material

In this section we review some prerequisites that are necessary in the rest of the
manuscript.

A function ϕ : U → R is proper if it is not identically equal to +∞, i.e., the effective
domain domϕ = {x ∈ U : ϕ(x) < +∞} 6= ∅. It is lower semicontinuous (l.s.c., for short)
if xn → x in U , as n→ +∞ implies ϕ(x) ≤ lim infn→+∞ ϕ(xn).

Following Clarke [8], we present the generalization of the gradient operator for func-
tionals which are no longer convex, but are locally Lipschitz.

Definition 2.1. Let J : U → R be a locally Lipschitz function. The generalized (Clarke)
directional derivative of J at x ∈ U in the direction v ∈ U is defined by

J0(x; v) := lim sup
λ→0+, ξ→x

J(ξ + λv)− J(ξ)

λ
.

The generalized gradient of J : U → R at x ∈ U is the subset of U∗ given by

∂J(x) := {ξ ∈ U∗ : J0(x; v) ≥ 〈ξ, v〉, ∀v ∈ U}.
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The statement below collects some basic properties.

Lemma 2.2. ([8, Proposition 2.1.2]) If J : U → R is a locally Lipschitz function, then
there hold:

(i) for all x, v ∈ U , one has J0(x; v) = max{〈ξ, v〉 : ξ ∈ ∂J(x)};

(ii) for every x ∈ U , ∂J(x) is a nonempty, convex, weak∗-compact subset of U∗ and
‖ξ‖U∗ ≤ K for any ξ ∈ ∂J(x), where K > 0 is the Lipschitz constant of J near x.

(iii) For every x ∈ U , the function U 3 v 7→ J0(x; v) ∈ R is positively homogeneous and
subadditive, i.e., J0(x;λv) = λJ0(x; v) for all λ ≥ 0, v ∈ U and J0(x; v1 + v2) ≤
J0(x; v1) + J0(x; v2) for all v1, v2 ∈ U , respectively.

In the sequel, we proceed with the definition of some classes of operators.

Definition 2.3. [29, Definition 9] An operator G : U → U∗ is said to be:

(a) monotone, if for all u, v ∈ U , we have 〈G(u)−G(v), u− v〉 ≥ 0;

(b) bounded, if G maps bounded sets of U into bounded sets of U∗;

(c) pseudomonotone, if it is bounded and un → u weakly in U with

lim sup〈G(un), un − u〉 ≤ 0

imply lim inf〈G(un), un − v〉 ≥ 〈G(u), u− v〉 for all v ∈ U .

Next, by P(E) [Pcl(E), Pb(E), Pcv(E), P(w)cp(E)], we denote the collections of all
nonempty [respectively, nonempty closed, nonempty bounded, nonempty convex, nonemp-
ty (weakly) compact] subsets of the Banach space E. Now, we list the following definition.

Definition 2.4. [24, Definition 2.5] A multimap F : E → P(U) is said to be:

(i) upper semicontinuous (u.s.c., for short), if for every open subset O ⊂ U the set

F+1 = {x ∈ E : F (x) ⊂ O}

is open in E;

(ii) closed if its graph
{(x, y) : x ∈ E, y ∈ F (x)}

is a closed subset of E × U ;

(iii) compact, if its range F (E) is relatively compact in U , i.e. F (E) is compact in U ;

(iv) quasicompact, if its restriction to any compact subset K ⊂ E is compact.

Moreover in the sequel, we will use the following results.

Definition 2.5. [12, Definition 1.1.5]. Let E, U be two Banach spaces. A multimap
F : E → P(U) is said to be locally weakly compact, if for any x ⊂ E, there exists a δ > 0
such that the set

⋃
z∈BE(x,δ)

F (z) (where BE(x, r) denotes the open ball of center x ∈ E and

radius r > 0 ) is relatively compact with respect to the weak topology w.
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Proposition 2.6. [6, Proposition 4]. Let F : E → P(U) be a strongly-weakly closed
graph (i.e., if xn → x in E and fn → f weakly in U with fn ∈ F (xn), then f ∈ F (x))
locally weakly compact multimap. Then F is u.s.c. from E to Uw (the symbol Uw stands
for Y equipped with the weak topology).

We now briefly focus on a few facts about the measure of noncompactness (cf. [5, 12]).

Definition 2.7. Let E be a Banach space. A map β : Pb(E) → R+ is called a measure
of noncompactness (MNC, for short) in E if β(coΩ) = β(Ω) for every Ω ∈ Pb(E).

In particular, a MNC β is called:

(i) monotone, if Ω1, Ω2 ∈ Pb(E), Ω1 ⊆ Ω2 implies β(Ω1) ≤ β(Ω2);

(ii) nonsingular, if β({a} ∪ Ω) = β(Ω) for every a ∈ E, Ω ∈ Pb(E);

(iii) invariant with respect to flection through the origin, if β(−Ω) = β(Ω) for every
Ω ∈ Pb(E);

(iv) algebraically semiadditive, if β(Ω1 +Ω2) ≤ β(Ω1)+β(Ω2) for every Ω1, Ω2 ∈ Pb(E);

(v) regular, if β(Ω) = 0 is equivalent to the relative compactness of Ω.

An important example of the MNC possessing all of above properties is the Hausdorff
MNCχ which can be defined by:

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net},

for all Ω ∈ Pb(E).
For I = [0, b] with b > 0, it is known that the Hausdorff MNC on the space C(I;Rn)

is given by

χb(Ω) =
1

2
lim
δ→0

sup
x∈Ω

max
t1,t2∈I,|t1−t2|≤δ

‖x(t1)− x(t2)‖Rn .

The last measure can be seen as the modulus of equicontinuity of a subset in the space
C(I;Rn). However, on the space C(I;E) with E being of infinite dimension, there is no
such formulation as above. In fact, if Ω ⊂ C(I;E) is an equicontinuous set, then

χb(Ω) = sup
t∈I

e−Ltχ(Ω(t)),

where χ is the Hausdorff MNC in E.
Now, consider the space BC(R+;E) of bounded continuous functions on R+ taking

values on E. Denote by πb the restriction operator on this space, i.e., πb(x) is the restric-
tion of x to [0, b]. Then

χ∞(Ω) = sup
b>0

χb(πb(Ω)), Ω ⊂ BC(R+;E),

is a MNC. We give some measures of noncompactness as follows

db(Ω) = sup
u∈Ω

sup
t≥b
‖u(t)‖,

d∞(Ω) = lim
b→∞

db(Ω),
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χ∗(Ω) = χ∞(Ω) + d∞(Ω).

The proof for the regularity of MNC χ∗ is similar to that of [11, Lemma 2.1].
In the sequel, we would like to employ a relation between the so-called k-condensing

and k-Lipschitz properties of a nonlinear map. Let Ẽ be another Banach space and χ̃ the
Hausdorff MNC on Ẽ. A mapping G : E → Ẽ is said to be condensing with respect to a
constant k (k-condensing) if

χ̃(G(Ω)) ≤ kχ(Ω), ∀ Ω ∈ P(E).

It is well known from [2] that if G is a Lipschitz map with a constant k (k-Lipschitz), i.e.,

‖G(x)−G(y)‖Ẽ ≤ k‖x− y‖E, ∀ x, y ∈ E,

then G is k-condensing.
Then the following property is evident.

Lemma 2.8. Let χ be the Hausdorff MNC on a Banach space E, Ω ∈ Pb(E). Then there
exists a sequence {xn}∞n=1 ⊂ Ω such that

χ(Ω) ≤ 2χ({xn}∞n=1) + ε, ∀ε > 0.

Let χ : Pb(E)→ R+ be a MNC in E. The next definition is necessary.

Definition 2.9. ([12, Definition 2.2.6]). A multimap F : E → Pcp(E) is called χ-
condensing if for every Ω ⊆ E that is not relatively compact we have χ(F(Ω)) 6≥ χ(Ω).

In the sequel, we briefly focus on the following notion. A multimap F : I → P(E) is
called p-time integrably bounded, if there exists a function δ ∈ Lp(I;R+) such that

‖Φ(t)‖E := sup{‖φ(t)‖E : φ(t) ∈ Φ(t)} ≤ δ(t), for a.e. t ∈ I.

We will also use the following definition in this paper.

Definition 2.10. [24, Definition 2.12] The sequence {fn}∞n=1 ⊂ Lp(I;E) is said to be
p-time semicompact if it is p-time integrably bounded and the set {fn(t)}∞n=1 is relatively
compact in E for a.e. t ∈ I.

The key tool to get our main results is the following fixed point theorem.

Theorem 2.11. ([12, Corollary 3.3.1]). If Ω is a bounded convex closed subset of E, and
F : Ω → Pcv,cp(Ω) is an u.s.c. χ-condensing multimap, where χ is a nonsingular MNC
defined on subsets of Ω, then FixF := {x ∈ Ω : x ∈ F(x)} 6= ∅.

3 Existence of mild solutions

In this section, we consider the existence of mild solutions for the FDHVI on a bounded
interval I = [0, b] with b > 0. Before stating and proving the main results of this section,
we consider the following hypotheses.
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H(A)1 The operator A is the infinitesimal generator of a uniformly bounded C0-semigroup
T (t) (t ≥ 0) (i.e., sup

t∈[0,+∞)

‖T (t)‖ ≤M) on Banach space E.

H(B) B : I × E → L(U,E) is such that

(1) B(·, x) : I → L(U,E) is continuous for all x ∈ E;

(2) there is a constant LB > 0 such that

‖B(t, x)−B(t, y)‖L(U,E) ≤ LB‖x− y‖E, for a.e. t ∈ I, all x, y ∈ E;

(3) there exists a constant d > 0 such that

‖B(t, 0)‖L(U,E) ≤ d, for all t ∈ I.

H(F ) F : I × E → Pcv,cp(E) is such that

(1) for all x ∈ E, t→ F (t, x) is measurable;

(2) for a.e. t ∈ I, F (t, ·) has a strongly-weakly closed graph;

(3) there are a function a ∈ Lp(I;R+)(p > 1
α

) and a constant c > 0 such that

‖F (t, x)‖ := sup{‖f‖E : f ∈ F (t, x)} ≤ a(t) + c‖x‖E,

for a.e. t ∈ I, all x ∈ E;

(4) for every bounded subset Ω ⊂ E, there is a constant MF > 0 such that

χ(F (t,Ω)) ≤MFχ(Ω), for a.e. t ∈ I,

where χ stands for the Hausdorff MNC in the space E.

H(K) K is a closed convex subset of U such that 0U ∈ K.

H(G) G : U → U∗ is such that

(1) it is pseudomonotone;

(2) there exists a constant αG > 0, β, γ ∈ R and u0 ∈ K such that

〈G(v), v − u0〉 ≥ αG‖v‖2
U − β‖v‖U − γ, for all v ∈ U ;

(3) strongly monotone, i.e., there exists mG > 0 such that

〈G(v1)−G(v2), v1 − v2〉 ≥ mG‖v1 − v2‖2
U , for all v1, v2 ∈ U.

H(ϕ) : The functional ϕ : U × U → R is such that

(1) ϕ(η, ·) : U → R is convex and lower semicontinuous for all η ∈ U ;

(2) ϕ(u, λv) = λϕ(u, v), ∀ u, v ∈ U, λ > 0;

(3) ϕ(v, v) ≥ 0, ∀ v ∈ U ;

(4) there exists αϕ > 0 such that

ϕ(η1, v2)− ϕ(η1, v1) + ϕ(η2, v1)− ϕ(η2, v2) ≤ αϕ‖η1 − η2‖U‖v1 − v2‖U ,

for all η1, η2, v1, v2 ∈ U.
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H(J) : The locally Lipschitz functional J : U → R is such that

(1) there exists κ0, κ1 ≥ 0 such that

‖∂J(v)‖U∗ ≤ κ0 + κ1‖v‖U for all v ∈ U ;

(2) there exists αJ > 0 such that

J0(v1; v2 − v1) + J0(v2; v1 − v2) ≤ αJ‖v1 − v2‖2
U , for all v1, v2 ∈ U.

H(g) g : I × E → U∗ is such that

(1) g(·, x) : I → U∗ is continuous for all x ∈ E;

(2) there is a constant Lg > 0 such that

‖g(t, x)− g(t, y)‖U∗ ≤ Lg‖x− y‖E, for a.e. t ∈ I, all x, y ∈ E;

(3) there exists a constant ` > 0 such that

‖g(t, x)‖ ≤ `, for a.e. t ∈ I, all x ∈ E.

Now, we are first concerned with the following HVI. Throughout this paper, we denote

Q(z) = {u ∈ K : 〈G(u), v − u〉+ ϕ(u, v)− ϕ(u, u) + J0(u; v − u) ≥ 〈z, v − u〉, ∀ v ∈ K}.

The following result is due to the properties of the subdifferential, the surjectivity
result for pseudomonotone operators and the Banach fixed point theorem, whose proof
can be found in [29, Theorem 18].

Lemma 3.1. Let H(K), H(G), H(ϕ)(1), (4) and H(J) be satisfied. Then, for each
z ∈ U∗, the solution set Q(z) is a singleton provided that

αϕ + αJ < mG, αJ < αG. (3.1)

In the sequel, for a fixed x ∈ E, consider the original form of (1.4).

〈g(t, x) +G(u), v − u〉+ ϕ(u, v)− ϕ(u, u) + J0(u; v − u) ≥ 0, ∀ v ∈ K, (3.2)

which can be denoted by the following from the definition of Q:

Q(−g(t, x)) = {u ∈ K : 〈G(u), v − u〉+ ϕ(u, v)− ϕ(u, u)

+ J0(u; v − u) ≥ 〈−g(t, x), v − u〉, ∀ v ∈ K}.

We now proceed with the following result.

Lemma 3.2. Let H(K), H(G), H(J), H(ϕ)(1), (4), H(g) and (3.1) be satisfied. Then,
for each x ∈ E, there exists a unique solution u ∈ U of HVI (3.2). Moreover, the solution
set Q is Lipschitzian, i.e.,

‖Q(−g(t, x))−Q(−g(t, y))‖U ≤
Lg

mB − αϕ − αJ
‖x− y‖E ∀ t ∈ I.

In addition, if H(ϕ)(2), (3) are also satisfied, then the solution of HVI (3.2) satisfies the
bound

‖u‖U ≤
1

mG − αJ
(‖G(0U)‖U∗ + `+ κ0) := ρ.
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Proof. From Lemma 3.1, it is easy to show that HVI (3.2) has a unique fixed point for
each given x ∈ E.

Now, let us show that the set Q is Lipschitzian. It is clear from (3.2) that

〈g(t, x) +G(u1), v − u1〉+ ϕ(u1, v)− ϕ(u1, u1) + J0(u1, v − u1) ≥ 0, ∀ v ∈ K, (3.3)

〈g(t, y) +G(u2), v − u2〉+ ϕ(u2, v)− ϕ(u2, u2) + J0(u2, v − u2) ≥ 0, ∀ v ∈ K. (3.4)

We now take v = u2 in (3.3) and v = u1 in (3.4), then adding the resulting inequalities
yield that

〈G(u1)−G(u2), u1 − u2〉
≤ ϕ(u1, u2)− ϕ(u1, u1) + ϕ(u2, u1)− ϕ(u2, u2)

+J0(u1;u2 − u1) + J0(u2;u1 − u2)

+〈g(t, y)− g(t, x), u1 − u2〉.

From the above equality and using assumptions H(G)(3), H(ϕ)(4), H(J)(2) and H(g),
we can obtain that

(mG − αϕ − αJ) ‖u1 − u2‖U ≤ Lg ‖x− y‖E,

which implies that Q is Lipschitzian.
Next, we check that the solution mapping satisfies the bound

‖u‖U ≤
1

mG − αJ
(‖G(0U)‖U∗ + `+ κ0).

To this end, take v = 0U ∈ K in (3.2), then we use assumptions H(ϕ)(1), (2) to obtain

〈G(u), u〉 ≤ J0(u;−u)− 〈g(t, x), u〉.

We now write G(u) = G(u)−G(0U)+G(0U) and use the condition H(G)(3) of the operator
G and hypothesis H(g) to see that

mG‖u‖2
U ≤ (‖G(0U)‖U∗ + `)‖u‖U + J0(u;−u). (3.5)

On the other hand, taking v1 = u and v2 = 0U in H(J)(2) we find that

J0(u;−u) ≤ αJ‖u‖2
U − J0(0U ;u). (3.6)

Moreover, using Lemma 2.1(iii) we have

−J0(0U ;u) ≤ |J0(0U ;u)| ≤ | max
ξ∈∂J(0U )

〈ξ, u〉| ≤ max
ξ∈∂J(0U )

|〈ξ, u〉| ≤ max
ξ∈∂J(0U )

‖ξ‖U∗‖u‖U .

and, using condition H(J)(2) with v = 0U yields

−J0(0U ;u) ≤ κ0‖u‖U . (3.7)

We now combine inequalities (3.6) and (3.7) to see that

J0(u;−u) ≤ αJ‖u‖2
U + κ0‖u‖U .

then we use this inequality in (3.5) to deduce that

(mG − αJ)‖u‖U ≤ ‖G(0U)‖U∗ + `+ κ0. (3.8)

Inequality (3.8) is now a direct consequence of the smallness assumption the Lemma. The
proof is complete.
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To solve FDHVI (1.1)–(1.3), we convert it to a differential inclusion. To this end, we
define V : I × E → P(E) as follows:

V (t, x) := {B(t, x)u+ F (t, x) : u ∈ Q(−g(t, x))}.

It is easy to see that V has convex and compact values. And from Proposition 2.6, V
is weakly u.s.c. Moreover, by H(B)(2), (3), H(F )(3) and Lemma 3.2, we have

‖V (t, x)‖E := sup{‖v‖E : v ∈ V (t, x)}
≤ ‖B(t, x)‖‖u‖U + a(t) + b‖x‖E
≤ (‖B(t, x)−B(t, 0)‖+ ‖B(t, 0)‖)‖u‖U + a(t) + c‖x‖E
≤ dρ+ a(t) + (LBρ+ c)‖x‖E. (3.9)

It follows from H(B)(2), (3) and Lemma 3.2 that

‖B(t, x)Q(−g(t, x))−B(t, y)Q(−g(t, y))‖ ≤
(
LBρ+

dLg
mG − αϕ − αJ

)
‖x− y‖.

Then, we have

χ(V (t,Ω)) := χ(B(t,Ω)Q(−g(t,Ω)) + F (t,Ω))

≤
(
LBρ+

dLg
mG − αϕ − αJ

)
χ(Ω) +MFχ(Ω) := $χ(Ω). (3.10)

By the aforementioned setting, the problem (1.1)–(1.3) is converted to{
CDα

t (t) ∈ Ax(t) + V (t, x(t)), a.e. t ∈ I,
x(0) = x0 ∈ E.

(3.11)

We define

N p
V : C(I;E)→ P(Lp(I;E)) (p >

1

α
),

N p
V (x) = {v ∈ Lp(I;E) : v(t) ∈ V (t, x(t)) a.e. t ∈ I}. (3.12)

To obtain our main results, we list the following proposition from [24, Lemma 3.5].

Proposition 3.3. Suppose that S : Lp(I;E) → C(I;E) be an operator satisfying the
following conditions:

(S1) there exists D ≥ 0 such that

‖Sf − Sg‖C(I;E) ≤ D‖f − g‖Lp(I;E), for every f, g ∈ Lp(I;E);

(S2) for any compact K ⊂ E and sequence {fn} ⊂ Lp(I;E) such that {fn(t)} ⊂ K for
a.e. t ∈ I, the weak convergence fn ⇀ f0 implies the strong convergence Sfn → Sf0.

Then for every p-time semicompact sequence {fn} ⊂ Lp(I;E), the sequence {Sfn} is
relatively compact in C(I;E), and moreover, if fn ⇀ f0, then Sfn → Sf0.
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Now, we define the operator S : Lp(I;E)→ C(I;E) as

(Sv)(t) =

∫ t

0

(t− s)α−1Tα(t− s)v(s)ds, v ∈ Lp(I;E). (3.13)

Borrowing some ideas from [24], we can establish the following assertion.

Lemma 3.4. Under the condition H(A)1, the operator S defined above satisfies the prop-
erties (S1) and (S2). Moreover, if the assumptions H(B) and H(F ) are also satisfied,
then the composition

S ◦ N p
V : Lp(I;E)→ C(I;E)

is a closed multivalued operator with compact convex values and is u.s.c.

Proof. It follows from [38, Lemma 3.2] that

‖(Sf)(t)− (Sg)(t)‖E ≤
∫ t

0

(t− s)α−1‖Tα(t− s)‖‖f(s)− g(s)‖ds

≤ M

Γ(α)

( p− 1

pα− 1

)1− 1
p bα−

1
p

(∫ t

0

‖f(s)− g(s)‖pds
) 1

p

:= D

(∫ t

0

‖f(s)− g(s)‖pds
) 1

p

, (3.14)

which implies that property (S1) follows.
To check property (S2), we note that for every compact K ⊂ E the set Ξ ⊂ E,

Ξ =

∫ t

0

(t− s)α−1Tα(t− s)Kds, t ∈ I, (3.15)

is relatively compact. Then for every sequence {vn}∞n=1 ⊂ Lp(I;E) such that {vn(s)}∞n=1 ⊆
K for a.e. s ∈ I, we can obtain {(Svn)(t)}∞n=1 ⊂ Ξ, so the sequence {(Sv)(t)}∞n=1 ⊂ E is
relatively compact for every t ∈ I.

By assumption H(A)1 and similar to the proof of [18, Step 2 of Theorem 3.3], we
know that the sequence of functions {Svn}∞n=1 ⊂ C(I;E) is equicontinuous. We can also
easily check that {Svn}∞n=1 is uniformly bounded. Hence, it follows from the well known
Arzela-Ascoli criterion that the sequence of {Svn}∞n=1 is relatively compact.

It is easy to see that condition (S1) implies that S is a bounded linear operator from
the space Lp(I;E) into C(I;E). Therefore it is continuous if these spaces are endowed
with the topology of weak sequential convergence and vn ⇀ v implies Svn → Sv. And
the relative compactness of the sequence {Svn}∞n=1 implies that Svn → Sv is in the norm
of the space C(I;E), so we can conclude that (S2) also holds.

Now, let {xn}∞n=1, {zn}∞n=1 ⊂ C(I;E), xn → x0, zn ∈ S ◦ N p
V (xn) and zn → z0. Take

an arbitrary sequence {vn}∞n=1 ⊂ Lp(I;E) such that vn ∈ N p
V (xn), zn = Svn (n ≥ 1). By

(3.10), we have
χ({vn}∞n=1) ≤ $χ({xn}∞n=1) = 0,

for a.e. t ∈ I, i.e., the set {vn}∞n=1 is relatively compact for a.e. t ∈ I. From (3.9) it
follows that, without loss of generality, there exists v0 ∈ Lp(I;E) such that the sequence
vn ⇀ v0 as n→∞. From the previous proof, we know that zn = Svn → Sv0 = z0. On the
other hand, it follows from [27, Lemma 11] that v0 ∈ N p

V (x0). Therefore z0 ∈ S ◦N p
V (x0),

i.e., the multioperator S ◦ N p
V is closed.
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For a given x ∈ C(I;E), v∗n ∈ N
p
V (x)(n ≥ 1), the same argument as above implies

that the sequence {Sv∗n}∞n=1 ⊂ C(I;E) is relatively compact. Since S ◦ N p
V is closed we

deduce that the set S ◦ N p
V is compact. Furthermore, from the Definition 2.4(iv), the

multioperator S ◦ N p
V is quasicompact. By [12, Theorem 1.1.12], we can deduce that

S ◦ N p
V is u.s.c. Clearly, for any x ∈ C(I;E), S ◦ N p

V (x) is convex by the convexity of
N p
V (x). The proof is complete.

We also need the following important result which can be found in [24, Lemma 3.9].

Lemma 3.5. Let the sequence of functions {vn}∞n=1 ⊂ Lp(I;E) satisfy the following con-
ditions:

‖vn‖E ≤ σ(t),

and
χ({vn(t)}∞n=1) ≤ ς(t),

for all n = 1, 2, · · · , t ∈ I, where σ, ς ∈ Lp(I;R). Then

χ({Svn(t)}∞n=1) ≤ 21+ 1
pD

(∫ t

0

(ς(s))pds

) 1
p

,

for all t ∈ I, where D ≥ 0 is the constant in condition (S1).

In the sequel, we turn to considering the multivalued operator F : C(I;E)→ 2C(I;E):

F(x) =
{
y ∈ C(I;E) : y(t) = Sα(t)x0 +

∫ t

0

(t− s)α−1Tα(t− s)v(s)ds : v ∈ N p
V (x)

}
.

As an immediate consequence of Lemma 3.4, we know that the multivalued operator
F is u.s.c. with compact values. Next, our goal is to check that F is χb−condensing.

Theorem 3.6. If the hypotheses H(A)1, H(B), H(F ), H(K), H(G), H(ϕ), H(J), H(g)
and (3.1) are satisfied, then the multivalued operator F is χb−condensing.

Proof. For Ω ∈ Pb(C(I;E)) being a not relatively compact subset of C(I;E), let us
assume that

χb(Ω) ≤ χb(F(Ω)), (3.16)

In fact, for ∀ t ∈ I, it is easy to see that

F(Ω)(t) ⊂ Sα(t)x0 + S ◦ N p
V (Ω)(t). (3.17)

According to Lemma 2.8, there exists {xn}∞n=1 ⊂ Ω such that for ∀ε > 0, we have

χb(F(Ω)) ≤ 2χb({F(xn)}∞n=1) + ε. (3.18)

In fact, for {xn}∞n=1, there exists vn ∈ N p
V (xn), such that

F(xn)(t) = Sα(t)x0 +

t∫
0

(t− s)α−1Tα(t− s)vn(s)ds, t ∈ I, n ≥ 1.

For s ∈ I, it follows from (3.10) that

χ({vn(s)}∞n=1) ≤ $χ({xn(s)}∞n=1) = $eLs · e−Lsχ({xn(s)}∞n=1)

≤ $eLs · sup
τ∈I

e−Lτχ({xn(τ)}∞n=1) = $eLs · χb({xn}∞n=1).
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where the positive constant L is chosen such that

L >
2p+1Dp$p

p
, (3.19)

here D ≥ 0 is the constant in (3.14) and $ > 0 is defined in (3.10).
It follows from Lemma 3.5 that

χb({Svn}∞n=1) = sup
t∈I

e−Ltχ({(Svn)(t)}∞n=1)

≤ sup
t∈I

e−Lt21+ 1
pD

(∫ t

0

($eLs)pds

) 1
p

χb({xn}∞n=1)

≤ 21+ 1
pD$ sup

t∈I
e−Lt

(
eLpt − 1

Lp

) 1
p

χb({xn}∞n=1)

≤ 21+ 1
pD$

(Lp)
1
p

χb({xn}∞n=1).

From (3.16) and (3.17), we have

χb({xn}∞n=1) ≤ χb(F({xn}∞n=1)) ≤ χb(S ◦ N p
V ({xn}∞n=1)) ≤ 21+ 1

pD$

(Lp)
1
p

χb({xn}∞n=1).

It follows from (3.19) that

χb({xn}∞n=1) = 0, (3.20)

hence,

χb(F({xn}∞n=1)) = 0. (3.21)

From (3.18) and the arbitrariness of ε, we know that

χb(Ω) ≤ χb(F(Ω)) ≤ 2χb({F(xn)}∞n=1) = 0.

This implies that Ω is relatively compact by regularity of χb (see item (v) in Definition
2.7), which comes to the conclusion that F is χb-condensing. The proof is complete.

Now, we are in the position to present our first main result in this section.

Theorem 3.7. If the hypotheses H(A)1, H(B), H(F ), H(K), H(G), H(ϕ), H(J), H(g)
and (3.1) are satisfied, then the problem (3.11) has at least one mild solution on C(I;E).

Proof. It is clear that a solution of the problem (3.11) is a fixed point of the multioperator
F . From Lemma 3.4 and Lemma 3.6, the multioperator F : C(I;E) → Pcv,cp(C(I;E))
is u.s.c. and ν-condensing on every bounded subset of Ω ⊂ E. So according to Theorem
2.11, we only need to check that F maps the bounded set into itself.

To prove this, we introduce the ball BR = {x ∈ C(I;E) : ‖x‖∗C(I;E) ≤ R} in the space

C(I;E), where R > 0 is chosen such that

R >
M‖x0‖E + Mdρbα

Γ(α+1)
+ Mb

α− 1
p

Γ(α)

(
p−1
pα−1

)1− 1
p‖a‖Lp

1− M(LBρ+c)
Γ(α)

(
p−1
pα−1

)1− 1
p bα−

1
p
(

1
Lp

) 1
p

,
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and ‖x‖∗C(I;E) = supt∈I e
−Lt‖x(t)‖E, the positive constant L is chosen so that the inequality

(3.14) be satisfied.
Now we show that the multioperator F maps the ball BR into itself. In fact, for

x ∈ BR and y ∈ F(x), it follows from Lemma 3.2 of [38] that

e−Lt‖y(t)‖E ≤ e−Lt‖Sα(t)x0‖E + e−Lt
∫ t

0

(t− s)α−1‖Tα(t− s)‖‖v(s)‖Eds

≤ M‖x0‖E +
Me−Lt

Γ(α)

(∫ t

0

(t− s)α−1
(
dρ+ a(s) + (LBρ+ c)‖x(s)‖E

)
ds
)

≤ M‖x0‖E +
Mdρbα

Γ(α + 1)
+
Mbα−

1
p

Γ(α)

( p− 1

pα− 1

)1− 1
p‖a‖Lp

+
M(LBρ+ c)e−Lt

Γ(α)

(∫ t

0

(t− s)α−1eLse−Ls‖x(s)‖Eds
)

≤ M‖x0‖E +
Mdρbα

Γ(α + 1)
+
Mbα−

1
p

Γ(α)

( p− 1

pα− 1

)1− 1
p‖a‖Lp

+
M(LBρ+ c)R

Γ(α)

( p− 1

pα− 1

)1− 1
p bα−

1
p
( 1

Lp

) 1
p < R.

which reads as ‖y‖∗C(I;E) ≤ R. At this point, we know that the multivalued map F fulfils
all the requirements of Theorem 2.11. Hence, we can conclude that the operator F has a
fixed point. The proof is complete.

4 Existence of Decay Mild Solutions

The subject of this section is to consider the existence of decay mild solutions of the
FDHVI (1.1)–(1.3) on the space BC(R+;E). For positive number α, γ, R, let

Bα
R(γ) =

{
x ∈ BR : sup

t∈R+

tα‖x(t)‖E ≤ γ
}
,

where BR is the ball in BC(R+;E) centered at the origin with radius R > 0. It is clear
that Bα

R(γ) is closed, bounded and convex in BC(R+;E).
Before stating and proving the main results of this section, we impose

H(A)2 The strongly continuous semigroup T (t) (t ≥ 0) generated by A is exponentially

stable on E (i.e., there are positive numbers w, M such that ‖T (t)‖ ≤Me−wt) with
T (t) compact linear operator for every t > 0.

To provide our main result in this section, we first recall the following useful lemma.

Lemma 4.1. (Theorem 1.1 of [13]) If ϕ ∈ L1(I), g ∈ Lp(I), 1 ≤ p ≤ ∞. Then for almost
every t ∈ I, the function s 7→ ϕ(t − s)g(s) is integrable on I. Moreover, the convolution
ϕ ∗ g, given by

(ϕ ∗ g)(t) =

∫ t

0

ϕ(t− s)g(s)ds,

belongs to Lp(I) and
‖ϕ ∗ g‖Lp(I) ≤ ‖ϕ‖L1(I)‖g‖Lp(I).
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In what follows we recall with the Mittag–Leffer function Eα(z) with α > 0 which is
defined by the following series representation, valid in the whole plane:

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, α > 0, z ∈ C.

The two-parameter Mittag–Leffer function Eα,β(z) with α, β > 0 is defined by the fol-
lowing series representation:

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α, β > 0, z ∈ C.

To obtain our main results of this section, we first give some results for asymptotic
behavior of MittagCLeffler functions based on [34, Theorem 1.1.3] and [34, Theorem 1.1.4]
or [37, Lemma 1.1].

Lemma 4.2. Let α ∈ (0, 2) and β ∈ R be arbitrary. Then for q = [β
α

], the following
asymptotic expansions hold:

(1) Eα,β(z) = 1
α
z

1−β
α exp(z

1
α )−

q∑
k=1

z−k

Γ(β−αk)
+O(z−1−q), as z →∞.

(2) Eα,β(z) = −
q∑

k=1

z−k

Γ(β−αk)
+O(|z|−1−q), as z → −∞.

Remark 4.3. From Lemma 4.2, we know that Eα,β(−wtα) (w > 0) is bounded for any
t > 0. Therefore, there are constants M1, M2, M3 > 0 such that

Eα(−wtα) ≤M1, Eα,α(−wtα) ≤M2, Eα,α+1(−wtα) ≤M3. (4.1)

Moreover, we also have that tαEα,β(−wtα) (w > 0) is bounded for any t > 0, i.e., there

are constants M̃1, M̃2, M̃3 > 0 such that

tαEα(−wtα) ≤ M̃1, tαEα,α(−wtα) ≤ M̃2, tαEα,α+1(−wtα) ≤ M̃3. (4.2)

We now proceed with the following result which is brought from [11, Proposition 2.1].

Proposition 4.4. If the strongly continuous semigroup T (t) (t ≥ 0) generated by A is
exponentially stable, i.e., there are positive numbers w, M such that

‖T (t)‖ ≤Me−wt,

then ‖Sα(t)‖ ≤MEα(−wtα), ‖Tα(t)‖ ≤MEα,α(−wtα) for all t ≥ 0.

For each x ∈ Bα
R(γ), we first have the following lemma.

Lemma 4.5. If the hypotheses H(A)2, H(B), H(F ), H(K), H(G), H(ϕ), H(J), H(g)
and (3.1) are satisfied, the constant d in condition H(B) is equal to zero, the function a(·)
in assumption H(F ) belongs to L∞(R+) with ‖a‖µ := sup

t≥0

a(t)
µ(t)

<∞ and µ satisfies

sup
t≥0

tα
∫ t

0

(t− s)α−1‖Tα(t− s)‖µ(s)ds := Mµ <∞.
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Moreover,
MM̃1(LBρ+ c)Γ(1− α) < 1,

where M̃1 is given in Remark 4.3, ρ is defined in Lemma 3.2, M, LB, c are appeared in
hypotheses H(A)2, H(B) and H(F ), respectively. Then F(Bα

R(γ)) ⊂ (Bα
R(γ)).

Proof. To show that F(Bα
R(γ)) ⊂ (Bα

R(γ)), we suppose that the contrary that for each
n ∈ N, there exists xn ∈ Bα

R(γ), but

sup
t≥0

tα‖F(xn)(t)‖E > n.

It follows from the formulation of F and proposition 4.4, Remark 4.3 that

‖F(xn)(t)‖E

≤ ‖Sα(t)x0‖E +

∫ t

0

(t− s)α−1‖Tα(t− s)‖‖vn(s)‖Eds

≤ MEα(−wtα)‖x0‖E +

t∫
0

(t− s)α−1‖Tα(t− s)‖a(s)ds

+

t∫
0

(t− s)α−1MEα,α(−w(t− s)α)(LBρ+ c)‖xn(s)‖Eds

≤ MEα(−wtα)‖x0‖E + ‖a‖µ

t∫
0

(t− s)α−1‖Tα(t− s)‖µ(s)ds

+M(LBρ+ c)

t∫
0

(t− s)α−1Eα,α(−w(t− s)α)s−αsα‖xn(s)‖Eds

≤ MEα(−wtα)‖x0‖E + ‖a‖µ

t∫
0

(t− s)α−1‖Tα(t− s)‖µ(s)ds

+MM̃3(LBρ+ c)Γ(1− α)Eα(−wtα)n.

Hence, we get

sup
t≥0

tα‖F(xn)(t)‖E ≤ sup
t≥0

[
MtαEα(−wtα)‖x0‖E + ‖a‖µtα

t∫
0

(t− s)α−1‖Tα(t− s)‖µ(s)ds

+M(LBρ+ c)Γ(1− α)tαEα(−wtα)n

]
≤ MM̃1‖x0‖E + ‖a‖µMµ +MM̃1(LBρ+ c)Γ(1− α)n.

It follows from the above inequality that

1 <

sup
t≥0

tα‖F(xn)(t)‖E

n
≤ MM̃1‖x0‖E + ‖a‖µMµ

n
+MM̃1(LBρ+ c)Γ(1− α).

Passing to the limit in the inequality above, we get a contradiction. The proof is complete.
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In view of the Lemma 4.5, from now on we can consider

F : Bα
R(γ)→ P(Bα

R(γ)).

We now are concerned with the condensivity property of F .

Lemma 4.6. Let the hypotheses of Lemma 4.5 hold. Then F is χ∗-condensing.

Proof. Let Ω ⊂ Bα
R(γ) be a bounded set. Recall that χ∗(Ω) = χ∞(Ω) + d∞(Ω). Now we

first show that d∞(Ω) = 0. In fact, since ‖x‖ ≤ R for all x ∈ Ω, by Lemma 4.5, we obtain

tα‖F(x)(t)‖E ≤ γ, ∀t ≥ 0,

which implies
‖F(x)(t)‖E ≤ γt−α, ∀x ∈ Ω, ∀t ≥ 0.

Equivalently, for large b > 0, one has db(F(Ω)) ≤ γb−α . Then

d∞(F(Ω)) = lim
b→∞

db(F(Ω)) = 0.

In the rest of the proof, we will show that χ∞(F(Ω)) = 0. Obviously, for ∀b > 0, it
follows from Lemma 2.8 that, there exists {xn}∞n=1 ⊂ Ω such that for ∀ε > 0, we have

χb(πb(F(Ω))) ≤ 2χb({F(xn)}∞n=1) + ε.

In fact, for {xn}∞n=1, there exists vn ∈ N p
V (xn), such that

F(xn)(t) = Sα(t)x0 +

t∫
0

(t− s)α−1Tα(t− s)vn(s)ds, t ∈ I, n ≥ 1.

By (3.10), Lemma 4.1 and Lemma 3.5, we obtain

χ(F({xn}(t))∞n=1)

≤ 4

t∫
0

χ

[
(t− s)α−1Tα(t− s){vn(s)}∞n=1

]
ds

≤ 4

t∫
0

(t− s)α−1Eα,α(−w(t− s)α)(LBρ+MF )χ({xn(s)}∞n=1)ds

≤ 4(LBρ+MF )

t∫
0

(t− s)α−1Eα,α(−w(t− s)α)eLse−Lsχ({xn(s)}∞n=1)ds

≤ 4(LBρ+MF )

t∫
0

(t− s)α−1Eα,α(−w(t− s)α)eLsds · χb({xn}∞n=1)

≤ 4(LBρ+MF )

t∫
0

(t− s)α−1Eα,α(−w(t− s)α)ds

t∫
0

eLsds · χb({xn}∞n=1)

≤ 4(LBρ+MF )tαEα,α+1(−wtα)
eLt − 1

L
χb({xn}∞n=1)

<
4(LBρ+MF )M̃3e

Lt

L
χb({xn}∞n=1)
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It is inferred that

χb({F({xn}∞n=1)} ≤ 4(LBρ+MF )M̃3

L
χb({xn}∞n=1)

Therefore, we get

χb(πb(F(Ω))) ≤ 4(LBρ+MF )M̃3

L
χb(πb(Ω))

Hence, we know that

χ∞(F(Ω)) = sup
b>0

χb(πb(F(Ω))) ≤ 4(LBρ+MF )M̃3

L
χ∞(Ω)

Now if χ∞(Ω) ≤ χ∞(F(Ω)), then

χ∞(Ω) ≤ 4(LBρ+MF )M̃3

L
χ∞(Ω).

This implies that χ∞(Ω) = 0 choice by L > 4(LBρ + MF )M̃3. Hence, Ω is relatively
compact. The proof is complete.

Lemma 4.7. Let the hypotheses of Lemma 4.5 hold. Then Γ : Bα
R(γ) → P(Bα

R(γ)) is
u.s.c.

Proof. According to Proposition 2.6, we first show the closeness of F . Let xn ∈ Bα
R(γ), xn →

x∗, ϕn ∈ F(xn) and ϕn → ϕ∗ in Bα
R(γ). We will check that ϕ∗ ∈ F(x∗), i.e.,

ϕ∗(t) = Sα(t)x0 +

∫ t

0

(t− s)α−1Tα(t− s)v∗(s)ds, v∗ ∈ N p
V (x∗), ∀t ∈ R+.

To this end, take an arbitrary sequence {vn}∞n=1 ⊂ Lp(R+;E) such that vn ∈ N p
V (xn), ϕn(t) =

Sα(t)x0 +
∫ t

0
(t− s)α−1Tα(t− s)vn(s)ds (n ≥ 1). By (3.10), we have

χb({vn}∞n=1) ≤ (LBρ+MF )χb({xn}∞n=1) = 0,

for a.e. t ∈ R+, i.e., the set {vn}∞n=1 is relatively compact for a.e. t ∈ R+. Without loss
of generality, there exists v∗ ∈ Lp(R+;E) such that the sequence vn ⇀ v∗ as n → ∞.
On the other hand, it follows from [27, Lemma 11] that v∗ ∈ N p

V (x∗). Therefore ϕ∗(t) =

Sα(t)x0 +
∫ t

0
(t− s)α−1Tα(t− s)v∗(s)ds, i.e., ϕ∗ ∈ F(x∗). So the multioperator F is closed.

For a given x ∈ C(R+;E), vn ∈ N p
V (x)(n ≥ 1), the same argument as above implies

that the sequence {vn}∞n=1 ⊂ C(R+;E) is relatively compact. Since F is closed we deduce
that the set F is compact. Furthermore, from the Definition 2.4(iv), the multioperator
F is quasicompact. By [12, Theorem 1.1.12], we can deduce that F is u.s.c. The proof is
complete.

The following theorem is our main result.

Theorem 4.8. Let the hypotheses of Lemma 4.5 hold, then the problem (1.1)-(1.3) has a
compact set of solutions on R+ satisfying

tα‖x(t)‖E = O(1) as t→∞.

Proof. F is χ∗-condensing due to Lemma 4.6. By Lemma 4.7, F is u.s.c. Employing
Theorem 2.11 again, we get the conclusion.
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5 An application

In this section we introduce and study a mathematical model for which the results of
Section 3 and Section 4 can be applied. The classical formulation of the problem is the
following.

CDα
t x(t, z) = δxzz(t, z)− cx(t, z) +B(t, x(t, z))u(t, z) + f(t, z), (5.1)

for all t ∈ R+, a.e. z ∈ (0, 1), 0 < α < 1,

f(t, z) = µf1(t, z, x(t, z)) + (1− µ)f2(t, z, x(t, z)), µ ∈ [0, 1], (5.2)

uzz(t, z))− g∗(t, z, x(t, z)) ∈ ∂h(z, u(t, z)), for all t ∈ R+, a.e. z ∈ (0, 1), (5.3)

uz(t, 0) = u(t, 0) = 0, − uz(t, 1) ≤ λ, for all t ∈ R+, (5.4)

xz(t, 0) = x(t, 1) = 0, for all t ∈ R+, (5.5)

x(0, z) = x0(z) a.e. z ∈ (0, 1). (5.6)

Here, (5.1) represents the state equation, (5.3) expresses the control equation. In
our problem, x(t, z) is the displacement function, δ > 0 is the diffusion coefficient, the
parameter c is used to regulate the convergence speed, f is an arbitrary external forcing
functions, u(t, z) is the control function.

Next, take E = L2(0, 1) and define the operator A : D(A)(⊂ E)→ E as follows{
[Ax](z) = δx′′(z)− cx(z),
D(A) = {x ∈ H2(0, 1) | x′(0) = 0, x′(1) = 0}.

It is well know from [33] that A satisfies assumption H(A)1 on the space E = L2(0, 1).
Moreover, the semigroup T (t) = etA generated by A is exponential stable, that is,

‖T (t)‖L(L2(0,1)) ≤ e−(c+ δπ2

4
)t for all t ∈ R+. (5.7)

This shows that the assumption H(A)2 holds, too. Moreover, we know from [37, Remark
2.2] that

Eα

(
−
[
c+

δπ2

4

]
tα
)
≤ 1

1 + (c+ δπ2

4
)tα

. (5.8)

We now define the multi-valued function

F : R+ × E → P(E)

F (t, x)(z) = {µf1(t, z, x(z)) + (1− µ)f2(t, z, x(z)), µ ∈ [0, 1]}.

Then (5.1), (5.2) and (5.5) can be reformulated as

CDα
t x(t) ∈ Ax(t) +B(t, x(t))u(t) + F (t, x(t)), t ∈ R+. (5.9)

We suppose, in addition, that f1, f2 are Lipschitz continuous, i.e., there exist nonneg-
ative functions ϑ1, ϑ2 ∈ L2(0, 1) such that

|f1(t, z, x)− f1(t, z, y)| ≤ ϑ1(z)|x− y|, ∀ t ∈ R+, z ∈ (0, 1), x, y ∈ R,
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|f2(t, z, x)− f2(t, z, y)| ≤ ϑ2(z)|x− y|, ∀ t ∈ R+, z ∈ (0, 1), x, y ∈ R,

and f1(t, z, 0) ≡ 0, f2(t, z, 0) ≡ 0. Similar to the work [31], we can check that the
multi-valued function F is fulfilled the hypotheses H(F ).

As far as the functions g∗ and h are concerned, we suppose that

H(g∗) g∗ : R+ × (0, 1)× R→ R is such that

(1) g∗(·, ·, ·) : R+ × (0, 1)× R→ R is continuous for all (t, z, ϑ) ∈ R+ × (0, 1)× R;

(2) there exists Lg∗ > 0 such that

|g∗(t, z, ϑ1)− g∗(t, z, ϑ2)| ≤ Lg∗|ϑ1 − ϑ2| for all t ∈ R+, z ∈ (0, 1), ϑ1, ϑ2 ∈ R;

(3) there exists a constant ` > 0 such that

|g(t, z, ϑ)| ≤ ` for all t ∈ R+, z ∈ (0, 1), ϑ ∈ R.

H(h) The functional h : (0, 1)× R→ R is such that

(1) h(·, ϑ) is measurable on (0, 1) for all ϑ ∈ R and there exists ζ ∈ L2(0, 1) such
that h(·, ζ(·)) ∈ L2(0, 1);

(2) h(z, ·) is locally Lipschitz continuous on R, a.e. z ∈ (0, 1);

(3) there exists κ0, κ1 ≥ 0 such that

|∂h(z, ϑ)| ≤ κ0 + κ1|ϑ| for all ϑ ∈ R, a.e. x ∈ (0, 1);

(4) there exists αh > 0 such that

h0(z, ϑ1;ϑ2 − ϑ1) + h0(z, ϑ2;ϑ1 − ϑ2) ≤ αh|ϑ1 − ϑ2|2,

for all ϑ1, ϑ2 ∈ R, a.e. x ∈ (0, 1).

We now perform an integration by parts on uzz(t, z)−g∗(t, z, x(t, z)) with the condition
uz(t, 0) = u(t, 0) = 0 to obtain

1∫
0

uzz(t, z)(v(t, z)− u(t, z))dz −
1∫

0

g∗(t, z, x(t, z))(v(t, z)− u(t, z))dz

= uz(t, 1)
(
v(t, 1)− u(t, 1)

)
−

1∫
0

uz(t, z)(vz(t, z)− uz(t, z))dz

−
1∫

0

g∗(t, z, x(t, z))(v(t, z)− u(t, z))dz. (5.10)

It follows from (5.3) and Definition 2.1 that

(uzz(t, z)− g∗(t, z, x(t, z)))ϑ ≤ h0(z, u;ϑ), in (0, 1), for all ϑ ∈ R.
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Using this inequality and −uz(t, 1) ≤ κ in (5.10), we obtain the following variational-
hemivariational inequality.

1∫
0

uz(t, z)(vz(t, z)− uz(t, z))dz +

1∫
0

g∗(t, z, x(t, z))(v(t, z)− u(t, z))dz

+ λv(t, 1)+ − λu(t, 1)+ +

1∫
0

h0(t, z, x(t, z); v(t, z)− u(t, z))dz ≥ 0. (5.11)

where v+ = max{0, v}. In the sequel, we take E = U = L2(0, 1). We denote in what
follows x(t) ∈ E, u(t) ∈ U such that x(t)(z) = x(t, z), u(t)(z) = u(t, z). And define the
set K by

K = { v ∈ H1(0, 1) | v′(0) = v(0) = 0 } ⊂ U, (5.12)

which is a closed convex subset of U . Also, we define the operator G : U → U∗ and the
functions g : I × U → U∗, ϕ : U × U → R, J : U → R, by

〈G(u), v〉 = 〈−uzz, v〉 :=

1∫
0

uzvzdz for all u, v ∈ K, (5.13)

〈g(t, x), v〉 =

∫ 1

0

g∗(t, x(z)) v(z) dz, for all t ∈ R+, x ∈ E, v ∈ U. (5.14)

ϕ(u, v) = λv+, for all u, v ∈ U, (5.15)

J(v) =

∫ 1

0

h(v)dz, for all v ∈ U. (5.16)

With this data, the following variational formulation of the problem could be derived:
Find a control u(t) ∈ K such that

〈G(u(t)) + g(t, x(t)), v − u(t)〉+ ϕ(v)− ϕ(u(t)) + J0(u(t); v − u(t)) ≥ 0〉 ∀ v ∈ K,

for all t ∈ R+, which is the equivalence form of (HVI)(1.2).
It follows from Gagliardo–Nirenberg–Sobolev inequality ([9, Theorem 5.6.1]) that

〈G(u), u〉 = ‖u‖H1
0 (0,1) ≥ C‖u‖2

U , so the operators G = −uzz given by (5.3) is fulfilled
the condition H(G) with αG = C. It is easy to see that the function ϕ defined by (5.4)
satisfies condition H(ϕ). Next, using the standard arguments on subdifferential calculus,
the hypothesis H(J) is a consequence of H(h), which holds with αJ = αh, κ0 = κ0 and
κ1 = κ1 In addition, we can also check that the function g defined by (5.6) satisfies the
hypothesis H(g) from the assumption H(g̃).

So, we can apply Theorems 4.8 and obtain the following result concerning the existence
of decay mild solution of the system (5.1)–(5.6).

Theorem 5.1. Suppose that H(g∗) and H(j) hold. Moreover, assume that in addition,
mG > αj and(

LB(`+ κ0)

mG − αj
+ max{‖ϑ1‖E, ‖ϑ2‖E}

)
Γ(1− α) < c+

δπ2

4
(5.17)
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hold. Then problem (5.1)–(5.6) has a mild solution on R+ satisfying tα‖x(t)‖E = O(1)
as t→∞..

Proof. Note that (5.17) guarantees that the inequality of lemma 4.5 holds. Therefore,
Theorem 5.1 is a direct consequence of Theorem 4.8. �
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