ORCID
a http://orcid.org/0000-0002-2873-698X
b http://orcid.org /0000-0002-0860-6555
REFERENCES
  1. Montagnier L Historical essay. A history of HIV discovery. Science. 2002; 298 :1727-1728.
  2. Kirschner D.Using mathematics to understand HIV immune dynamics AMS Notices. 1996; 43 (2): 191-202.
  3. Nowak M, Bangham Ch. Population dynamics of immune responses to persistent viruses. Science. 1996;272 :74-79.
  4. Nowak M, May R. Virus dynamics: Mathematical principals of immunology and virology, Oxford university press, New York, USA . 2001.
  5. Perelson A S. Modelling viral and immune system dynamics. Nature reviews immunology. 2002; 2: 28-36 http://dx.doi.org/10.1038/nri700 .
  6. Perelson A S, Kirschner D, DeBoer R. Dynamics of HIV infection of CD+T cells. Mathematical Biosciences. 1993; 114: 81-125.
  7. Nguyen P K, Nag D, Wu J C. Methods to assess stem cell lineage, fate and function, Advanced Drug Delivery Reviews. 2010; vol. 62, no. 12: 1175–1186.
  8. Alqudah. M. A, Kallel S, Zarea S. Stability of a modifed mathematical model of AIDS epidemic can stem cells ofer a new hope of cure for HIV1?” Life Science Journal. 2016; vol. 13, no. 11.
  9. Alqudah M A, Zarea S, Jallouli S K. Mathematical Modeling to Study Multistage Stem Cell Transplantation in HIV-1 Patients, Discrete Dynamics in Nature and Society. 2019; Article ID 6379142, 8 pages.
  10. Cowan R, Morris V B. Determination of proliferative parameters from growth curves, Cell Proliferation. 1987; vol. 20, no. 2: 153–159.
  11. Jandl J H. Blood. Textbook of hematology, 2ndedition, Little, Brown and company, USA. 1996; ISBN 0-316-45731-0.
  12. Johnston M D, Edwards C M, Bodmer W F., Maini Ph K, Jonathan S Ch. Examples of mathematical modeling, Cell Cycle. 2007; Vol. 6, Issue 17:2106-2112, 1 September.
  13. Loefer M, Wichmann H E.A comprehensive mathematical model of stem cell proliferation which reproduces most of the published experimental results, Cell Proliferation. 1980; vol. 13, no. 5: 543–561.
  14. Czochra A M, Stiehl T, Ho A D, Jager v, Wagner W. Modeling of asymmetric cell division in hematopoietic stem cells—regulation of self-renewal is essential for efficient repopulation, Stem Cells and Development. 2009; vol. 18(3):377–386. doi: 10.1089/scd.2008.0143 .
  15. Stiehl T, Czochra A. M. Characterization of stem cells using mathematical models of multistage cell lineages,” Mathematical and Computer Modelling. 2011; vol. 53, no. 7-8, pp. 1505–1517.
  16. Pazdziorek P R. Mathematical model of stem cell differentiation and tissue regeneration with stochastic noise, Bulletin of Mathematical Biology.2014; vol. 76, no. 7:1642–1669.
  17. Seibert P.On stability relative to a set and to the whole space, Proc. 5th internat. Conf. on Nonlin. Oscillations;Kiev Vol. II, Izdat. Inst. Mat. Akad. NauK, USSR. .1970 ;448-457.
  18. Seibert P, Suarez R. Global stabilization of a certain class of nonlinear systems, Matematicas Ecuaciones Diferenciales y Geometria. 1989.
  19. Farina L, Rinaldi S. Positive linear systems, theory and applications. John Wiley and Sons, 2000; DOI:10.1002/9781118033029.
  20. Luenberger D G. Introduction to Dynamic Systems. Theory, Models and Applications. John Wiley and Sons, New York. 1979.
  21. Alizon S, Magnus C. Modelling the Course of an HIV Infection: Insights from Ecology and Evolution Viruses. 2012;4, 1984-2013; doi:10.3390/v4101984.
  22. Stafford M A, Corey L A, Cao Y B, Darr E S, Hob D D. Modeling Plasma Virus Concentration during Primary HIV Infection J. theor. Biol. 2000;203, 285}301.
  23. Dhar M, Samaddar S, Bhattacharya P, Upadhyay R K. Viral dynamic model with cellular immune response: A case study of HIV-1 infected humanized mice. 2019; .524:1-4.
  24. Buonomo B, Vargas, Leon De. Global stability for an HIV-1 infection model including an eclipse stage of infected cells. J Math. Anal. Appl. 2012; 385:709–720.
  25. Gentry. S. Mathematical modelling of mutation acquisition in hierarchical tissues: Quantification of the cancer stem cell hypothesis. PhD thesis. 2008.