References
1. Baykov AA, Malinen AM, Luoto HH, Lahti R. Pyrophosphate-fueled Na+
and H+ transport in prokaryotes. Microbiol Mol Biol Rev.
2013;77(2):267-76. Epub 2013/05/24. doi: 10.1128/mmbr.00003-13. PubMed
PMID: 23699258; PubMed Central PMCID: PMCPMC3668671.
2. Tsai JY, Kellosalo J, Sun YJ, Goldman A. Proton/sodium pumping
pyrophosphatases: the last of the primary ion pumps. Curr Opin Struct
Biol. 2014;27:38-47. Epub 2014/04/29. doi: 10.1016/j.sbi.2014.03.007.
PubMed PMID: 24768824.
3. Baykov AA, Cooperman BS, Goldman A, Lahti R. Cytoplasmic inorganic
pyrophosphatase. Prog Mol Subcell Biol. 1999;23:127-50. Epub 1999/08/17.
PubMed PMID: 10448675.
4. Kajander T, Kellosalo J, Goldman A. Inorganic pyrophosphatases: one
substrate, three mechanisms. FEBS Lett. 2013;587(13):1863-9. Epub
2013/05/21. doi: 10.1016/j.febslet.2013.05.003. PubMed PMID: 23684653.
5. Huang H, Patskovsky Y, Toro R, Farelli JD, Pandya C, Almo SC, et al.
Divergence of structure and function in the haloacid dehalogenase enzyme
superfamily: Bacteroides thetaiotaomicron BT2127 is an inorganic
pyrophosphatase. Biochemistry. 2011;50(41):8937-49. Epub 2011/09/08.
doi: 10.1021/bi201181q. PubMed PMID: 21894910; PubMed Central PMCID:
PMCPMC3342813.
6. Kornberg A. Pyrophosphorylases and phosphorylases in biosynthetic
reactions. Advances in enzymology and related subjects of biochemistry.
1957;18:191-240. PubMed PMID: 13444110.
7. Chen J, Brevet A, Fromant M, Leveque F, Schmitter JM, Blanquet S, et
al. Pyrophosphatase is essential for growth of Escherichia coli. Journal
of bacteriology. 1990;172(10):5686-9. PubMed PMID: 2170325; PubMed
Central PMCID: PMC526883.
8. Serrano-Bueno G, Hernandez A, Lopez-Lluch G, Perez-Castineira JR,
Navas P, Serrano A. Inorganic pyrophosphatase defects lead to cell cycle
arrest and autophagic cell death through NAD+ depletion in fermenting
yeast. J Biol Chem. 2013;288(18):13082-92. Epub 2013/03/13. doi:
10.1074/jbc.M112.439349. PubMed PMID: 23479727; PubMed Central PMCID:
PMCPMC3642350.
9. Islam MK, Miyoshi T, Yamada M, Tsuji N. Pyrophosphatase of the
roundworm Ascaris suum plays an essential role in the worm’s molting and
development. Infection and immunity. 2005;73(4):1995-2004. doi:
10.1128/IAI.73.4.1995-2004.2005. PubMed PMID: 15784540; PubMed Central
PMCID: PMC1087427.
10. Ko KM, Lee W, Yu JR, Ahnn J. PYP-1, inorganic pyrophosphatase, is
required for larval development and intestinal function in C. elegans.
FEBS Lett. 2007;581(28):5445-53. doi: 10.1016/j.febslet.2007.10.047.
PubMed PMID: 17981157.
11. Tezuka Y, Okada M, Tada Y, Yamauchi J, Nishigori H, Sanbe A.
Regulation of neurite growth by inorganic pyrophosphatase 1 via JNK
dephosphorylation. PLoS One. 2013;8(4):e61649. doi:
10.1371/journal.pone.0061649. PubMed PMID: 23626709; PubMed Central
PMCID: PMC3633968.
12. Polewski MD, Johnson KA, Foster M, Millan JL, Terkeltaub R.
Inorganic pyrophosphatase induces type I collagen in osteoblasts. Bone.
2010;46(1):81-90. doi: 10.1016/j.bone.2009.08.055. PubMed PMID:
19733704; PubMed Central PMCID: PMC2818162.
13. Panda H, Pandey RS, Debata PR, Supakar PC. Age-dependent
differential expression and activity of rat liver cytosolic inorganic
pyrophosphatase gene. Biogerontology. 2007;8(5):517-25. doi:
10.1007/s10522-007-9094-6. PubMed PMID: 17415680.
14. Kharbhih WJ, Sharma R. Age-dependent increased expression and
activity of inorganic pyrophosphatase in the liver of male mice and its
further enhancement with short- and long-term dietary restriction.
Biogerontology. 2014;15(1):81-6. doi: 10.1007/s10522-013-9481-0. PubMed
PMID: 24271717.
15. Fairchild TA, Patejunas G. Cloning and expression profile of human
inorganic pyrophosphatase. Biochim Biophys Acta. 1999;1447(2-3):133-6.
PubMed PMID: 10542310.
16. Hamler RL, Zhu K, Buchanan NS, Kreunin P, Kachman MT, Miller FR, et
al. A two-dimensional liquid-phase separation method coupled with mass
spectrometry for proteomic studies of breast cancer and biomarker
identification. Proteomics. 2004;4(3):562-77. Epub 2004/03/05. doi:
10.1002/pmic.200300606. PubMed PMID: 14997480.
17. Chen G, Gharib TG, Huang CC, Thomas DG, Shedden KA, Taylor JM, et
al. Proteomic analysis of lung adenocarcinoma: identification of a
highly expressed set of proteins in tumors. Clinical cancer research :
an official journal of the American Association for Cancer Research.
2002;8(7):2298-305. PubMed PMID: 12114434.
18. Kachman MT, Wang H, Schwartz DR, Cho KR, Lubman DM. A 2-D liquid
separations/mass mapping method for interlysate comparison of ovarian
cancers. Anal Chem. 2002;74(8):1779-91. Epub 2002/05/03. doi:
10.1021/ac011159c. PubMed PMID: 11985308.
19. Megger DA, Bracht T, Kohl M, Ahrens M, Naboulsi W, Weber F, et al.
Proteomic differences between hepatocellular carcinoma and nontumorous
liver tissue investigated by a combined gel-based and label-free
quantitative proteomics study. Mol Cell Proteomics. 2013;12(7):2006-20.
doi: 10.1074/mcp.M113.028027. PubMed PMID: 23462207; PubMed Central
PMCID: PMC3708182.
20. Tomonaga T, Matsushita K, Yamaguchi S, Oh-Ishi M, Kodera Y, Maeda T,
et al. Identification of altered protein expression and
post-translational modifications in primary colorectal cancer by using
agarose two-dimensional gel electrophoresis. Clinical cancer research :
an official journal of the American Association for Cancer Research.
2004;10(6):2007-14. PubMed PMID: 15041719.
21. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex
genome engineering using CRISPR/Cas systems. Science.
2013;339(6121):819-23. Epub 2013/01/05. doi: 10.1126/science.1231143.
PubMed PMID: 23287718; PubMed Central PMCID: PMCPmc3795411.
22. Wang P, Zhou Y, Mei Q, Zhao J, Huang L, Fu Q. PPA1 regulates tumor
malignant potential and clinical outcome of colon adenocarcinoma through
JNK pathways. Oncotarget. 2017;8(35):58611-24. Epub 2017/09/25. doi:
10.18632/oncotarget.17381. PubMed PMID: 28938583; PubMed Central PMCID:
PMCPMC5601679.
23. Li L, Aruna, Luo D, Jin A. Clinical significance and functional
validation of inorganic pyrophosphatase in diffuse large B cell lymphoma
in humans. Cytotechnology. 2018;70(2):641-9. Epub 2017/12/14. doi:
10.1007/s10616-017-0165-5. PubMed PMID: 29234945; PubMed Central PMCID:
PMCPMC5851958.
24. Luo D, Wang G, Shen W, Zhao S, Zhou W, Wan L, et al. Clinical
significance and functional validation of PPA1 in various tumors. Cancer
Med. 2016;5(10):2800-12. Epub 2016/10/30. doi: 10.1002/cam4.894. PubMed
PMID: 27666431; PubMed Central PMCID: PMCPMC5083733.
25. Lexander H, Palmberg C, Auer G, Hellstrom M, Franzen B, Jornvall H,
et al. Proteomic analysis of protein expression in prostate cancer.
Analytical and quantitative cytology and histology / the International
Academy of Cytology [and] American Society of Cytology.
2005;27(5):263-72. PubMed PMID: 16447818.
26. Mishra DR, Chaudhary S, Krishna BM, Mishra SK. Identification of
Critical Elements for Regulation of Inorganic Pyrophosphatase (PPA1) in
MCF7 Breast Cancer Cells. PLoS One. 2015;10(4):e0124864. doi:
10.1371/journal.pone.0124864. PubMed PMID: 25923237; PubMed Central
PMCID: PMC4414593.
27. Jeong SH, Ko GH, Cho YH, Lee YJ, Cho BI, Ha WS, et al.
Pyrophosphatase overexpression is associated with cell migration,
invasion, and poor prognosis in gastric cancer. Tumour biology : the
journal of the International Society for Oncodevelopmental Biology and
Medicine. 2012;33(6):1889-98. doi: 10.1007/s13277-012-0449-5. PubMed
PMID: 22797819.
28. Yang Y, Cai J, Yin J, Wang D, Bai Z, Zhang J, et al. Inorganic
pyrophosphatase (PPA1) is a negative prognostic marker for human gastric
cancer. Int J Clin Exp Pathol. 2015;8(10):12482-90. Epub 2016/01/02.
PubMed PMID: 26722435; PubMed Central PMCID: PMCPMC4680380.
29. Xu D, Miao Y, Gu X, Wang J, Yu G. Pyrophosphatase 1 expression is
associated with future recurrence and overall survival in Chinese
patients with intrahepatic cholangiocarcinoma. Oncol Lett.
2018;15(5):8095-101. Epub 2018/05/10. doi: 10.3892/ol.2018.8278. PubMed
PMID: 29740496; PubMed Central PMCID: PMCPMC5934715.
30. Li H, Xiao N, Li Z, Wang Q. Expression of Inorganic Pyrophosphatase
(PPA1) Correlates with Poor Prognosis of Epithelial Ovarian Cancer. The
Tohoku journal of experimental medicine. 2017;241(2):165-73. doi:
10.1620/tjem.241.165. PubMed PMID: 28202851.
31. Niu H, Zhou W, Xu Y, Yin Z, Shen W, Ye Z, et al. Silencing PPA1
inhibits human epithelial ovarian cancer metastasis by suppressing the
Wnt/beta-catenin signaling pathway. Oncotarget. 2017;8(44):76266-78.
Epub 2017/11/05. doi: 10.18632/oncotarget.19346. PubMed PMID: 29100310;
PubMed Central PMCID: PMCPMC5652704.
32. Bodnar M, Luczak M, Bednarek K, Szylberg L, Marszalek A, Grenman R,
et al. Proteomic profiling identifies the inorganic pyrophosphatase
(PPA1) protein as a potential biomarker of metastasis in laryngeal
squamous cell carcinoma. Amino Acids. 2016;48(6):1469-76. Epub
2016/03/08. doi: 10.1007/s00726-016-2201-8. PubMed PMID: 26948660;
PubMed Central PMCID: PMCPMC4875942.
33. Cerella C, Radogna F, Dicato M, Diederich M. Natural compounds as
regulators of the cancer cell metabolism. Int J Cell Biol.
2013;2013:639401. Epub 2013/06/14. doi: 10.1155/2013/639401. PubMed
PMID: 23762063; PubMed Central PMCID: PMCPMC3670510.
34. Lv W, Banerjee B, Molland KL, Seleem MN, Ghafoor A, Hamed MI, et al.
Synthesis of 3-(3-aryl-pyrrolidin-1-yl)-5-aryl-1,2,4-triazines that have
antibacterial activity and also inhibit inorganic pyrophosphatase.
Bioorg Med Chem. 2014;22(1):406-18. Epub 2013/12/10. doi:
10.1016/j.bmc.2013.11.011. PubMed PMID: 24315189; PubMed Central PMCID:
PMCPMC3914758.
35. Kotsikorou E, Song Y, Chan JM, Faelens S, Tovian Z, Broderick E, et
al. Bisphosphonate inhibition of the exopolyphosphatase activity of the
Trypanosoma brucei soluble vacuolar pyrophosphatase. J Med Chem.
2005;48(19):6128-39. Epub 2005/09/16. doi: 10.1021/jm058220g. PubMed
PMID: 16162013.
36. Pang AH, Garzan A, Larsen MJ, McQuade TJ, Garneau-Tsodikova S,
Tsodikov OV. Discovery of Allosteric and Selective Inhibitors of
Inorganic Pyrophosphatase from Mycobacterium tuberculosis. ACS Chem
Biol. 2016;11(11):3084-92. Epub 2016/09/14. doi:
10.1021/acschembio.6b00510. PubMed PMID: 27622287.
37. Salminen T, Kapyla J, Heikinheimo P, Kankare J, Goldman A, Heinonen
J, et al. Structure and function analysis of Escherichia coli inorganic
pyrophosphatase: is a hydroxide ion the key to catalysis? Biochemistry.
1995;34(3):782-91. Epub 1995/01/24. doi: 10.1021/bi00003a011. PubMed
PMID: 7827037.
38. Samygina VR, Moiseev VM, Rodina EV, Vorobyeva NN, Popov AN, Kurilova
SA, et al. Reversible inhibition of Escherichia coli inorganic
pyrophosphatase by fluoride: trapped catalytic intermediates in
cryo-crystallographic studies. J Mol Biol. 2007;366(4):1305-17. Epub
2007/01/02. doi: 10.1016/j.jmb.2006.11.082. PubMed PMID: 17196979.
39. Samygina VR, Popov AN, Rodina EV, Vorobyeva NN, Lamzin VS, Polyakov
KM, et al. The structures of Escherichia coli inorganic pyrophosphatase
complexed with Ca(2+) or CaPP(i) at atomic resolution and their
mechanistic implications. J Mol Biol. 2001;314(3):633-45. Epub
2002/02/16. doi: 10.1006/jmbi.2001.5149. PubMed PMID: 11846572.
40. Heikinheimo P, Lehtonen J, Baykov A, Lahti R, Cooperman BS, Goldman
A. The structural basis for pyrophosphatase catalysis. Structure.
1996;4(12):1491-508. Epub 1996/12/15. PubMed PMID: 8994974.
41. Oksanen E, Ahonen AK, Tuominen H, Tuominen V, Lahti R, Goldman A, et
al. A complete structural description of the catalytic cycle of yeast
pyrophosphatase. Biochemistry. 2007;46(5):1228-39. Epub 2007/01/31. doi:
10.1021/bi0619977. PubMed PMID: 17260952.
42. Halonen P, Baykov AA, Goldman A, Lahti R, Cooperman BS.
Single-turnover kinetics of Saccharomyces cerevisiae inorganic
pyrophosphatase. Biochemistry. 2002;41(40):12025-31. Epub 2002/10/03.
doi: 10.1021/bi026018z. PubMed PMID: 12356302.
43. Pohjanjoki P, Fabrichniy IP, Kasho VN, Cooperman BS, Goldman A,
Baykov AA, et al. Probing essential water in yeast pyrophosphatase by
directed mutagenesis and fluoride inhibition measurements. J Biol Chem.
2001;276(1):434-41. Epub 2000/10/14. doi: 10.1074/jbc.M007360200. PubMed
PMID: 11031269.
44. Zyryanov AB, Pohjanjoki P, Kasho VN, Shestakov AS, Goldman A, Lahti
R, et al. The electrophilic and leaving group phosphates in the
catalytic mechanism of yeast pyrophosphatase. J Biol Chem.
2001;276(21):17629-34. Epub 2001/03/30. doi: 10.1074/jbc.M100343200.
PubMed PMID: 11279052.
45. Heikinheimo P, Tuominen V, Ahonen AK, Teplyakov A, Cooperman BS,
Baykov AA, et al. Toward a quantum-mechanical description of
metal-assisted phosphoryl transfer in pyrophosphatase. Proc Natl Acad
Sci U S A. 2001;98(6):3121-6. Epub 2001/03/15. doi:
10.1073/pnas.061612498. PubMed PMID: 11248042; PubMed Central PMCID:
PMCPMC30617.
46. Teplyakov A, Obmolova G, Wilson KS, Ishii K, Kaji H, Samejima T, et
al. Crystal structure of inorganic pyrophosphatase from Thermus
thermophilus. Protein Sci. 1994;3(7):1098-107. Epub 1994/07/01. doi:
10.1002/pro.5560030713. PubMed PMID: 7920256; PubMed Central PMCID:
PMCPMC2142889.
47. Liu B, Bartlam M, Gao R, Zhou W, Pang H, Liu Y, et al. Crystal
structure of the hyperthermophilic inorganic pyrophosphatase from the
archaeon Pyrococcus horikoshii. Biophys J. 2004;86(1 Pt 1):420-7. Epub
2003/12/26. doi: 10.1016/s0006-3495(04)74118-1. PubMed PMID: 14695284;
PubMed Central PMCID: PMCPMC1303807.
48. Jamwal A, Yogavel M, Abdin MZ, Jain SK, Sharma A. Structural and
Biochemical Characterization of Apicomplexan Inorganic Pyrophosphatases.
Scientific reports. 2017;7(1):5255. Epub 2017/07/14. doi:
10.1038/s41598-017-05234-y. PubMed PMID: 28701714; PubMed Central PMCID:
PMCPMC5507929.
49. Pratt AC, Dewage SW, Pang AH, Biswas T, Barnard-Britson S, Cisneros
GA, et al. Structural and computational dissection of the catalytic
mechanism of the inorganic pyrophosphatase from Mycobacterium
tuberculosis. J Struct Biol. 2015;192(1):76-87. Epub 2015/08/25. doi:
10.1016/j.jsb.2015.08.010. PubMed PMID: 26296329.
50. Jamwal A, Round AR, Bannwarth L, Venien-Bryan C, Belrhali H, Yogavel
M, et al. Structural and Functional Highlights of Vacuolar Soluble
Protein 1 from Pathogen Trypanosoma brucei brucei. J Biol Chem.
2015;290(51):30498-513. Epub 2015/10/24. doi: 10.1074/jbc.M115.674176.
PubMed PMID: 26494625; PubMed Central PMCID: PMCPMC4683271.
51. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich
C, et al. HaloTag: a novel protein labeling technology for cell imaging
and protein analysis. ACS Chem Biol. 2008;3(6):373-82. Epub 2008/06/07.
doi: 10.1021/cb800025k. PubMed PMID: 18533659.
52. Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG. iMOSFLM:
a new graphical interface for diffraction-image processing with MOSFLM.
Acta Crystallogr D Biol Crystallogr. 2011;67(Pt 4):271-81. Epub
2011/04/05. doi: 10.1107/s0907444910048675. PubMed PMID: 21460445;
PubMed Central PMCID: PMC3069742.
53. Storoni LC, McCoy AJ, Read RJ. Likelihood-enhanced fast rotation
functions. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 3):432-8.
Epub 2004/03/03. doi: 10.1107/s0907444903028956. PubMed PMID: 14993666.
54. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Echols N, Headd JJ, et
al. The Phenix software for automated determination of macromolecular
structures. Methods. 2011;55(1):94-106. Epub 2011/08/09. doi:
10.1016/j.ymeth.2011.07.005. PubMed PMID: 21821126; PubMed Central
PMCID: PMC3193589.
55. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of
Coot. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 4):486-501. Epub
2010/04/13. doi: 10.1107/s0907444910007493. PubMed PMID: 20383002;
PubMed Central PMCID: PMC2852313.
56. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng
EC, et al. UCSF Chimera–a visualization system for exploratory
research and analysis. J Comput Chem. 2004;25(13):1605-12. Epub
2004/07/21. doi: 10.1002/jcc.20084. PubMed PMID: 15264254.
57. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al.
The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic
Acids Res. 2019;47(W1):W636-w41. Epub 2019/04/13. doi:
10.1093/nar/gkz268. PubMed PMID: 30976793; PubMed Central PMCID:
PMCPMC6602479.
58. Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to
generate schematic diagrams of protein-ligand interactions. Protein Eng.
1995;8(2):127-34. Epub 1995/02/01. PubMed PMID: 7630882.
59. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy
of docking with a new scoring function, efficient optimization, and
multithreading. J Comput Chem. 2010;31(2):455-61. Epub 2009/06/06. doi:
10.1002/jcc.21334. PubMed PMID: 19499576; PubMed Central PMCID:
PMCPMC3041641.
60. Canagarajah BJ, Khokhlatchev A, Cobb MH, Goldsmith EJ. Activation
mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell.
1997;90(5):859-69. Epub 1997/09/23. doi: 10.1016/s0092-8674(00)80351-7.
PubMed PMID: 9298898.
61. Tezuka Y, Herai N, Inomata Y, Kagami K, Yamauchi J, Nishigori H, et
al. Upregulation of inorganic pyrophosphatase 1 as a JNK phosphatase in
hypothyroid embryonic chick cerebellum. Life Sci. 2015;128:94-100. Epub
2015/03/10. doi: 10.1016/j.lfs.2015.02.019. PubMed PMID: 25748422.
62. Ip YT, Davis RJ. Signal transduction by the c-Jun N-terminal kinase
(JNK)–from inflammation to development. Current opinion in cell
biology. 1998;10(2):205-19. Epub 1998/04/30. PubMed PMID: 9561845.