5.2 | After treatment: system 2
System(2) with n=2 becomes
\begin{equation} \begin{matrix}\left\{\begin{matrix}\frac{dS_{1}}{\text{dt}}=\left(2a_{1}-1\right)p_{1}S_{1}-\ \ \mu_{1}S_{1}=F_{1}(S)\\ \frac{\text{dT}}{\text{dt}}=\lambda-\left(d+\ \mu_{2}\right)T-kTV+2\left(1-a_{1}\right)p_{1}S_{1}=G_{1}(S,T,T_{i},T_{i})\\ \frac{dT_{i}}{\text{dt}}=kTV-\rho T_{i}=G_{2}(S,T,T_{i},T_{i})\\ \frac{\text{dV}}{\text{dt}}=\sigma T_{i}-cV=G_{3}(S,T,T_{i},T_{i})\\ \end{matrix}\right.&\ \ \ (2)\\ \end{matrix}\nonumber \\ \end{equation}
TABLE 3 Estimates of parameters values for the stem cell division model