References
Aghighi, S., Burgess, T.I., Scott, J.K., Calver, M. & Hardy, G.E.S.J. (2016). Isolation and pathogenicity of Phytophthora species from declining Rubus anglocandicans. Plant Pathol., 65, 451–461.
Aghighi, S., Fontanini, L., Yeoh, P.B., Hardy, G.E.S.J., Burgess, T.I. & Scott, J.K. (2014). A conceptual model to describe the decline of European blackberry (Rubus anglocandicans), a weed of national significance in Australia. Plant Dis., 98, 580–589.
Aghighi, S., Hardy, G.E.S.J., Scott, J.K. & Burgess, T.I. (2012). Phytophthora bilorbang sp. nov., a new species associated with the decline of Rubus anglocandicans (European blackberry) in Western Australia. Eur. J. Plant Pathol., 133, 841–855.
Agrawal, A.A. & Kotanen, P.M. (2003). Herbivores and the success of exotic plants: a phylogenetically controlled experiment. Ecol Lett, 6, 712–715.
Akhtar, S.S., Mekureyaw, M.F., Pandey, C. & Roitsch, T. (2020). Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Front. Plant Sci., 10, 1777.
Alexander, H.M. (1984). Spatial patterns of disease induced by Fusarium moniliforme var. subglutinans in a population of Plantago lanceolata.Oecologia, 62, 141–143.
Alpert, P., Bone, E. & Holzapfel, C. (2000). Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect. Plant Ecol. Evol. Syst., 3, 52–66.
Amrine, J.W., Jr., Hindal, D.F., Williams, R., Appel, J., Stasny, T. & Kassar, A. (1990). Rose rosette as a biocontrol of multiflora rose, 1987-1989. In:Proceedings of the 43rd Annual Meeting of the Southern Weed Science Society. pp. 316–320.
Ando, K., Grumet, R., Terpstra, K. & Kelly, J.D. (2007). Manipulation of plant architecture to enhance crop disease control. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2, 8.
Atucha, A., Emmett, B. & Bauerle, T.L. (2014). Growth rate of fine root systems influences rootstock tolerance to replant disease. Plant Soil, 376, 337–346.
Augspurger, C.K. & Kelly, C.K. (1984). Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia, 61, 211–217.
Beckman, N.G. & Muller-Landau, H.C. (2011). Linking fruit traits to variation in predispersal vertebrate seed predation, insect seed predation, and pathogen attack. Ecology, 92, 2131–2140.
Beckstead, J., Meyer, S.E., Molder, C.J. & Smith, C. (2007). A race for survival: Can Bromus tectorum seeds escape Pyrenophora semeniperda-caused mortality by germinating quickly? Ann. Bot., 99, 907–914.
Beckstead, J., Meyer, S.E., Reinhart, K.O., Bergen, K.M., Holden, S.R. & Boekweg, H.F. (2014). Factors affecting host range in a generalist seed pathogen of semi-arid shrublands. Plant Ecol., 215, 427–440.
Bednarek, P. & Osbourn, A. (2009). Plant-microbe interactions: chemical diversity in plant defense.Science, 324, 746–748.
Bennett, R.N. & Wallsgrove, R.M. (1994). Secondary metabolites in plant defence mechanisms.New Phytol., 127, 617–633.
Blossey, B. & Notzold, R. (1995). Evolution of increased competitive ability in invasive nonindigenous plants: A hypothesis. J. Ecol., 83, 887–889.
Blossey, B., Nuzzo, V., Hinz, H. & Gerber, E. (2001). Developing biological control of Alliaria petiolata (M. Bieb.) Cavara and Grande (garlic mustard). Nat. Areas J., 21, 357–367.
Blumenthal, D., Mitchell, C.E., Pysek, P. & Jarosík, V. (2009). Synergy between pathogen release and resource availability in plant invasion. Proc. Natl. Acad. Sci. U. S. A., 106, 7899–7904.
Boege, K., Dirzo, R., Siemens, D. & Brown, P. (2007). Ontogenetic switches from plant resistance to tolerance: minimizing costs with age? Ecol. Lett., 10, 177–187.
Bohár, G. & Schwarczinger, I. (1999). First report of a Septoria sp. on common ragweed (Ambrosia artemisiifolia) in Europe. Plant Dis., 83.
Borer, E.T., Hosseini, P.R., Seabloom, E.W. & Dobson, A.P. (2007). Pathogen-induced reversal of native dominance in a grassland community. Proc. Natl. Acad. Sci. U. S. A., 104, 5473–5478.
Borowicz, V.A. (2001). Do arbuscular mycorrhizal fungi alter plant–pathogen relations?Ecology, 82, 3057–3068.
Boyce, R.L. (2018). High mortality seen in open-grown, but not forest-understory, Amur honeysuckle (Lonicera maackii, Caprifoliaceae) stands in northern Kentucky. J. Torrey Bot. Soc., 145, 21–29.
Boyce, R.L., Brossart, S.N., Bryant, L.A., Fehrenbach, L.A., Hetzer, R., Holt, J.E., et al.(2014). The beginning of the end? Extensive dieback of an open-grown Amur honeysuckle stand in northern Kentucky, USA. Biol. Inv., 16, 2017–2023.
Boyce, R.L., Castellano, S.M., Marroquin, A.N., Uwolloh, O.M., Farrar, S.E. & Wolfe, K.P. (2020). Honeysuckle leaf blight reduces the growth of infected Amur honeysuckle (Lonicera maackii, Caprifoliaceae) seedlings in a greenhouse experiment. J. Torrey Bot. Soc., 147, 1–8.
Bradley, D.J., Gilbert, G.S. & Parker, I.M. (2003). Susceptibility of clover species to fungal infection: the interaction of leaf surface traits and environment.Am. J. Bot., 90, 857–864.
Brooks, R.K., Wickert, K.L., Baudoin, A., Kasson, M.T. & Salom, S. (2020). Field-inoculatedAilanthus altissima stands reveal the biological control potential of Verticillium nonalfalfae in the mid-Atlantic region of the United States. Biol. Control, 148, 104298.
Bruckart, W.L., Eskandari, F.M., Michael, J.L. & Smallwood, E.L. (2017). Differential aggressiveness of Bipolaris microstegii and B. drechslerion Japanese stiltgrass. Invasive Plant Sci. Manage., 10, 44–52.
Burdon, J.J. & Chilvers, G.A. (1982). Host density as a factor in plant disease ecology. Annu. Rev. Phytopathol., 20, 143–166.
Burdon, J.J., Ericson, L. & Muller, W.J. (1995). Temporal and spatial changes in a metapopulation of the rust pathogen Triphragmium ulmariae and its host,Filipendula ulmaria. J. Ecol., 83, 979–989.
Burdon, J.J., Jarosz, A.M. & Kirby, G.C. (1989). Pattern and patchiness in plant-pathogen interactions–Causes and consequences. Ann. Rev.Ecol. Sys. 20, 119–136.
Busch, J.W., Neiman, M. & Koslow, J.M. (2004). Evidence for maintenance of sex by pathogens in plants. Evol, 58, 2584–2590.
Carver, T.L.W. & Gurr, S.J. (2008). Filamentous fungi on plant surfaces. In: Annual Plant Reviews Volume 23: Biology of the Plant Cuticle (eds. Riederer, M. & Müller, C.). Blackwell Publishing Ltd, pp. 368–392.
Cazetta, E., Schaefer, H.M. & Galetti, M. (2008). Does attraction to frugivores or defense against pathogens shape fruit pulp composition? Oecologia, 155, 277–286.
Chattopadhyay, S., Ali, K.A., Doss, S.G., Das, N.K., Aggarwal, R.K., Bandopadhyay, T.K., et al.(2011). Association of leaf micro-morphological characters with powdery mildew resistance in field-grown mulberry (Morus spp.) germplasm.AoB Plants, 2011, lr002.
Cipollini, D., Davis, S., Lieurance, D., Cipollini, K. & Bahn, V. (2020). Biogeographic variation in resistance of the invasive plant, Alliaria petiolata, to a powdery mildew fungus and effect of resistance on competitive dynamics.Biol. Inv., 22, 1657–1668.
Cipollini, D. & Enright, S. (2009). A powdery mildew fungus levels the playing field for garlic mustard (Alliaria petiolata) and a North American native plant.Invasive Plant Sci. Manage., 2, 253–259.
Cipollini, M.L., Paulk, E., Mink, K., Vaughn, K. & Fischer, T. (2004). Defense tradeoffs in fleshy fruits: Effects of resource variation on growth, reproduction, and fruit secondary chemistry in Solanum carolinense. J. Chem. Ecol., 30, 1–17.
Clay, K. (1995). Correlates of pathogen species richness in the grass family. Can. J. Bot., 73, 42–49.
Clay, K., Reinhart, K., Rudgers, J., Tintjer, T., Koslow, J. & Flory, S.L. (2008). Red queen communities. In: Infectious Disease Ecology: Effects of Ecosystems on Disease and of Disease on Ecosystems (ed. Ostfeld, R.S.). Princeton University Press, Princeton, NJ, pp. 145–178.
Clay, K. & Schardl, C. (2002). Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am. Nat., 160 Suppl 4, S99–S127.
Cobb, F.W., Jr, Slaughter, G.W., Rowney, D.L. & DeMars, C.J. (1982). Rate of spread ofCeratocystis wageneri in ponderosa pine stands in the central Sierra Nevada. Phytopathol., 72, 1359–1362.
Colautti, R.I. & Barrett, S.C.H. (2013). Rapid adaptation to climate facilitates range expansion of an invasive plant. Science, 342, 364–366.
Colautti, R.I., Ricciardi, A., Grigorovich, I.A. & MacIsaac, H.J. (2004). Is invasion success explained by the enemy release hypothesis? Ecol. Lett., 7, 721–733.
Coley, P.D., Bryant, J.P. & Chapin, F.S., 3rd. (1985). Resource availability and plant antiherbivore defense. Science, 230, 895–899.
Connell, J.H. & Lowman, M.D. (1989). Low-diversity tropical rain forests: Some possible mechanisms for their existence. Am. Nat., 134, 88–119.
Conrath, U., Beckers, G.J.M., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., et al.(2006). Priming: Getting ready for battle. Mol. Plant. Microbe. Interact., 19, 1062–1071.
Costes, E., Lauri, P.E., Simon, S. & Andrieu, B. (2013). Plant architecture, its diversity and manipulation in agronomic conditions, in relation with pest and pathogen attacks. Eur. J. Plant Pathol., 135, 455–470.
Crocker, E.V., Karp, M.A. & Nelson, E.B. (2015). Virulence of oomycete pathogens fromPhragmites australis-invaded and noninvaded soils to seedlings of wetland plant species. Ecol. Evol., 5, 2127–2139.
Crocker, E.V., Lanzafane, J.J., Karp, M.A. & Nelson, E.B. (2016). Overwintering seeds as reservoirs for seedling pathogens of wetland plant species.Ecosphere, 7, e01281.
Cronin, J.P., Rúa, M.A. & Mitchell, C.E. (2014). Why Is living fast dangerous? Disentangling the roles of resistance and tolerance of disease. Am. Nat., 184, 172–187.
Cunnington, J.H. & Pascoe, I.G. (2003). First record of Insolibasidium deformans in Australia. Australas. Plant Path., 32, 433.
Dalling, J.W., Davis, A.S., Schutte, B.J. & Elizabeth Arnold, A. (2011). Seed survival in soil: interacting effects of predation, dormancy and the soil microbial community. J. Ecol., 99, 89–95.
De la Cruz, R.G., Knudsen, G.R., Carta, L.K. & Newcombe, G. (2018). Either low inoculum or a multi-trophic interaction can reduce the ability of Sclerotinia sclerotiorum to kill an invasive plant. Rhizosphere, 5, 76–80.
Dempsey, D.A. & Klessig, D.F. (2012). SOS–too many signals for systemic acquired resistance?Trends Plant Sci., 17, 538–545.
Di Bello, P.L., Ho, T. & Tzanetakis, I.E. (2015). The evolution of emaraviruses is becoming more complex: Seven segments identified in the causal agent of Rose rosette disease. Virus Res., 210, 241–244.
Diez, J.M., Dickie, I., Edwards, G., Hulme, P.E., Sullivan, J.J. & Duncan, R.P. (2010). Negative soil feedbacks accumulate over time for non-native plant species. Ecol. Lett., 13, 803–809.
Dini-Andreote, F. (2020). Endophytes: The second layer of plant defense. Trends Plant Sci., 25, 319–322.
Doherty, T.S., Glen, A.S., Nimmo, D.G., Ritchie, E.G. & Dickman, C.R. (2016). Invasive predators and global biodiversity loss. PNAS, 113, 11261–11265.
Domínguez‐Begines, J., Ávila, J.M., García, L.V. & Gómez‐Aparicio, L. (2020). Soil‐borne pathogens as determinants of regeneration patterns at community level in Mediterranean forests. New Phytol., 227, 588–600.
Dordas, C. (2008). Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron. Sustain. Dev., 28, 33–46.
Duchesne, L.C., Peterson, R.L. & Ellis, B.E. (1989). The time-course of disease suppression and antibiosis by the ectomycorrhizal fungus Paxillus involutus.New Phytol., 111, 693–698.
Ďurkovič, J., Čaňová, I., Lagana, R., Kučerová, V., Moravčík, M., Priwitzer, T., et al.(2013). Leaf trait dissimilarities between Dutch elm hybrids with a contrasting tolerance to Dutch elm disease. Ann. Bot., 111, 215–227.
Durrer, S. & Schmid-Hempel, P. (1994). Shared use of flowers leads to horizontal pathogen transmission. Proc. Roy. Soc B-Biol. Sci., 258, 299–302.
El-Hajj, Z., Kavanagh, K., Rose, C. & Kanaan-Atallah, Z. (2004). Nitrogen and carbon dynamics of a foliar biotrophic fungal parasite in fertilized Douglas-fir. New Phytol., 163, 139–147.
Endara, M.-J. & Coley, P.D. (2011). The resource availability hypothesis revisited: a meta-analysis.Funct. Ecol., 25, 389–398.
Enright, S.M. & Cipollin, D. (2007). Infection by powdery mildew Erysiphe cruciferarum(Erysiphaceae) strongly affects growth and fitness of Alliaria petiolata (Brassicaceae). Am. J. Bot., 94, 1813–1820.
Epstein, A.H., Hill, J.H. & Nutter, F.W. (1997). Augmentation of rose rosette disease for biocontrol of multiflora rose (Rosa multiflora). Weed Sci, 45, 172–178.
Erb, M., Lenk, C., Degenhardt, J. & Turlings, T.C.J. (2009). The underestimated role of roots in defense against leaf attackers. Trends Plant Sci., 14, 653–659.
Esler, K.J., van Wilgen, B.W., te Roller, K.S., Wood, A.R. & van der Merwe, J.H. (2010). A landscape-scale assessment of the long-term integrated control of an invasive shrub in South Africa. Biol. Inv., 12, 211–218.
Farr, D.F. & Castlebury, L.A. (2001). Septoria epambrosiae sp. nov. on Ambrosia artemisiifolia (common ragweed). Sydowia, 53, 81–92.
Fernández-Escobar, R. (2019). Olive nutritional status and tolerance to biotic and abiotic stresses.Frontiers in Plant Science, 10, 1151.
Ferrari, M.J., Du, D., Winsor, J.A. & Stephenson, A.G. (2007). Inbreeding depression of plant quality reduces incidence of an insect-borne pathogen in a wild gourd.Int. J. Plant Sci., 168, 603–610.
Ferrenberg, S. & Mitton, J.B. (2014). Smooth bark surfaces can defend trees against insect attack: Resurrecting a “slippery” hypothesis. Funct. Ecol., 28, 837–845.
Fischer, G.W. (1937). Observations on the comparative morphology and taxonomic relationships of certain grass smuts in western North America. Mycologia, 29, 408–425.
Flory, S.L., Alba, C., Clay, K., Holt, R.D. & Goss, E.M. (2018). Emerging pathogens can suppress invaders and promote native species recovery. Biol. Inv., 20, 5–8.
Flory, S.L. & Clay, K. (2013). Pathogen accumulation and long‐term dynamics of plant invasions.J. Ecol., 101, 607–613.
Flory, S.L., Kleczewski, N. & Clay, K. (2011a). Ecological consequences of pathogen accumulation on an invasive grass. Ecosphere, 2, 1–12.
Flory, S.L., Long, F. & Clay, K. (2011b). Invasive Microstegium populations consistently outperform native range populations across diverse environments.Ecology, 92, 2248–2257.
García De la Cruz, R., Knudsen, G.R., Carta, L.K. & Newcombe, G. (2018). Either low inoculum or a multi-trophic interaction can reduce the ability ofSclerotinia sclerotiorum to kill an invasive plant.Rhizosphere, 5, 76–80.
Garrett, S.D. (1956). Biology of root-infecting fungi. Soil Sci., 82, 97.
Gordon, A.J. (1999). A review of established and new insect agents for the biological control ofHakea sericea Schrader (Proteaceae) in South Africa.African Entomology Memoir , 1, 35-43.
Gruntman, M., Segev, U., Glauser, G. & Tielbörger, K. (2017). Evolution of plant defences along an invasion chronosequence: Defence is lost due to enemy release–but not forever. J. Ecol., 105, 255–264.
Häffner, E., Konietzki, S. & Diederichsen, E. (2015). Keeping control: The role of senescence and development in plant pathogenesis and defense. Plants, 4, 449–488.
Handley, R.J., Steinger, T., Treier, U.A. & Müller-Schärer, H. (2008). Testing the evolution of increased competitive ability (EICA) hypothesis in a novel framework.Ecology, 89, 407–417.
Hantsch, L., Braun, U., Haase, J., Purschke, O., Scherer-Lorenzen, M. & Bruelheide, H. (2014). No plant functional diversity effects on foliar fungal pathogens in experimental tree communities. Fungal Divers., 66, 139–151.
Harms, N., Shearer, J., Cronin, J.T. & Gaskin, J.F. (2020). Geographic and genetic variation in susceptibility of Butomus umbellatus to foliar fungal pathogens.Biol. Inv., 22, 535–548.
Hawkes, C.V. (2007). Are invaders moving targets? The generality and persistence of advantages in size, reproduction, and enemy release in invasive plant species with time since introduction. Am. Nat., 170, 832–843.
Hejda, M., Pyšek, P. & Jarosík, V. (2009). Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol., 97, 393–403.
Herms, D.A. & Mattson, W.J. (1992). The dilemma of plants: To grow or defend. Q. Rev. Biol., 67, 283–335.
Hilker, M., Schwachtje, J., Baier, M., Balazadeh, S., Bäurle, I., Geiselhardt, S., et al.(2016). Priming and memory of stress responses in organisms lacking a nervous system. Biol. Rev. Camb. Philos. Soc., 91, 1118–1133.
Hoffland, E., van Beusichem, M.L. & Jeger, M.J. (1999). Nitrogen availability and susceptibility of tomato leaves to Botrytis cinerea. Plant Soil, 210, 263–272.
Hoffland, E., Jeger, M.J. & van Beusichem, M.L. (2000). Effect of nitrogen supply rate on disease resistance in tomato depends on the pathogen. Plant Soil, 218, 239–247.
Hoffland, E., Niemann, G.J., Van Pelt, J.A., Pureveen, J.B.M., Eijkel, G.B., Boon, J.J., et al. (1996). Relative growth rate correlates negatively with pathogen resistance in radish: The role of plant chemistry. Plant Cell Environ., 19, 1281–1290.
Howard, C., Flather, C.H. & Stephens, P.A. (2020). A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun., 11, 993.
Impson, F.A.C., Kleinjan, C.A., Hoffmann, J.H., Post, J.A. & Wood, A.R. (2011). Biological control of Australian Acacia species and Paraserianthes lophantha (Willd.) Nielsen (Mimosaceae) in South Africa.Afr. Entomol., 19, 186–207.
Iversen, C.M., McCormack, M.L., Powell, A.S., Blackwood, C.B., Freschet, G.T., Kattge, J.,et al. (2017). A global fine-root ecology database to address below-ground challenges in plant ecology. New Phytol., 215, 15–26.
Jacobs, J.S., Sheley, R.L. & Maxwell, B.D. (1996). Effect of Sclerotinia sclerotiorum on the interference between bluebunch wheatgrass (Agropyron spicatum) and spotted knapweed (Centaurea maculosa). Weed Technol., 10, 13–21.
Jennersten, O., Nilsson, S.G., Wästljung, U. & Wastljung, U. (1983). Local plant populations as ecological islands: The infection of Viscaria vulgaris by the fungus Ustilago violacea. Oikos, 41, 391.
Joshi, J. & Vrieling, K. (2005). The enemy release and EICA hypothesis revisited: incorporating the fundamental difference between specialist and generalist herbivores.Ecol. Lett., 8, 704–714.
Josse, J., Husson, F. & Others. (2016). missMDA: a package for handling missing values in multivariate data analysis. J. Stat. Softw., 70, 1–31.
Karban, R. (2011). The ecology and evolution of induced resistance against herbivores. Funct. Ecol., 25, 339–347.
Kasson, M.T., Short, D.P.G., O’Neal, E.S., Subbarao, K.V. & Davis, D.D. (2014). Comparative pathogenicity, biocontrol efficacy, and multilocus sequence typing ofVerticillium nonalfalfae from the invasive Ailanthus altissima and other hosts. Phytopathol., 104, 282–292.
Kattge, J., Diaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Bönisch, G., et al. (2011). TRY–a global database of plant traits. Glob. Chang. Biol., 17, 2905–2935.
Keane, R.M. & Crawley, M.J. (2002). Exotic plant invasions and the enemy release hypothesis.Trends Ecol. Evol., 17, 164–170.
Kearing, S.A. (1996). Spotted knapweed (Centaurea maculosa Lam) : water, nutrients, plant competition, bacteria, and the seed head fly (Urophora affinisFrnfd.). Montana State University.
Kearing, S.A., Nowierski, R.M. & Grey, W.E. (1997). First report of spotted knapweed (Centaurea maculosa) stem dieback caused by Pseudomonas syringae.Plant Dis., 81, 113.
Kleczewski, N.M. & Luke Flory, S. (2010). Leaf blight disease on the invasive grassMicrostegium vimineum caused by a Bipolaris sp.Plant Dis., 94, 807–811.
van Kleunen, M. & Fischer, M. (2009). Release from foliar and floral fungal pathogen species does not explain the geographic spread of naturalized North American plants in Europe. J. Ecol., 97, 385–392.
van Kleunen, M., Weber, E. & Fischer, M. (2010). A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett., 13, 235–245.
Klingeman, W.E., Bernard, E.C., Boggess, S.L., Pietsch, G.M., Hadziabdic, D. & Trigiano, R.N. (2019). First report of honeysuckle leaf blight on Amur honeysuckle (Lonicera maackii) caused by Insolibasidium deformans in Tennessee. Plant Dis., 103.
Kolkman, J.M. & Kelly, J.D. (2002). Agronomic traits affecting resistance to white mold in common bean. Crop Sci., 42, 693–699.
Kotzé, L.J.D., Wood, A.R. & Lennox, C.L. (2015). Risk assessment of the Acacia cyclopsdieback pathogen, Pseudolagarobasidium acaciicola, as a mycoherbicide in South African strandveld and limestone fynbos.Biol. Control, 82, 52–60.
Kramer-Walter, K.R., Bellingham, P.J., Millar, T.R., Smissen, R.D., Richardson, S.J. & Laughlin, D.C. (2016). Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. J. Ecol., 104, 1299–1310.
Laliberté, E. (2017). Below-ground frontiers in trait-based plant ecology. New Phytol.
Laliberté, E., Lambers, H., Burgess, T.I. & Joseph Wright, S. (2015). Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytol., 206, 507–521.
Lambdon, P.W. & Hulme, P.E. (2006). How strongly do interactions with closely-related native species influence plant invasions? Darwin’s naturalization hypothesis assessed on Mediterranean islands. J. Biogeogr., 33, 1116–1125.
Leffler, A.J., James, J.J., Monaco, T.A. & Sheley, R.L. (2014). A new perspective on trait differences between native and invasive exotic plants. Ecology, 95, 298–305.
Lê, S., Josse, J., Husson, F. & Others. (2008). FactoMineR: an R package for multivariate analysis.J. Stat. Softw., 25, 1–18.
Levine, J.M., Vilà, M., D’Antonio, C.M., Dukes, J.S., Grigulis, K. & Lavorel, S. (2003). Mechanisms underlying the impacts of exotic plant invasions.Proc. Roy. Soc. B-Biol. Sci., 270, 775–781.
Lewandowski, T.J., Dunfield, K.E. & Antunes, P.M. (2013). Isolate identity determines plant tolerance to pathogen attack in assembled mycorrhizal communities.PLoS One, 8, e61329.
Liang, M., Johnson, D., Burslem, D.F.R.P., Yu, S., Fang, M., Taylor, J.D., et al. (2020). Soil fungal networks maintain local dominance of ectomycorrhizal trees.Nat. Commun., 11, 2636.
Li, C.X., Li, H., Sivasithamparam, K., Fu, T.D., Li, Y.C., Liu, S.Y., et al.(2006). Expression of field resistance under Western Australian conditions to Sclerotinia sclerotiorum in Chinese and AustralianBrassica napus and Brassica juncea germplasm and its relation with stem diameter. Aust. J. Agric. Res., 57, 1131–1135.
van Loon, L.C., Bakker, P.A.H.M. & Pieterse, C.M.J. (1998). Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol., 36, 453–483.
Maherali, H. (2014). Is there an association between root architecture and mycorrhizal growth response? New Phytol., 204, 192–200.
Malamy, J., Carr, J.P., Klessig, D.F. & Raskin, I. (1990). Salicylic Acid: a likely endogenous signal in the resistance response of tobacco to viral infection.Science, 250, 1002–1004.
Maron, J.L., Vilà, M., Bommarco, R., Elmendorf, S. & Beardsley, P. (2004). Rapid evolution of an invasive plant. Ecol. Monogr., 74, 261–280.
Marquis, R.J., Diniz, I.R. & Morais, H.C. (2001). Patterns and correlates of interspecific variation in foliar insect herbivory and pathogen attack in Brazilian cerrado.J. Trop. Ecol., 17, 127–148.
Marx, D.H. (1972). Ectomycorrhizae as biological deterrents to pathogenic root infections.Annu. Rev. Phytopathol., 10, 429–454.
Maschek, O. & Halmschlager, E. (2016). First report of verticillium wilt on Ailanthus altissima in Europe caused by Verticillium nonalfalfae.Plant Dis., 100.
Maschek, O. & Halmschlager, E. (2017). Natural distribution of Verticillium wilt on invasiveAilanthus altissima in eastern Austria and its potential for biocontrol. Forest Pathol., 47, e12356.
Maschek, O. & Halmschlager, E. (2018). Effects of Verticillium nonalfalfae on Ailanthus altissima and associated indigenous and invasive tree species in eastern Austria. Eur. J. For. Res., 137, 197–209.
Mauch-Mani, B. & Mauch, F. (2005). The role of abscisic acid in plant–pathogen interactions.Curr. Opin. Plant Biol., 8, 409–414.
McArt, S.H., Koch, H., Irwin, R.E. & Adler, L.S. (2014). Arranging the bouquet of disease: Floral traits and the transmission of plant and animal pathogens. Ecol. Lett., 17, 624–636.
McElrone, A.J., Reid, C.D., Hoye, K.A., Hart, E. & Jackson, R.B. (2005). Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Glob. Chang. Biol., 11, 1828–1836.
Melotto, M., Underwood, W., Koczan, J., Nomura, K. & He, S.Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell, 126, 969–980.
Mendgen, K., Hahn, M. & Deising, H. (1996). Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu. Rev. Phytopathol., 34, 367–386.
Meyer, S.E., Beckstead, J. & Pearce, J. (2016). Community Ecology of Fungal Pathogens on Bromus tectorum. In: Exotic Brome-Grasses in Arid and Semiarid Ecosystems of the Western US, Springer Series on Environmental Management (eds. Germino, M., Chambers, J. & Brown, C.). Springer, pp. 193–223.
Meyer, S.E., Nelson, D.L. & Clement, S. (2001). Evidence for resistance polymorphism in theBromus tectorum - Ustilago bullata pathosystem: Implications for biocontrol. Can. J. Plant Pathol., 23, 19–27.
Meyer, S.E., Nelson, D.L., Clement, S. & Beckstead, J. (2008). Cheatgrass (Bromus tectorum) biocontrol using indigenous fungal pathogens. In:Proceedings-Shrublands under fire: disturbance and recovery in a changing world (eds. Kitchen, S.G., Pendleton, R.L., Monaco, T.A. & Vernon, J.). U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.
Mitchell, C.E., Blumenthal, D., Jarošík, V., Puckett, E.E. & Pyšek, P. (2010). Controls on pathogen species richness in plants’ introduced and native ranges: roles of residence time, range size and host traits. Ecol. Lett., 13, 1525–1535.
Mitchell, C.E. & Power, A.G. (2003). Release of invasive plants from fungal and viral pathogens.Nature, 421, 625–627.
Mollot, G., Pantel, J.H. & Romanuk, T.N. (2017). The effects of invasive species on the decline in species richness: a global meta-analysis. In: Advances in Ecological Research. Elsevier, pp. 61–83.
Mordecai, E.A. (2011). Pathogen impacts on plant communities: Unifying theory, concepts, and empirical work. Ecol. Monogr., 81, 429–441.
Mordecai, E.A. (2013). Despite spillover, a shared pathogen promotes native plant persistence in a cheatgrass-invaded grassland. Ecology, 94, 2744–2753.
Morris, H., Brodersen, C., Schwarze, F.W.M.R. & Jansen, S. (2016). The parenchyma of secondary xylem and its critical role in tree defense against fungal decay in relation to the CODIT model. Front. Plant Sci., 7, 1665.
Morris, M.J. (1989). A method for controlling Hakea sericea Schrad. seedlings using the fungusColletotrichum gloeosporioides (Penz.) Sacc. Weed Res., 29, 449–454.
Morris, M.J. (1991). The use of plant pathogens for biological weed control in South Africa.Agriculture, Ecosystems and Environment, 37, 239–255.
Newsham, K.K., Fitter, A.H. & Watkinson, A.R. (1995). Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J. Ecol., 83, 991–1000.
Noronha Souza, P.F., Abreu Oliveira, J.T., Vasconcelos, I.M., Magalhães, V.G., Albuquerque Silva, F.D., Guedes Silva, R.G., et al. (2020). H2O2 accumulation, host cell death and differential levels of proteins related to photosynthesis, redox homeostasis, and required for viral replication explain the resistance of EMS-mutagenized cowpea to cowpea severe mosaic virus. J. Plant Physiol., 245, 153110.
O’Neal, E.S. & Davis, D.D. (2015). Intraspecific root grafts and clonal growth withinAilanthus altissima stands influence Verticillium nonalfalfae transmission. Plant Dis., 99.
Oswald, B.P. & Nuismer, S.L. (2007). Neopolyploidy and pathogen resistance. Pro. Roy.Soc. B- Biol. Sci., 274, 2393–2397.
Packer, A. & Clay, K. (2000). Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature, 404, 278–281.
Parker, I.M. & Gilbert, G.S. (2004). The evolutionary ecology of novel plant-pathogen interactions.Annu. Rev. Ecol. Evol. Syst., 35, 675–700.
Parker, I.M. & Gilbert, G.S. (2007). When there is no escape: the effects of natural enemies on native, invasive, and noninvasive plants. Ecology, 88, 1210–1224.
Parker, I.M. & Gilbert, G.S. (2018). Density-dependent disease, life-history trade-offs, and the effect of leaf pathogens on a suite of co-occurring close relatives.J. Ecol., 106, 1829–1838.
Parker, I.M., Saunders, M., Bontrager, M., Weitz, A.P., Hendricks, R., Magarey, R., et al.(2015). Phylogenetic structure and host abundance drive disease pressure in communities. Nature, 520, 542–544.
Parker, M.A. (1994). Pathogens and sex in plants. Evol. Ecol., 8, 560–584.
Pemberton, H.B., Ong, K., Windham, M., Olson, J. & Byrne, D.H. (2018). What is rose rosette disease? HortScience, 53, 592–595.
Pimentel, D., Zuniga, R. & Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ., 52, 273–288.
Policelli, N., Chiuffo, M.C., Moyano, J., Torres, A., Rodriguez-Cabal, M.A. & Nuñez, M.A. (2018). Pathogen accumulation cannot undo the impact of invasive species.Biol. Inv., 20, 1–4.
Pouzoulet, J., Pivovaroff, A.L., Santiago, L.S. & Rolshausen, P.E. (2014). Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from dutch elm disease and esca disease in grapevine.Front. Plant Sci., 5, 253.
Pozo, M.J. & Azcón-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol., 10, 393–398.
Prentis, P.J., Wilson, J.R.U., Dormontt, E.E., Richardson, D.M. & Lowe, A.J. (2008). Adaptive evolution in invasive species. Trends Plant Sci., 13, 288–294.
Prevéy, J.S. & Seastedt, T.R. (2015). Increased winter precipitation benefits the native plant pathogen Ustilago bullata that infects an invasive grass.Biol. Inv., 17, 3041–3047.
Pringle, E.G., Álvarez-Loayza, P. & Terborgh, J. (2007). Seed characteristics and susceptibility to pathogen attack in tree seeds of the Peruvian Amazon. Plant Ecol., 193, 211–222.
Pyšek, P., Jarošík, V., Hulme, P.E., Pergl, J., Hejda, M., Schaffner, U., et al. (2012). A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol., 18, 1725–1737.
Pyšek, P. & Richardson, D.M. (2008). Traits Associated with Invasiveness in Alien Plants: Where Do We Stand? In: Biological Invasions, Ecological Studies (Analysis and Synthesis) (ed. Nentwig, W.). Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 97–125.
Pyšek, P., Richardson, D.M., Pergl, J., Jarošík, V., Sixtová, Z. & Weber, E. (2008). Geographical and taxonomic biases in invasion ecology. Trends in Ecology & Evolution, 23, 237–244.
Reich, P.B. (2014). The world-wide “fast–slow” plant economics spectrum: a traits manifesto. J. Ecol., 102, 275–301.
Richardson, D.M. & Manders, P.T. (1985). Predicting pathogen‐induced mortality in Hakea sericea (Proteaceae), an aggressive alien plant invader in South Africa. Ann. Appl. Biol., 106, 243–254.
Ridenour, W.L. & Callaway, R.M. (2003). Root herbivores, pathogenic fungi, and competition betweenCentaurea maculosa and Festuca idahoensis. Plant Ecol., 169, 161–170.
Robert, C., Garin, G., Abichou, M., Houlès, V., Pradal, C. & Fournier, C. (2018). Plant architecture and foliar senescence impact the race between wheat growth and Zymoseptoria tritici epidemics. Ann. Bot., 121, 975–989.
Roche, B.M., Alexander, H.M. & Maltby, A.D. (1995). Dispersal and disease gradients of anther-smut infection of Silene alba at different life stages.Ecology, 76, 1863–1871.
Romero, C. & Bolker, B.M. (2008). Effects of stem anatomical and structural traits on responses to stem damage: An experimental study in the Bolivian Amazon. Can. J. For. Res., 38, 611–618.
Sacdalan, A.D. (2015).Mimosa pigra dieback in the Northern Territory, Australia: Investigation into possible causes. The University of Queensland.
Salguero-Gómez, R., Jones, O.R., Jongejans, E., Blomberg, S.P., Hodgson, D.J., Mbeau-Ache, C.,et al. (2016). Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl. Acad. Sci. U. S. A., 113, 230–235.
Schall, M.J. & Davis, D.D. (2009). Verticillium wilt of Ailanthus altissima: Susceptibility of associated tree species. Plant Dis., 93, 1158–1162.
Schardl, C.L., Leuchtmann, A. & Spiering, M.J. (2004). Symbioses of grasses with seedborne fungal endophytes. Annu. Rev. Plant Biol., 55, 315–340.
Serrano, M., Coluccia, F., Torres, M., L’Haridon, F. & Métraux, J.P. (2014). The cuticle and plant defense to pathogens. Front. Plant Sci., 5, 274.
Shykoff, J.A. & Bucheli, E. (1995). Pollinator visitation patterns, floral rewards and the probability of transmission of Microbotryum violaceum, a veneral disease of plants. J. Ecol., 83, 189–198.
Shykoff, J.A., Bucheli, E. & Kaltz, O. (1996). Flower lifespan and disease risk. Nature, 379, 779–779.
Sikes, B.A., Cottenie, K. & Klironomos, J.N. (2009). Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J. Ecol., 97, 1274–1280.
Simberloff, D. & Rejmanek, M. (2011). Encyclopedia of Biological Invasions. Encyclopedias of the Natural World. Univ of California Press.
Singh, J., Fabrizio, J., Desnoues, E., Silva, J.P., Busch, W. & Khan, A. (2019). Root system traits impact early fire blight susceptibility in apple (Malus × domestica). BMC Plant Biol., 19, 579.
Smith, A.H., Potts, B.M., Ratkowsky, D.A., Pinkard, E.A. & Mohammed, C.L. (2018). Association ofEucalyptus globulus leaf anatomy with susceptibility toTeratosphaeria leaf disease. For. Pathol., 48, e12395.
Smith, L., de Lillo, E. & Amrine, J.W. (2010). Effectiveness of eriophyid mites for biological control of weedy plants and challenges for future research. Exp. Appl. Acarol., 51, 115–149.
Snoeijers, S.S., Pérez-García, A., Joosten, M.H. & De Wit, P.J. (2000). The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens. Eur. J. Plant Pathol., 106, 493–506.
Solla, A., Aguín, O., Cubera, E., Sampedro, L., Mansilla, J.P. & Zas, R. (2011). Survival time analysis of Pinus pinaster inoculated with Armillaria ostoyae: Genetic variation and relevance of seed and root traits.Eur. J. Plant Pathol., 130, 477–488.
Solla, A., Martín, J.A., Corral, P. & Gil, L. (2005). Seasonal changes in wood formation ofUlmus pumila and U. minor and its relation with Dutch elm disease. New Phytol., 166, 1025–1034.
Stack, R.W. (1975). Protection of Douglas-fir seedlings against Fusarium root rot by a mycorrhizal fungus in the absence of mycorrhiza formation.Phytopathology.
Stephenson, A.G. (2012). Safe sex in plants. New Phytol., 193, 827–829.
Stricker, K.B., Harmon, P.F., Goss, E.M., Clay, K. & Luke Flory, S. (2016). Emergence and accumulation of novel pathogens suppress an invasive species. Ecol Lett., 19, 469–477.
Tamme, R., Götzenberger, L., Zobel, M., Bullock, J.M., Hooftman, D.A.P., Kaasik, A., et al.(2014). Predicting species’ maximum dispersal distances from simple plant traits. Ecology, 95, 505–513.
Thompson, K. & Davis, M.A. (2011). Why research on traits of invasive plants tells us very little.Trends Ecol. Evol., 26, 155–156.
Thomson, F.J., Moles, A.T., Auld, T.D. & Kingsford, R.T. (2011). Seed dispersal distance is more strongly correlated with plant height than with seed mass. J. Ecol., 99, 1299–1307.
Thrall, P.H., Biere, A. & Antonovics, J. (1993). Plant life-history and disease susceptibility–the occurrence of Ustilago violacea on different species within the Caryophyllaceae. J. Ecol., 81, 489–498.
Torchin, M.E. & Mitchell, C.E. (2004). Parasites, pathogens, and invasions by plants and animals.Front. Ecol. Environ., 2, 183–190.
Tóth, T., Szilágyi, A. & Kövics, G. (2018). Preliminary estimation of the efficacy ofFusarium sporotrichioides Sherb. as biological control agent against common milkweed (Asclepias syriaca L.). Acta Agraria Debreceniensis, 74, 201–204.
Trognitz, F., Hackl, E., Widhalm, S. & Sessitsch, A. (2016). The role of plant–microbiome interactions in weed establishment and control. FEMS Microbiol. Ecol., 92.
Underwood, W. (2012). The plant cell wall: A dynamic barrier against pathogen invasion.Front. Plant Sci., 3, 85.
Valkama, E., Koricheva, J., Salminen, J.P., Helander, M., Saloniemi, I., Saikkonen, K., et al. (2005). Leaf surface traits: Overlooked determinants of birch resistance to herbivores and foliar micro-fungi? Trees, 19, 191–197.
Van Kleunen, M., Dawson, W., Schlaepfer, D., Jeschke, J.M. & Fischer, M. (2010). Are invaders different? A conceptual framework of comparative approaches for assessing determinants of invasiveness. Ecol. Lett., 13, 947–958.
Van Wees, S.C.M., Van der Ent, S. & Pieterse, C.M.J. (2008). Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol., 11, 443–448.
Veresoglou, S.D., Barto, E.K., Menexes, G. & Rillig, M.C. (2013). Fertilization affects severity of disease caused by fungal plant pathogens. Plant Pathol., 62, 961–969.
Vidal, T., Gigot, C., de Vallavieille-Pope, C., Huber, L. & Saint-Jean, S. (2018). Contrasting plant height can improve the control of rain-borne diseases in wheat cultivar mixture: modelling splash dispersal in 3-D canopies. Ann. Bot., 121, 1299–1308.
Vilà, M., Espinar, J.L., Hejda, M., Hulme, P.E., Jarošík, V., Maron, J.L., et al. (2011). Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett., 14, 702–708.
Vitousek, P.M., D’Antonio, C.M., Loope, L.L., Rejmánek, M. & Westbrooks, R. (1997). Introduced species: A significant component of human-caused global change. N. Z. J. Ecol., 21, 1–16.
Walters, D.R. & Bingham, I.J. (2007). Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control. Ann.Appl. Biol., 151, 307–324.
Watson, A.K., Copeman, R.J. & Renney, A.J. (1974). A first record of Sclerotinia sclerotiorumand Microsphaeropsis centaureae on Centaurea diffusa.Can. J. Bot., 52, 2639–2640.
Wehner, J., Antunes, P.M., Powell, J.R., Caruso, T. & Rillig, M.C. (2011). Indigenous arbuscular mycorrhizal fungal assemblages protect grassland host plants from pathogens. PLoS One, 6, e27381.
Welsh, M.E., Cronin, J.P. & Mitchell, C.E. (2016). The role of habitat filtering in the leaf economics spectrum and plant susceptibility to pathogen infection.J. Ecol., 104, 1768–1777.
Whipps, J.M. (2004). Prospects and limitations for mycorrhizas in biocontrol of root pathogens.Can. J. Bot., 82, 1198–1227.
Wilson, C.G. & Pitkethley, N.R. (1992). Botryodiplodia dieback of Mimosa pigra, a noxious weed in northern Australia. Plant Pathol., 41, 777–779.
Wood, A.R. & Ginns, J. (2006). A new dieback disease of Acacia cyclops in South Africa caused by Pseudolagarobasidium acaciicola sp.nov. Can. J. Bot., 84, 750–758.
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., et al.(2004). The worldwide leaf economics spectrum. Nature, 428, 821–827.
Yanai, R.D. & Eissenstat, D.M. (2002). Coping with herbivores and pathogens: A model of optimal root turnover. Funct. Ecol., 16, 865–869.
Zamioudis, C. & Pieterse, C.M.J. (2012). Modulation of host immunity by beneficial microbes.Mol. Plant Microbe Interact., 25, 139–150.
Zhang, Q., Yang, R., Tang, J., Yang, H., Hu, S. & Chen, X. (2010). Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS One, 5, e12380–e12380.
Zhang, S., Jin, Y., Tang, J. & Chen, X. (2009). The invasive plant Solidago canadensis L. suppresses local soil pathogens through allelopathy. Appl. Soil Ecol., 41, 215–222.
Zúñiga, E., Luque, J. & Martos, S. (2019). Lignin biosynthesis as a key mechanism to repressPolystigma amygdalinum, the causal agent of the red leaf blotch disease in almond. J. Plant Physiol., 236, 96–104.