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Summary

In this work, the Lie symmetry theory is used to study the propagation of waves in an
elastic string with electric currents in a static magnetic field. Both linear and nonlin-
ear cases of the governing equations of string motion are analyzed. The classification
problem of finding the principal admitted Lie groups of symmetries is solved. Some
invariant analytical solutions are constructed. The physics of invariant solutions is
interpreted when it is possible.
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1 INTRODUCTION

The modern group theory analysis of differential equations is a powerful tool to find analytical solutions for complicated systems
of differential equations that describe natural phenomena. As recent advances in this field, we refer to the works on gas dynam-
ics1, fluid mechanics2,3, epidemiology4, economy sciences5,6, plasticity7, nonlinear equations of Korteweg-de Vries type8,9,
and variable-coefficient Burgers equations10.
The construction of particular solutions of differential equations in partial derivatives (especially nonlinear equations) presents

certain difficulties, and the group theory analysis11,12,13,14 is an efficient method that considers a system of differential equations
F = 0 as a differential manifold in the space of both independent and dependent variables and the derivatives that appear in the
system.
Based on the concept of point symmetry admitted by the system, this method considers a continuous transformation of the

space in question, so that it does not change the surface (manifold) defined by the system, i.e., the points of surface F = 0 are
mapped to points of the same surface. Nowadays, symmetries (groups of continuous transformations) introduced by Sophus
Lie constitute one of the fundamental concepts of the theory of differential equations. Under the action of the symmetry group,
solutions of system F = 0 are transformed into solutions, and some of them turn into themselves. The latter are called invariant
solutions to the action of group G and are sometimes easy to find.
The group theory analysis of differential equations is a semi-inverse method in the sense that the constructed solutions deter-

mine their boundary and initial conditions. To satisfy some specific conditions, one can apply the method of reproduction of
invariant solutions (e.g.,14,15). Acting by the group transformations under known initial solution, one obtains the family of new
solutions, which depends on the group parameter. If this group parameter takes zero value, then we have an initial solution. In
general, a constructed family of solutions satisfies another boundary and initial conditions.
A thin string is a basic and easily accessible system, which is often used in physics lessons to show wave motion and oscil-

lations. A real, in contrast to the ideal, elastic string is a system that causes various nonlinear models including transverse,
longitudinal, and torsional mode coupling when the string stiffness, torsion, or geometric nonlinearity are considered (e.g.,16,17,18
and references therein). The study ofmathematical models of vibrating strings plays an important role inmany aspects of physics,
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engineering and mathematics because it provides fundamental concepts and approaches in all of these fields. Starting from the
linear wave equation, many complicating effects of viscous damping, forced vibrations, and different types of nonlinearities
play important roles in many physical systems, which demand interesting mathematical approaches to solve the corresponding
equations. The purpose of this article is to gain insight into some of these effects by considering a thin current-carrying string
in a static nonuniform magnetic field, the physical system for which these complicating factors must be considered19,20.
The usual method to elaborate the mathematical model of a physical system is to start from the physical principals of the

phenomenon under study and consider some limiting assumptions that permit us to describe the appropriate mathematical
equations. In our case, those are the second-order equations in partial derivatives. When equations are written, they become a
mathematical entity; in other words, they become independent of the physical phenomenon that they pretend to describe. They
can be solved by any suitable method without considering the initial physical constraints. If we want a solution to have a physical
meaning and be interpretable, we must check whether it satisfies the imposed physical constraints. Otherwise, the solution only
has a mathematical significance. In this work, we analyze the solutions from both viewpoints.
The study focuses on the construction of analytical solutions of a system of non-homogeneous second-order partial differential

equations by the Lie groupmethods. The article is organized as follows. Section 1, which is divided in two subsections, introduces
the mathematical model of wave motion of a current-carrying string in a magnetic field and the point symmetries as the method
to construct invariant analytical solutions. Under certain conditions, the nonlinear model is reduced to the linear one. In Section
2, the linear case of the model is studied; we search for the symmetries of the system of partial differential equations and
obtain the corresponding invariant solutions. In Section 3, we look for the symmetries of the nonlinear system of equations and
subsequently construct and analyze the invariant solutions. The conclusions are given in Section 4.

1.1 State of problem
The interaction of a magnetic field with an alternating current in a string results in a driven force of string oscillations21,22. Even
at small-amplitude vibrations, the dynamics of a string carrying an electric current in a magnetic field is described by a system
of nonlinear partial differential equations19. The current-carrying string presents nonlinearities of the two types: geometric
and improper. The geometric nonlinearity caused by the variation of tension, which results from the transverse motion of the
string, is inherent to any string; this phenomenon has been extensively studied by many authors19,21,22,23,24,25,26,27,28,29,30. The
improper nonlinearity is a specific characteristic of the system due to the interaction between the electric current and the external
magnetic field. Under certain conditions, the nonlinearities cause coupling between the transverse modes. In addition, when
string oscillations are excited by the interaction between an alternating electric current and a static magnetic field (Lorentz force),
periodical variations of Joule’s heating occur in the string, which results in parametric resonance20. To understand the effects
of improper nonlinearity in the oscillations of an elastic string with an alternating electric current in a static magnetic field, in
this paper, we study the system of non-homogeneous second-order partial differential equations for three unknown functions
ux(x, t), uy(x, t) and uz(x, t), which depend on the two variables x and t. Group theory methods are used in this study.
To begin, we outline some details of the mathematical model proposed in19. To obtain the equations of wave motion in a string

with electric current I(t) under tension T (x, t) and the action of static magnetic field H⃗ , the following geometry is considered.
In the equilibrium state, the string under tension without action of another force takes the form of a straight line and coincides
with the x axis in the Cartesian coordinate system (x, y, z). At instant t, the shape of the string can be expressed in terms of the
displacement of each point P0 of the string from its equilibrium position. The coordinates of point P0 in the equilibrium state of
the string are (x, 0, 0). At time t, the displacement of point P0 is described by vector u⃗(x, t) ∶= (ux, uy, uz), where components
uy(x, t) and uz(x, t) describe a transverse motion of the string, while component ux(x, t) describes a longitudinal motion; so point
P0 moves to point P1 with coordinates (x+ ux, uy, uz); the latter is the parametric representation of a string configuration at each
instant t.
The transverse and longitudinal small amplitude motions of the string under the action of an external force f⃗ = (f x, f y, f z)

are described by the following system of equations

�(x)ux,tt =
[

(T (x, t) + �(x)) ux,x
]

,x
+ f x(x, t), (1)

�(x)uy,z,tt =
[

T (x, t)uy,z,x
]

,x
+ f y,z(x, t), (2)

where �(x) is the density, �(x) is the modulus of elasticity, and T (x, t) is the longitudinal tension of a string; in general, the
latter can be nonuniform along the string and time-varying when the effects of geometrical or other type of nonlinearities are
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considered. The subindices with a comma denote the derivatives with respect to the corresponding variables. In magnetic field
H⃗ = (Hx,Hy,Hz), a small vector segment d⃗l = (dlx, dly, dlz) of a current-carrying string is subjected to Lorentz force, given
as the vector product,

d⃗f = I(t)
[

d⃗l × H⃗(x, y, z)
]

.

Considering that dlx ≃ dx, dly,z ≃ uy,z,x dx, we obtain the linear density of Lorentz force in components:

f x = I
(

Hzuy,x −H
yuz,x

)

, f y = I
(

Hxuz,x −H
z
)

, f z = I
(

Hy −Hxuy,x
)

.

An infinitesimal vector segment, marked by point P0 in the equilibrium state of the string, was moved to point P1 at time t.
Thus, the value of a magnetic field acting on the segment of the string must be taken at P1. In case of small oscillations of the
string, each component of the magnetic field can be expressed by the Taylor series calculated at point P0:

Hx,y,z
|P1 ≃

(

Hx,y,z + uxHx,y,z
,x + uyHx,y,z

,y + uzHx,y,z
,z

)

|

|

|

|P0
= Hx,y,z

|P0 + u⃗ ⋅ ∇H
x,y,z

|P0 .

Finally, we obtain the components of the Lorentz force as follows

f x = I
(

Hzuy,x −H
yuz,x

)

+ I
[

(

u⃗ ⋅ ∇Hz) uy,x −
(

u⃗ ⋅ ∇Hy) uz,x
]

,

f y = I
(

Hxuz,x −H
z
)

+ I
[

(

u⃗ ⋅ ∇Hx) uz,x − u⃗ ⋅ ∇H
z
]

, (3)

f z = I
(

Hy −Hxuy,x
)

+ I
[

u⃗ ⋅ ∇Hy −
(

u⃗ ⋅ ∇Hx) uy,x
]

.

All functions in equations (3) are calculated on the x axis.
System of equations (1), (2), (3) has seven function-parameters: linear mass density �(x), string tension T (x, t), modulus of

elasticity �(x), electric current I(t) and magnetic field components Hx, Hy and Hz. Under some conditions, the parameters
are simplified. For the homogeneous uniform string, � and � are the given material constants. When the effects of geometrical
nonlinearity and the Joule’s heating have been excluded, string tension T is also a positive constant. To simplify the notations,
we use T1 ∶= (T + �)∕�, T2 ∶= T ∕� ≪ T1; the latter inequality holds for metallic strings.

1.2 Point symmetries
The group of admitted symmetries can be different for various functional forms of function-parameters in the studied system of
differential equations. Such problem is known as the problem of group classification13,31: it is necessary to determine symmetries
of the system of equations for arbitrary parameters and describe the specifications of parameters for which additional point
transformations are admitted.
We are looking for infinitesimal operator X (or generator of a symmetry group), which acts in the space of variables (xi, u�)

X = �i)xi + �
�)u� , i = 1, 2, � = 1, 2, 3, (4)

where we denote )xi ∶=
)
)xi

, )u� ∶=
)
)u�

, x1 ∶= t, x2 ∶= x, u⃗ = (ux, uy, uz) =∶ (u1, u2, u3), and unknown coefficients �i, �� are
functions of x1,2 and u⃗. We adopt the summation convention: the summation is made over an index that occurs twice in a single
term if no other is stated.
One can reconstruct the mono-parametric group G for a given generator X by resolving Lie’s equations:

df i

da
= �i, f i|

|a=0 = xi,

dg�

da
= �� , g�|a=0 = u� , (5)

where a ∈  ⊂ ℝ is a group parameter from interval  ∋ 0, and the group of continuous transformations (with respect to the
composition) has the form

G ∶ x̄i = f i(x1, x2, u⃗; a), ū� = g�(x1, x2, u⃗; a). (6)
The system of equations (1), (2), (3) is of the second order; therefore, one must calculate the coefficients of the prolonged

operator X
2

X
2
= X + ��i )u�,i + �

�
ij)u�,ij , j = 1, 2,
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where u�,i ∶= )u
�∕)xi, u�,ij ∶= )

2u�∕)xi)xj ,

��i = Di(��) − u�,�Di(��), ��ij = Dj(��i ) − u
�
,i�Dj(��), � = 1, 2,

and
Di = )xi + u

�
,i)u� + u

�
,ij)u�,j +…

is the operator of total derivative with respect to variable xi. Let us note that operator X
2

acts in the space of variables
(xi, u� , u�,i, u

�
,ij) and reflects the change of derivatives induced by the change of variables (6).

In the next step, operator X
2
is applied to each equation of system F = 0. Then, one should pass onto the manifold given by

the system: external variables are substituted by internal ones. In our case, variables u�,11 will be taken as external ones. As a
result, the system of differential equations

X
2
(F )

|

|

|

|F=0
= 0 (7)

is obtained. These differential equations can be split with respect to internal derivatives u�,2i, u
�
,1, u

�
,2. Such splitting leads to the

system of so-called determining equations, which is a system of linear homogeneous equations for unknown coefficients �i and
�� . The general solution of determining equations gives the admitted operatorsXk, (k = 1, .., n) which form a basis of Lie algebra
n of dimension n with respect to the operation of commutation [Xk, Xl] = XkXl −XlXk, (l = 1, ..., n). There is sometimes an
infinite-dimensional Lie algebra.
The group of transformations corresponding to generators Xk for all function-parameters is called a kernel of admitted

symmetries. A system of determining equations includes differential relations for function-parameters. For certain forms of
function-parameters, some determining equations disappear or are simplified. Therefore, the solution of determining equations
for �i and �� can be more general than in the case of system with an arbitrary form of function-parameters. Thus, one can deduce
the specific form of function-parameters and obtain additional admitted infinitesimal operators, which extends the kernel of
symmetries. Furthermore, we are looking for specifications of function-parameters for which additional symmetries appear.

2 LINEAR CASE

In this section, we study the simplest case of a homogeneous uniform string motion (�, � and T are positive constants), when
a magnetic field is oriented along the x axis, and the condition |u⃗ ⋅ ∇Hx

| ≪ |Hx
| holds. In this case, the components of the

Lorentz force are
f x = 0, f y = I(t)Hx(x)uz,x, f z = −I(t)Hx(x)uy,x, (8)

and the resultant linear system of equations (1), (2), (3) contains only two non-zero function-parameters: I(t) andHx(x, 0, 0).
The modes uy and uz are generally coupled, but the longitudinal motion is free of them, and the magnetic field does not

affect it. Thus, the solutions for transverse motion must not necessarily be correlated with those of the longitudinal motion; in
other words, solutions for the transverse motion can be attributed to one physical system, while the solution for the longitudinal
motion describes the dynamics of another string (system). In fact, these functions can have different domains of definition and
admissible parameter values, as clearly observed in further analysis of solutions.

2.1 Symmetries
Taking the notationHx(x)∕� =∶ H(x), and substituting equation (8) into (1), (2), (3) we obtain the linear system F = 0 in the
form

u1,11 = T1u
1
,22,

u2,11 = T2u
2
,22 + I(x1)H(x2)u

3
,2, (9)

u3,11 = T2u
3
,22 − I(x1)H(x2)u

2
,2.

We look for the non-constant solution. The solution of determining equations (7) for arbitrary functions I andH has the form:

�1 = c1x1 + k1, �2 = c1x2 + k2,
�1 = n1u

1 + f 1, �2 = n2u2 + n3u3 + f 2, �3 = −n3u2 + n2u3 + f 3,

where functions u� = f �(x1, x2) are an arbitrary solution of system (9), and c1,2, k1,2, n1,2,3 are arbitrary constants.
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The basis of the corresponding Lie algebra of the kernel of symmetries is formed by the following generators:

X1 = u1)u1 , X2 = u2)u2 + u3)u3 , X3 = u3)u2 − u2)u3 , X+ = f 1)u1 + f 2)u2 + f 3)u3 (10)

and it can be represented as a direct sum of three-dimensional Lie algebra ⟨X1, X2, X3⟩ and infinite-dimensional ideal
⟨

X+
⟩

.
The presence of

⟨

X+
⟩

is inherent for all linear equations, which implies the superposition principle for solutions. Operator
X1 corresponds to scale transformation ū1 = u1ea; operator X2 gives scales ū2 = u2ea, ū3 = u3ea; X3 produces rotation
transformation in plane u2u3. Let us note that the finite part of algebra is abelian one, i.e., all commutators are equal to zero.
Moreover, there are three discrete symmetries of system (9):

W1 ∶ ū1 = −u1; W2 ∶ ū2 = −u3, ū3 = u2; W3 ∶ ū2 = u3, ū3 = −u2.

Extensions of the kernel and the form of function-parameters are listed below.

1. Potential functions I = m1(x1 + r1)m−1, H = m2(x2 + r2)−m:

Yp = (x1 + r1))x1 + (x2 + r2))x2 , m ≠ 0, 1,
Yp = x1)x1 + (x2 + r2))x2 , Ỹp = )x1 , m = 1, (11)
Yp = (x1 + r1))x1 + x2)x2 , Ỹp = )x2 , m = 0;

2. Exponential functions I = a1 exp
(

mx1
m1

)

, H = a2 exp
(

−mx2
m2

)

, m ≠ 0:

Ye = m1)x1 + m2)x2 ; (12)

3. Constant functions I = a1, H = a2:
Z1 = )x1 , Z2 = )x2 , (13)

Z3 = −
(

u2 cos lx2 + u3 sin lx2
)

)u2 −
(

u2 sin lx2 − u3 cos lx2
)

)u3 ,
Z4 =

(

−u2 sin lx2 + u3 cos lx2
)

)u2 +
(

u2 cos lx2 + u3 sin lx2
)

)u3 , (14)

where m1,2, a1,2 ≠ 0, r1,2, m ∈ ℝ and l = a1a2∕T2 are fixed constants.
When function-parameters are considered new independent variables, it is possible to determine the equivalence transforma-

tions31; we take operator (4) in the form
X = �i)xi + �

�)u� + �I)I + �H)H .
Using those transformations, which act on function-parameters �: I → Ĩ ,  : H → H̃ , we can simplify the form of these
functions. In the considered case, we have the following transformations:

� ∶ Ĩ = 1
a1a4

I
(

a1(x1 + a2)
)

,

 ∶ H̃ = a4H
(

a1(x2 + a3)
)

, ai = const, a1,4 ≠ 0.

Thus, ĨH̃ = I
(

a1(x1 + a2)
)

H
(

a1(x2 + a3)
)

∕a1, and one can set, for example, r1,2 = 0 in the potential form of I and H .
However, for the physical interpretation of solutions it is useful to consider a complete form of function-parameters.

2.2 Invariant solutions
LetG be a Lie group of transformations, which is admitted by a system of differential equationsF = 0, and G̃ ⊂ G be a subgroup.
A solution Φ(x1, x2, u⃗) = 0 is called a G̃-invariant solution12,13,31 if the manifold given by Φ = 0 is an invariant manifold with
respect to any transformation of group G̃. If a one-parameter group G̃ is generated by operator X, then the invariant solution
Φ = 0 must satisfy the additional differential equation (differential constraint) X(Φ)|Φ=0 = 0.
The algorithm of construction of invariant solutions is well known and requires the set of classes of non-similar subalgebras of

Lie algebras of symmetries with respect to the group of inner automorphisms. Since algebra (10) does not contain generators
with derivatives )xi , all information about invariant solution lies in additional generators, so we only consider subalgebras
that contain operators Y or Z. Moreover, we will analyze only one-dimensional subalgebras, which produce the form of a G̃-
invariant solution with one independent variable as the most general case. In addition, we limit ourselves to one representative
of non-similar subalgebras for each specific case.
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2.2.1 Potential functions
Let us consider the case of potential functions I = m1(x1 + r1)m−1, H = m2(x2 + r2)−m and abelian Lie algebra p =
⟨

Yp, X1, X2, X3
⟩

, where operator Yp is in (11). This four-dimensional Lie algebra has the following classes of non-similar
subalgebras32 (
0,1,2 ∈ ℝ):

⟨

Yp
⟩

,
⟨

X1 + 
0Yp
⟩

,
⟨

X2 + 
1X1 + 
0Yp
⟩

,
⟨

X3 + 
1X1 + 
2X2 + 
0Yp
⟩

.

The invariant solution for the first subalgebra of the list has the form

u� = u�(J ), J =
x2 + r2
x1 + r1

, � = 1, 2, 3,

r1,2 are arbitrary constants. After the substitution of potential functions and the form of solution into system (9), we obtain the
so-called factor-system, which is the system of ordinary differential equations in this case (prime indicates the derivative with
respect to J , J 2 ≠ T1, J 2 ≠ T2):

(

(J 2 − T1)u1′
)′ = 0,

(

(J 2 − T2)u2′
)′ = m1m2J

−mu3′,
(

(J 2 − T2)u3′
)′ = −m1m2J−mu2′

with a general solution given by quadratures

u1 = ux =
k1

2
√

T1
ln
|

|

|

|

|

|

J −
√

T1
J +

√

T1

|

|

|

|

|

|

+ k2, u2 = uy = r0 ∫
sinMF (J )
J 2 − T2

dJ , u3 = uz = r0 ∫
cosMF (J )
J 2 − T2

dJ ,

where M = m1m2 ≠ 0, F (J ) = ∫ dJ
Jm(J 2 − T2)

, and k1,2, r0 are arbitrary constants. In particular, with m = 0, M = 1

(m1 = 1∕m2), we obtain explicit expressions:

ux =
k1
√

T1
tanh−1

√

T1
t + r1
x + r2

+ k2,

uy = r0 cos

(

1
√

T2
tanh−1

√

T2
t + r1
x + r2

)

+ A1, (15)

uz = r0 sin

(

1
√

T2
tanh−1

√

T2
t + r1
x + r2

)

+ A2,

for function-parameters I = (t + r1)−1∕m2, H = m2. A1,2 and k1,2 are arbitrary constants. If k1 ≠ 0, the solution is defined
for |t + r1| < |x + r2|∕

√

T1; otherwise, its domain is |t + r1| < |x + r2|∕
√

T2, t ≠ −r1, x ≠ −r2. Note that the condition
|u⃗ ⋅ ∇Hx

|≪ |Hx
| holds becauseHx is a nonzero constant.

As mentioned, the invariant solutions impose their particular initial conditions; in this case, they are as follows:

ux(0, x) =
k1
√

T1
tanh−1

√

T1
r1

x + r2
+ k2,

uy(0, x) = r0 cos

(

1
√

T2
tanh−1

√

T2
r1

x + r2

)

+ A1, (16)

uz(0, x) = r0 sin

(

1
√

T2
tanh−1

√

T2
r1

x + r2

)

+ A2,

and the initial velocities are

ux,t(0, x) = k1
x + r2

(x + r2)2 − r21T1
,

uy,t(0, x) = −r0
x + r2

(x + r2)2 − r21T2
sin

(

1
√

T2
tanh−1

√

T2
r1

x + r2

)

,

uz,t(0, x) = r0
x + r2

(x + r2)2 − r21T2
cos

(

1
√

T2
tanh−1

√

T2
r1

x + r2

)

.
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FIGURE 1 String configuration, described by invariant solution (15) for I = 1∕(t+1),H = 1 at three different instants: t = 0
(red), t = 9 (blue), t = 19 (green); trajectories for the points: x = ±1 (dotted), x = ±10 (dash-dotted) and x = ±20 (dashed).

From Eq. (15), we see that the transverse displacements of a string satisfy the relation (uy −A1)2 + (uz −A2)2 = r20 for every
value of x and t. Thus, the string is always on the surface of circular cylinder Υr0 of radius r0; the axis is parallel to the x-axis
and crosses the yz-coordinate plane at point (A1, A2). Since the domain of definition of tanh−1(u) is the open interval (−1, 1),
the domain of definition of functions ux(t, x), uy(t, x) and uz(t, x) consists of two disjoint intervals t ≥ 0; x < −r2 − A =∶ xl,
x > −r2 +A =∶ xr, where A ∶=

√

T2(t+ r1) for uy and uz (A =
√

T1(t+ r1) for ux). We consider r1 > 0, so A > 0 and xr > xl.
That suggests two physical interpretations of the system. First, we can see the system as consisting of the two infinite strings:

one in the subspace x < xl and the other in subspace x > xr, and the electric current flows in the strings in the same direction.
Meanwhile, the system can be considered a unique string, the two parts of which join each other somewhere at infinity, but that
is broken, with the ends in singularity planes x = xl and x = xr separated at distance xr − xl = 2A. The disjoint ends move in
opposite directions along the x-axis with equal velocities: dxr∕dt = −dxl∕dt = dA∕dt =

√

T2.
When x→ ±∞ at a given finite t, then

lim
x→±∞

ux(t, x) = k2, limx→±∞
uy(t, x) = r0 + A1, limx→±∞

uz(t, x) = A2.

Thus, at any finite t, the string parts are immobile at infinities.
If any of the two physical interpretations is valid, one should pay attention to the behavior of string extremes near discontinuity

points xl and xr. When x→ xl from the left or x→ xr from the right, functions uy(t, x) and uz(t, x) oscillate so fast that in any
small vicinity of points xl and xr, there are infinite numbers of oscillations. Taking u ∶= A∕(x+ r2) =∶ 1− � in a small vicinity
on the right of xr, we see that solutions of the equation (2n + 1)� = 2 tanh−1(u) = ln

[

(1 + u)∕(1 − u)
]

are zeros of function
cos�, where � ∶= 1

√

T2
tanh−1(u) is the angle of rotation of point (uy(t, x), uz(t, x)) around the axis of the cylinder,

tan� =
uz(t, x) − A2
uy(t, x) − A1

. (17)

Taking u = 1 − �, we find zeros in terms of �n = 2
[

1 + e(2n+1)�
]−1 ≈ 2e−(2n+1)� ; those are so close to each other (�n − �n+1 ≈

2e−(2n+1)�) that it is nearly impossible to show the oscillations in a plot using computer graphics. Similar observations are valid
for the string extreme at point xl. The string component uz(t, x) similarly oscillates but with the phase shift of �∕2 compared to
the function cos�.
Using relation (17), we can find the angular velocity and direction of rotation of point (uy(t, x), uz(t, x)) around the axis of

cylinder Υr0 . Calculating the partial derivatives of equality (17) with respect to t or x and considering that |u| < 1, we get

�,t =
1

1 − u2
1

x + r2
, �,x = −

1
1 − u2

t + r1
(x + r2)2

< 0.
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Thus, the vector (uy(t, x), uz(t, x)) rotates in the counterclockwise direction at given x (trajectory of the point of the string
intersection with the plane x = const) if x > xr, and it rotates in the clockwise direction if x < xl. The rotation is in the clockwise
direction at given t while x is increasing (tracking the string at instant t), both seeing in the negative direction of the x-axis.
When the string is plotted near the discontinuity points, it resembles a spiral twisted clockwise around cylinder Υr0 with

extremely dense coils near the singularity planes, so each of the two strings has infinite length in any small vicinity of the
corresponding singularity plane. The latter is not physically possible, but for the physical implementation of the system, we can
imagine that parts of the strings are cut in infinitesimal vicinity of the discontinuity points and connected to the electric source
through the plasma contact or by the sliding contact on vertical contact surfaces crossing the x-axis at points xl and xr.
There is a difficulty in interpretation of physics of solution (15) for the ux(t, x) component of stringmotion. Constant k2 denotes

the uniform shift of the string, but when k1 ≠ 0, ux(t, x) tends to infinity in the vicinities of singularity planes: xl = −r2 − A
and xr = −r2 + A (here, A =

√

T1(t + r1)), which can be considered as if the very large displacement of string points in the
x-direction near the singularity planes is distributed along many “singularity” coils. Nevertheless, for the physics interpretation
of solutions, it looks more feasible to cut the string in a small vicinity of singularity planes.
To illustrate the string motion, we depict in Fig. 1 cylinder Υ1, three string configurations at instants t = 0, t = 9, t = 19

and trajectories of string points in the transverse planes at x = ±1, x = ±10 and x = ±20 for the particular set of parameters:
k1 = k2 = 0, r0 = r1 = T2 = 1, r2 = 0, A1 = −1, A2 = 0.

2.2.2 Exponential functions
Considering exponential functions I = a1 exp

(

mx1
m1

)

, H = a2 exp
(

−mx2
m2

)

, m ≠ 0 and the Lie algebra e = ⟨Ye, X1, X2, X3⟩

which is a four-dimensional abelian Lie algebra, one can determine the optimal set of non-similar subalgebras of the same
structure as in the case of p:

⟨Ye⟩ , ⟨X1 + 
0Ye⟩ , ⟨X2 + 
1X1 + 
0Ye⟩ , ⟨X3 + 
2X2 + 
1X1 + 
0Ye⟩ .

Here, operator Ye is operator (12).
The form of invariant solution for subalgebra ⟨Ye⟩ is as follows

u� = u�(J ), J =
x1
m1

−
x2
m2
,

and the corresponding factor-system (obtained by substitution of exponential functions and the form of solution into (9)) is

u1′′ = 0,
(

1
m21

−
T2
m22

)

u2′′ = −
a1a2
m2

exp(mJ ) u3′,

(

1
m21

−
T2
m22

)

u3′′ =
a1a2
m2

exp(mJ ) u2′,

with the general solution

ux = c1

(

t
m1

− x
m2

)

+ c2,

uy = r0 Si
{

r1 exp
(

m
m1
t − m

m2
x
)}

+ A1, (18)

uz = r0 Ci
{

r1 exp
(

m
m1
t − m

m2
x
)}

+ A2, (19)

where r1 = a1a2m21m2∕
[

m
(

T2m21 − m
2
2

)]

, we put r0 = 0, if m22 = T2m
2
1. Functions Si and Ci are sine and cosine integrals33 (
E

is the Euler constant):

Si z =

z

∫
0

sin x
x

dx, Ci z = 
E + ln z +

z

∫
0

cos x − 1
x

dx.

The restriction |u⃗ ⋅ ∇Hx
|≪ |Hx

| is satisfied for parameters selected for the solution in Fig. 2 because ux = 0.
The domain of definition of sine and cosine integrals Si(u) and Ci(u) in (18), (19) is the interval 0 < u < ∞, where we

denote the argument of sine and cosine integrals as u = r1 exp
(

m
m1
t − m

m2
x
)

. Thus, for any given 0 ≤ t = const the admissible
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values of x are ∞ > x > −∞; in this case, we observe the infinite string. At t = 0, the string forms a type of conic spiral
with the coils turning over the straight line parallel to the x-axis, so the coil radius is gradually reduced to zero when x → −∞
(we consider m∕m2 > 0). The conic spiral in the negative direction of the x-axis (its projection on the yz-plane) is a Nielsen’s
spiral. The axis of the conic Nielsen’s spiral crosses the yz-plane at the point with the coordinates, lim

x→−∞
uy(t0, x) = �r0∕2+A1,

lim
x→−∞

uz(t0, x) = A2. At x→∞, the argument of sine and cosine integrals u→ 0 so that uy(t, x)→ A1 and uz(t, x)→ −∞. The
argument u of Si(u) andCi(u) is the combination of variables t and x characteristic to the wave traveling with velocity c = m2∕m1
in the positive direction of the x-axis. We see that the solution evolves as a Nielsen-like spiral that spins counterclockwise
around the x-axis when time increases, which can also be considered the screwing advance. If we consider the string on the
semi-infinite interval x0 ≥ x > −∞ at t = 0, then the equality u0 = r1 exp

(

− m
m2
x0
)

= r1 exp
(

m
m1
t − m

m2
x
)

shows us that the
string end advances by counterclockwise unscrewing along the x-axis to the point x = x0 + (m2∕m1)t.

FIGURE 2 String configuration for invariant solution (18), (19) with I = et, H = e−
x
2 at three different instants: t = 0 (red);

t = 1 (blue); t = 2 (green). Parameters are: c1,2 = A2 = 0, r0 = m2 = 2, a1,2 = m = m1 = 1, T2 = 6 and A1 = −�. Trajectories
of points x = −3 (dotted), x = 0 (dashed) and x = 3 (dash-dotted) are shown.

2.2.3 Constant functions
For non-zero constant functions I = a1, H = a2 and operators (13) and (14), the algebra of symmetries c =

⟨

Z1,2,3, X1,2,3
⟩

has the structurec =
⟨

Z2,3,4, X3
⟩

⊕
⟨

Z1, X1,2
⟩

, where (c) =
⟨

Z1, X1,2
⟩

is the center of the algebra. Non-zero commutators
are listed below

[Z2, Z3] = −lZ4, [Z2, Z4] = lZ3, [Z3, Z4] = 2X3, [Z3, X3] = 2Z4, [Z4, X3] = −2Z3.

Taking the new basis for subalgebra
⟨

Z2,3,4, X3
⟩

as follows,

E1 =
Z4 −X3

4
, E2 =

Z3
2
, E3 = Z4 +X3, E4 = Z2 −

l
2
X3,

we obtain the four-dimensional algebra A3,8⊕A1 = ⟨E1, E2, E3⟩⊕ ⟨E4⟩ with ⟨E4⟩ as the center (see32), and the commutators
are: [E1, E2] = E1, [E1, E3] = 2E2, [E2, E3] = E3. This algebra has the optimal set of non-similar subalgebras

⟨E1⟩ , ⟨E4⟩ , ⟨E2 + 
1E4⟩ , ⟨E1 + E3 + 
2E4⟩ , ⟨E1 + �E4⟩ ,

where 
1 ≥ 0, 
2 ∈ ℝ, � = ±1, and one can add elements of center (c) to each subalgebra class.
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Let us consider the first subalgebra with the addition of generators from center (c) ⟨4E1 + �Z1 + �X1⟩, � ≠ 0, which
gives the following form of invariant solution

u1 = exp
(

�
�
x1

)

v1(x2),

u2 =
(

1
sin lx2

−
x1
�
− v3(x2)

)

v2(x2) sin
lx2
2
,

u3 =
(x1
�
+ v3(x2)

)

v2(x2) cos
lx2
2
,

where vi(x2) are new functions to be determined.
After substituting such form into (9) with I = a1,H = a2 we obtain the ordinary differential equations

v1′′ −
�2

�2T1
v1 = 0, v2′′ + l2

4
v2 = 0,

with the general solution (d1,2, c1,2 = const)

v1 = d1 exp

(

�
�
√

T1
x2

)

+ d2 exp

(

−
�

�
√

T1
x2

)

,

v2 = c1 cos
lx2
2
+ c2 sin

lx2
2
.

For function v3, we obtain

v3′′ + 2v
2′

v2
v3′ −

c2l2

4v2 cos3 lx2
2

= 0,

which has a general solution (k1,2 = const)

v3 =
k1

c2 tan
lx2
2
+ c1

+ 1
2
tan

lx2
2
+ k2.

Finally, we have the following invariant solution for system (9)

ux = d1 exp

{

�
�

(

t + x
√

T1

)}

+ d2 exp

{

�
�

(

t − x
√

T1

)}

,

uy = −
( t
�
+ 1
2
tan lx

2
+ k2

)(c1
2
sin lx + c2 sin

2 lx
2

)

+

+ tan lx
2

(c2
2
− k1 cos2

lx
2

)

+
c1
2
, (20)

uz =
( t
�
+ 1
2
tan lx

2
+ k2

)(

c1 cos2
lx
2
+
c2
2
sin lx

)

+ k1 cos2
lx
2
.

In particular case, when d1 = d2 = 0, c1 = k1 = 0, solution (20) takes the following form

ux(t, x) = 0,

uy(t, x) = −c2
( t
�
+ 1
2
tan lx

2
+ k2

)

sin2 lx
2
+
c2
2
tan lx

2
, (21)

uz(t, x) =
c2
2

( t
�
+ 1
2
tan lx

2
+ k2

)

sin lx,

and describes a stringmotionwith clamped extremes at x = 0 and x = 2�n∕l =∶ L (n ∈ ℕ) because ux,y,z(t, 0) = ux,y,z(t, L) = 0.
The initial conditions are:

ux(0, x) = 0, ux,t(0, x) = 0,

uy(0, x) = −c2
(1
2
tan lx

2
+ k2

)

sin2 lx
2
+
c2
2
tan lx

2
, uy,t(0, x) = −

c2
�
sin2 lx

2
,

uz(0, x) =
c2
2

(1
2
tan lx

2
+ k2

)

sin lx, uz,t(0, x) =
c2
2�
sin lx.

As an example, let us consider the case when all parameters in (21) are equal to one. Then, functions uy,z take the form

uy = 1
4
sin x + t + 1

2
cos x − t + 1

2
, uz = t + 1

2
sin x − 1

4
cos x + 1

4
.
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In the plane yz for fixed t, they represent the circumferences of radius (t+1)2∕4+1∕16with the center at point (−(t + 1)∕2, 1∕4).
If x = x0 is fixed, we have straight-line trajectories given by

uz =
sin x0

cos x0 − 1
uy + 1

2
in the plane yz. Displacements uy,z of the string points with coordinates x = 2�n, y = 0, z = 0 (n ∈ ℤ) are equal to zero, so
these points of the string do not move.
Three side views of a string are shown for instants t = 0, t = 1 and t = 2 in Fig. 3 for x ∈ [0, 2�] (left picture). In the right

picture, the projection to the yz-plane is shown.

FIGURE 3 String configuration described by invariant solution (21) with I = 1,H = 1 at three different instants: t = 0 (red);
t = 1 (blue); t = 2 (green). Trajectories of points x = � (dotted), x = �∕2 (dashed) and x = 3�∕2 (dash-dotted) are shown.
Left: side views of a string. Right: projection to the yz-plane.

3 NONLINEAR CASE

A nonlinear case of equations of string motion is analyzed in this section. When a non-homogeneous nonuniform magnetic field
satisfies the following conditions

|u⃗ ⋅ ∇Hy,z
|≪ |Hy,z

|, |u⃗ ⋅ ∇Hx
| ≃ |Hx

|, |Hx
|≫ |Hz

|, |Hx
| ≃ |Hy

|, (22)

from equation (3), we obtain the components of the driven force as follows:

f x = −IHyuz,x, f
y = I

[

(

Hx + u⃗ ⋅ ∇Hx) uz,x −H
z
]

, f z = IHy. (23)

In this case, the magnetic field is predominantly oriented in the xy-plane and has comparable magnitudes of the longitudinal
Hx and transverseHy components, while the transverse componentHz is weak. In addition, the variation of the magnetic field
transverse components Hy,z is relatively small over a distance of string displacement, while the longitudinal component Hx

greatly varies. Eq. (23) shows that both longitudinal x-mode and transversal y-mode depend on the z-mode, while the latter
does not depend on the former. The y-mode of motion is nonlinearly coupled to the others. Force components f x and f y are
potentially of the same magnitude, but they are much smaller than f z.
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If we assume ||
|

Hx
,y
|

|

|

= |

|

|

Hx
,z
|

|

|

= 0 for simplicity, from relations (23), we obtain the following system of equations:

u1,11 = T1u
1
,22 − IH

2u3,2,

u2,11 = T2u
2
,22 + I

(

H1 + u1H1
,2

)

u3,2 − IH
3, (24)

u3,11 = T2u
3
,22 + IH

2,

whereHx,y,z(x)∕� =∶ H1,2,3. When u1u3,2IH
1
,2 ≠ 0, the system is nonlinear and has four function-parameters: I(t) andH1,2,3.

3.1 Symmetries
Lie algebra of the kernel of point symmetries for system (24) has the following basis:

X1 = )u3 , X2 = x1)u3 , Xℎ
+ = f

ℎ(x1, x2))u2 , Xp
+ =

[

f p(x1, x2) + u3
]

)u2 , (25)

where fℎ(x1, x2) is a general solution of homogeneous equation

fℎ,11 − T2f
ℎ
,22 = 0, (26)

and f p(x1, x2) is a particular solution of non-homogeneous equation

f p,11 − T2f
p
,22 = −IH

2. (27)

The sense of corresponding point transformations is quite simple. Resolving (5) for each operator from (25), we obtain the kernel
of transformations

ū2 = u2 + a0fℎ + b(u3 + f p), ū3 = u3 + a2x1 + a1, (28)
where a0,1,2, b are group parameters. These transformations do not change system (24) and reflect its internal structure. For
example, function u3 is defined up to the linear term a2x1 + a1.
There are also three equivalence transformations acting on functions I andH1,2,3:

�1 ∶ x̄1 = x1 + a1, �2 ∶ x̄2 = x2 + a2,
 ∶ Ī = cI, H̄ i = H i∕c, c ≠ 0 (29)

which can be used to reduce the number of arbitrary constants in the function-parameters.
The extension of the kernel occurs in the following cases (we select functions IH1

,2 ≠ 0 to maintain the nonlinearity of (24)):

1. For functions I = k01∕x1,H1 = k11x2 + k12 andH2 = k21, there is the operator

Y1 = x1)x1 + x2)x2 − x2)u1 + f
1(x1, x2))u2 + k01k21x1 ln x1)u3 ,

where k01, k11 and k21 are non-zero constants, and function f 1 is a particular solution of the following equation

f 1,11 − T2f
1
,22 = −I(H

3 + x2H3
,2). (30)

By applying transformation �2 with a2 = −k12∕k11 to H1, we obtain k12 = 0; acting by  (29) with c = 1∕k21, we set
H2 = 1.
Finally, for functions I = k01∕x1,H1 = k11x2,H2 = 1 we have the operator

Y1 = x1)x1 + x2)x2 − x2)u1 + f
1)u2 + k01x1 ln x1)u3 , (31)

with equation (30) for function f 1.

2. For I = 1 and arbitrary non-zero functionsH1,2,3 (H1 ≠ const), we have the operator of time translation

Y2 = )x1 . (32)

3. If I andH3 are arbitrary non-zero functions,H1 = k11x2 + k12, k11 ≠ 0 andH2 = ℎ2 ≠ 0, there is the symmetry

Y3 = )x2 − )u1 + f
3(x1, x2))u2 (33)

with a particular solution f 3 of the following equation

f 3,11 − T2f
3
,22 = −IH

3
,2. (34)
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4. IfH2,3 are arbitrary non-zero functions and

I = a∕x1, H1 = ln |x2| + b1;

I =
(

a1 cos
√

Ax1 + a2 sin
√

Ax1
)−1

, H1 = ln
|

|

|

|

tan
√

Ax2
2
√

T1

|

|

|

|

+ b1, A > 0;

I =
(

a1 cosh
√

−Ax1 + a2 sinh
√

−Ax1
)−1

, H1 = ln
|

|

|

|

tanh
√

−Ax2
2
√

T1

|

|

|

|

+ b1, A < 0,

where a21 + a
2
2 ≠ 0, then there is the additional operator

Y4 = Y 04 +
(

x2u
3 + f 4(x1, x2)

)

)u2 , (35)

where

Y 04 = −
2T2
a
x1x2 )u1 ;

Y 04 = −
2
√

T1T2
√

A

(

a1 cos
√

Ax1 + a2 sin
√

Ax1
)

sin
√

Ax2
√

T1
)u1 , A > 0;

Y 04 = −
2
√

T1T2
√

−A

(

a1 cosh
√

−Ax1 + a2 sinh
√

−Ax1
)

sinh
√

−Ax2
√

T1
)u1 , A < 0,

with a particular solution f 4 of equation
f 4,11 − T2f

4
,22 = −x2IH

2.

There are two sets of function-parameters, when two additional operators are simultaneously admitted. Namely, for an arbitrary
H3:

• when I = k01∕x1,H1 = k11x2 andH2 = 1, we have Lie algebra ⟨Y1, Y3⟩ with commutator [Y1, Y3] = −Y3.

• if I = 1,H1 = k11x2,H2 = k21, then operators Y2, Y3 and form an algebra of point symmetries.

3.2 Invariant solutions
We can now separately consider cases of the previous section, except for case 4 because operator Y4 (35) does not contain
derivatives with respect to independent variables, so it does not produce any invariant solution.

1. Let us introduce new independent variables J ∶= x1∕x2, s ∶= x2; then, operator Y1 (31) takes the form

Y1 = s)s − s)u1 + f 1(J , s))u2 + k01sJ ln(sJ ) )u3 ,

and gives the invariant solution form

u1 = u(J ) − s, u2 = v(J ) + ∫
f 1

s
ds, u3 = w(J ) − k01sJ (1 − ln sJ ). (36)

Substitution of I = k01∕x1,H1 = k11x2,H2 = 1 and (36) into system (24) leads to the following factor-system of ordinary
differential equations:

(1 − T1J 2)u′′ − 2T1Ju′ − k01w′ = 0, (37)
(1 − T2J 2)v′′ − 2T2Jv′ + k01k11uw′ = g(J ),
(1 − T2J 2)w′′ − 2T2Jw′ = 0, (38)

where

g(J ) ∶= sT2f 1,s − 2T2Jf
1
,J − T2f

1 − (1 − T2J 2)∫ f 1,JJ
ds
s
+ 2T2J ∫ f 1,J

ds
s
− k01

s
J
H3.

Function g does not depend on s because g,s = 0 due to Eq. (30).
From (38) we obtain (�1,2 ∶=

√

T1,2)

w = c1 ln
|

|

|

|

1 + �2J
1 − �2J

|

|

|

|

+ c2.

Then, (37) takes the form
(1 − �21J

2)u′′ − 2�21Ju
′ =

(

(1 − �21J
2)u′

)′ = k01w′.
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By integrating the above equation one time, we obtain

u′ =
k01w + c3
1 − �21J

2
,

so
u(J ) = c1k01 ∫ ln

|

|

|

|

1 + �2J
1 − �2J

|

|

|

|

dJ
1 − �21J

2
+
k01c2 + c3
2�1

ln
|

|

|

|

1 + �1J
1 − �1J

|

|

|

|

+ c4. (39)

The indefinite integral in (39) can be calculated using the formula

∫
ln(ax + b)
x + c

dx =

{

ln(ax + b) lnZ + Li2(1 −Z), if Z > 0,
ln(−Z) ln(b − ac) − Li2Z, if a(x + c) > 0, ac − b < 0,

where Z = a(x + c)∕(ac − b), Li2(x) is the dilogarithm function34, and ax + b > 0. For example, for |J | < 1∕�1, one can
obtain the following expression

∫
dJ

1 − �21J
2
ln
1 + �2J
1 − �2J

= − 1
2�1

[

ln(1 + �2J ) lnZ−
+ + ln(1 − �2J ) lnZ

+
++

+ ln
�1

�1 − �2
ln(1 − �21J

2) + Li2(1 −Z−
+ ) + Li2(1 −Z

+
+ ) + Li2(−Z

−
− ) + Li2(−Z

+
− )
]

,

with
Z±
± ∶= �2

1 ± �1J
�1 ± �2

.

Finally, function v can be expressed in quadratures

v = ∫
∫
(

g − k01k11uw′) dJ + c5
1 − T2J 2

dJ + c6.

By analyzing the condition of non-linearity u1u3,2IH
1
,2 ≠ 0 for the obtained solution, we see that c1 ≠ 0. Moreover, function

H3 determines function f 1 by (30) and can be of general form. Constant k12 in H1 can be different from zero. Let us
analyze restrictions (22). If we choose H3 = ℎ3 = const ≠ 0, then the first condition |u⃗ ⋅ ∇Hy,z

| ≪ |Hy,z
| holds because

Hy,z = const. Comparing |Hx
|≫ |Hz

| and |Hx
| ≃ |Hy

|, we obtain

|k11x + k12| ≃ 1≫ |ℎ3|. (40)

Condition |u⃗ ⋅ ∇Hx
| ≃ |Hx

| leads to the following expression

|k11(x − u(J ))| ≃ |k11x + k12|,

that, together with condition (40) defines the domain and co-domain of the invariant solution.

If we omit restriction 1 ≫ |ℎ3|, then it is possible simplify the form for u2, taking H2,3 = 1. Then, equation (30) coincides
with (27), and we get f 1 = f p. Considering the operator

Ỹ1 ∶= Y1 −X
p
+ = s)s − s)u1 − u

3)u2 + k01sJ ln(sJ ))u3

we can simplify the form of invariant solution for u2

u2 = v(J ) − k01sJ (ln sJ − 2) −w(J ) ln sJ .

Thus, the equation to solve is
(

(1 − T2J 2)v′
)′ = 2

J
w′ − w

J 2
− k01k11uw′

and
v = ∫

dJ
1 − T2J 2 ∫

[ 2
J
w′ − 1

J 2
w − k01k11uw′

]

dJ .

2. Operator Y2 = )x1 (32) has variable x2 as an invariant; in this case, one has static solutions. In other words, taking u
1 = u(x2),

u2 = v(x2), u3 = w(x2), I = 1, and an arbitrary non-zero functionsH1,2,3 (H1 ≠ const) such that uv′H1
,2 ≠ 0, we obtain the

factor-system:

T1u
′′ = H2w′, T2w

′′ = −H2, T2v
′′ = H3 − (H1 + uH1′)w′ = 0.
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Functions u, v and w can be expressed in quadratures:

u = − 1
T1T2 ∫ ∫

(

H2
∫ H2dx2

)

dx2dx2,

v = 1
T2 ∫ ∫

(

H3 + H1 −H1′u
T2 ∫ H2dx2

)

dx2dx2,

w = − 1
T2 ∫ ∫ H2dx2dx2. (41)

For example, ifH i = ai sin x2 + bi cos x2, where

a1 = b1 = −4
√

2T2, a2 = b2 = 2
√

2T2, a3 = T2, b3 = 0

and T1 = 2T2, we obtain the bounded static periodic solution

ux = −cos 2x, uy = −1
2
sin 4x − sin x, uz = 2

√

2(cos x + sin x), (42)

which is shown in Fig. 4 for x ∈ [0, 4�] (left picture).

FIGURE 4 String configuration of static solution for I = 1 and different forms of H1,2,3. Left: Solution (42). Right: Solution
(43).

Let us verify conditions (22) for the case when a2 and a3 are equal to zero:

H1 = a1 sin x + b1 cos x, H2 = b2 cos x, H3 = b3 cos x,

and

ux =
b22

8T1T2
sin 2x +

a1
b1

(

1 +
b22

16T1T2

)

, uz =
b2
T2
cos x.

For x ≃ 0, we have |H2
| ≃ |H1

| ≫ |H3
| if |b1| ≃ |b2| ≫ |b3|. Moreover, conditions |u⃗ ⋅ ∇H2,3

| ≪ |H2,3
| are satisfied

because |H2,3
,x | = |b2,3 sin x|≪ |b2,3 cos x|. Finally, restriction |u⃗ ⋅ ∇H1

| ≃ |H1
| holds if

b21
a21
≃ 1 +

b22
16T1T2

.

For example, taking
a1 = 12, b1 = b2 = 24, b3 = 1, T1 = 12, T2 = 1

we have the bounded periodic solution

ux = 2 + 6 sin 2x, uz = 24 cos x,
uy = 288 sin 2x − 54 sin 4x + 27 cos 4x − 108 cos 2x − cos x, (43)
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which is shown in Fig. 4 for x ∈ [−�, �] (right picture).
Using transformation (28), one can add the time dependence to any static solution. For example, one can sum to uy the general
solution of homogeneous Eq. (26)

fℎ = f
(

x + t
√

T2
)

+ g
(

x − t
√

T2
)

.

This dependence on time is induced by the initial nonzero velocities, which move the string even when I = const as in the
case of constant functions in the linear case (see subsection 2.2.3).

3. Let us consider abelian algebra ⟨Y3, X1, X2⟩, where Y3 is operator (33), and operators X1, X2 are from Lie algebra (25) of
the kernel of transformations. Its optimal subalgebra set consists of three classes:

⟨Y3⟩ , ⟨X1 + 
1Y3⟩ , ⟨X2 + 
1Y3 + 
2X1⟩ .

Subalgebra ⟨Y3⟩ gives the form of invariant solution u3 = u3(x1), which does not satisfy the nonlinearity condition u3,2 ≠ 0.
Considering the second subalgebra ⟨X1 + 
1Y3⟩, 
1 ≠ 0 we get

u1 = u(x1) − x2, u2 = v(x1) + ∫ f 3dx2, u3 = w(x1) +
x2

1
,

with unknown functions u, v andw, and f 3(x1, x2) is a solution of (34). The factor-system takes the form (H1 = k11x2+k12,
H2 = ℎ2 = const)

u′′ +
ℎ2

1
I = 0, w′′ − ℎ2I = 0, v′′ + ℎ(x1) −

k11u + k12

1

I = 0,

where
ℎ(x1) ∶= ∫ f 3,11dx2 − T2f

3
,2 + IH

3.

Finally, we obtain the invariant solution of Eqs. (24):

u1 = −x2 −
ℎ2

1 ∫ ∫ Idx1dx1,

u2 = ∫ f 3dx2 −
ℎ2k11

21 ∫ ∫

(

I ∫ ∫ Idx1dx1

)

dx1dx1 +
k12

1 ∫ ∫ Idx1dx1 − ∫ ∫ ℎ(x1)dx1dx1, (44)

u3 =
x2

1
+ ℎ2 ∫ ∫ Idx1dx1.

Let us take I = sin t, H3 = cos x. Then, f 3 = sin t sin x∕(T2 − 1) is the particular solution of (34). From constraints (22)
|Hy

| ≃ |Hx
|≫ |Hz

|, it follows
|k11x + k12| ≃ |ℎ2|≫ 1. (45)

Solution (44) can have the following form:

ux = −x +
ℎ2

1
sin t, uy =

ℎ2k11
4
21

(t2 + cos2 t) −
k12

1
sin t + sin t cos x

1 − T2
, uz = x


1
− ℎ2 sin t. (46)

Condition |u⃗ ⋅ ∇Hy
| ≪ |Hy

| holds because H2 = const ≫ 1. Verifying restriction |u⃗ ⋅ ∇Hz
| ≪ |Hz

|, we get | sin x||x −
ℎ2 sin t∕
1|≪ | cos x|, so one can consider small x. Then, from (45), we obtain |k12| ≃ |ℎ2|. Finally, condition |u⃗ ⋅∇Hx

| ≃
|Hx

| implies ||
|

k11x −
ℎ2k11

1

sin t||
|

≃ |k11x + k12|; for t ≃ �∕2 it implies that 
1 ≃ −k11.

When t→∞, ut →∞. To avoid large values of uy for large t in (46) one can use transformation (28) with

fℎ = x2 + T2t2, a0 = −
ℎ2k11
4T2
21

, b = 0, (47)

to change the term with t2 to the term with x2 in uy

uy =
ℎ2k11
4
21

(

cos2 t − x2

T2

)

+
(

cos x
1 − T2

−
k12

1

)

sin t. (48)

This transformation is just the summation of the particular solution fℎ of homogeneous Eq. (26) to uy.
In this case, for the fixed x = x0, the trajectory of the string point, described by invariant solution ux,z (46) and uy (48, will
be periodic and bounded in time.
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4 CONCLUSIONS

In this paper, using group theory analysis, we studied a mathematical model of a perfectly flexible elastic string conducting elec-
tric current in a static magnetic field. At certain configurations of magnetic field, the model is linear, but under other conditions,
the model presents the nonlinear coupling of the gradient type between one of the transverse modes and the other transverse and
longitudinal modes. The nonlinearity of string oscillation caused by the change in tension in a string stretching, which results
from the transverse motion, has been extensively studied, while the gradient-type nonlinear coupling of string oscillation modes
using the interaction of a magnetic field with the electric current in a string has not been studied; the models of this type have
been reported by one of the authors. In this work, we have presented the results for a simple version of this type of coupling. To
our knowledge, it is the first study of the gradient-type nonlinearity in string oscillation.
Lie algebras of admitted point symmetries for linear and nonlinear systems were calculated; function-parameters were spec-

ified when the additional symmetries were admitted. For each class of parameters, we obtain a family of invariant analytical
solutions at least in quadratures. In particular, a set of unusual spiral solutions on conic or cylinder surfaces and more compli-
cated configurations of string was found in invariant solutions of the mathematical model under study; those are hardly possible
to obtain by traditional approximation methods of solution. The invariant solutions of partial differential equations of the model
have specific characteristics that sometimes complicate the interpretation of the physics of the phenomenon, since certain math-
ematical conditions must be put on the system of equations to make it solvable. Particularly, the invariant solutions impose its
proper boundary and initial conditions in a string motion. However, we think that they give a mathematical alternative as a basis
for the approximation methods. As a concluding remark we note that at instant t, an invariant solution of the mathematical model
presented by equations (1), (2) and (3) can be considered as the mapping of the x-axis to the 3-D parametric curve given by the
equations X(t, x) = x + ux(t, x), Y (t, x) = uy(t, x) and Z(t, x) = uz(t, x) with x as a parameter. When the solution admits all
constraints of physical model, then parametric curve can be interpreted as a string configuration at instant t. Invariant analytical
solutions have mathematical significance because they help us better understand the structure and limits of the mathematical
model. In addition, invariant particular solutions can be used to test numerical methods.
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