References
Aghighi, S., Burgess, T.I.,
Scott, J.K., Calver, M. & Hardy, G.E.S.J. (2016). Isolation and
pathogenicity of Phytophthora species from declining Rubus
anglocandicans. Plant Pathol., 65, 451–461.
Aghighi, S., Fontanini, L.,
Yeoh, P.B., Hardy, G.E.S.J., Burgess, T.I. & Scott, J.K. (2014). A
conceptual model to describe the decline of European blackberry
(Rubus anglocandicans), a weed of national significance in
Australia. Plant Dis., 98, 580–589.
Aghighi, S., Hardy, G.E.S.J.,
Scott, J.K. & Burgess, T.I. (2012). Phytophthora bilorbang sp.
nov., a new species associated with the decline of Rubus
anglocandicans (European blackberry) in Western Australia. Eur.
J. Plant Pathol., 133, 841–855.
Agrawal, A.A. & Kotanen, P.M.
(2003). Herbivores and the success of exotic plants: a phylogenetically
controlled experiment. Ecol Lett, 6, 712–715.
Akhtar, S.S., Mekureyaw, M.F.,
Pandey, C. & Roitsch, T. (2020). Role of cytokinins for interactions of
plants with microbial pathogens and pest insects. Front. Plant
Sci., 10, 1777.
Alexander, H.M. (1984).
Spatial patterns of disease induced by Fusarium moniliforme var.
subglutinans in a population of Plantago lanceolata.Oecologia, 62, 141–143.
Alpert, P., Bone, E. &
Holzapfel, C. (2000). Invasiveness, invasibility and the role of
environmental stress in the spread of non-native plants. Perspect.
Plant Ecol. Evol. Syst., 3, 52–66.
Amrine, J.W., Jr., Hindal,
D.F., Williams, R., Appel, J., Stasny, T. & Kassar, A. (1990). Rose
rosette as a biocontrol of multiflora rose, 1987-1989. In:Proceedings of the 43rd Annual Meeting of the Southern Weed
Science Society. pp. 316–320.
Ando, K., Grumet, R.,
Terpstra, K. & Kelly, J.D. (2007). Manipulation of plant architecture
to enhance crop disease control. CAB Reviews: Perspectives in
Agriculture, Veterinary Science, Nutrition and Natural Resources, 2,
8.
Atucha, A., Emmett, B. &
Bauerle, T.L. (2014). Growth rate of fine root systems influences
rootstock tolerance to replant disease. Plant Soil, 376,
337–346.
Augspurger, C.K. & Kelly,
C.K. (1984). Pathogen mortality of tropical tree seedlings: experimental
studies of the effects of dispersal distance, seedling density, and
light conditions. Oecologia, 61, 211–217.
Beckman, N.G. &
Muller-Landau, H.C. (2011). Linking fruit traits to variation in
predispersal vertebrate seed predation, insect seed predation, and
pathogen attack. Ecology, 92, 2131–2140.
Beckstead, J., Meyer, S.E.,
Molder, C.J. & Smith, C. (2007). A race for survival: Can Bromus
tectorum seeds escape Pyrenophora semeniperda-caused mortality
by germinating quickly? Ann. Bot., 99, 907–914.
Beckstead, J., Meyer, S.E.,
Reinhart, K.O., Bergen, K.M., Holden, S.R. & Boekweg, H.F. (2014).
Factors affecting host range in a generalist seed pathogen of semi-arid
shrublands. Plant Ecol., 215, 427–440.
Bednarek, P. & Osbourn, A.
(2009). Plant-microbe interactions: chemical diversity in plant defense.Science, 324, 746–748.
Bennett, R.N. & Wallsgrove,
R.M. (1994). Secondary metabolites in plant defence mechanisms.New Phytol., 127, 617–633.
Blossey, B. & Notzold, R.
(1995). Evolution of increased competitive ability in invasive
nonindigenous plants: A hypothesis. J. Ecol., 83, 887–889.
Blossey, B., Nuzzo, V., Hinz,
H. & Gerber, E. (2001). Developing biological control of Alliaria
petiolata (M. Bieb.) Cavara and Grande (garlic mustard). Nat.
Areas J., 21, 357–367.
Blumenthal, D., Mitchell,
C.E., Pysek, P. & Jarosík, V. (2009). Synergy between pathogen release
and resource availability in plant invasion. Proc. Natl. Acad.
Sci. U. S. A., 106, 7899–7904.
Boege, K., Dirzo, R., Siemens,
D. & Brown, P. (2007). Ontogenetic switches from plant resistance to
tolerance: minimizing costs with age? Ecol. Lett., 10, 177–187.
Bohár, G. & Schwarczinger, I.
(1999). First report of a Septoria sp. on common ragweed
(Ambrosia artemisiifolia) in Europe. Plant Dis., 83.
Borer, E.T., Hosseini, P.R.,
Seabloom, E.W. & Dobson, A.P. (2007). Pathogen-induced reversal of
native dominance in a grassland community. Proc. Natl. Acad. Sci.
U. S. A., 104, 5473–5478.
Borowicz, V.A. (2001). Do
arbuscular mycorrhizal fungi alter plant–pathogen relations?Ecology, 82, 3057–3068.
Boyce, R.L. (2018). High
mortality seen in open-grown, but not forest-understory, Amur
honeysuckle (Lonicera maackii, Caprifoliaceae) stands in northern
Kentucky. J. Torrey Bot. Soc., 145, 21–29.
Boyce, R.L., Brossart, S.N.,
Bryant, L.A., Fehrenbach, L.A., Hetzer, R., Holt, J.E., et al.(2014). The beginning of the end? Extensive dieback of an open-grown
Amur honeysuckle stand in northern Kentucky, USA. Biol. Inv., 16,
2017–2023.
Boyce, R.L., Castellano, S.M.,
Marroquin, A.N., Uwolloh, O.M., Farrar, S.E. & Wolfe, K.P. (2020).
Honeysuckle leaf blight reduces the growth of infected Amur honeysuckle
(Lonicera maackii, Caprifoliaceae) seedlings in a greenhouse
experiment. J. Torrey
Bot. Soc., 147, 1–8.
Bradley, D.J., Gilbert, G.S.
& Parker, I.M. (2003). Susceptibility of clover species to fungal
infection: the interaction of leaf surface traits and environment.Am. J. Bot., 90, 857–864.
Brooks, R.K., Wickert, K.L.,
Baudoin, A., Kasson, M.T. & Salom, S. (2020). Field-inoculatedAilanthus altissima stands reveal the biological control
potential of Verticillium nonalfalfae in the mid-Atlantic region
of the United States. Biol. Control, 148, 104298.
Bruckart, W.L., Eskandari,
F.M., Michael, J.L. & Smallwood, E.L. (2017). Differential
aggressiveness of Bipolaris microstegii and B. drechslerion Japanese stiltgrass. Invasive Plant Sci. Manage., 10, 44–52.
Burdon, J.J. & Chilvers, G.A.
(1982). Host density as a factor in plant disease ecology. Annu.
Rev. Phytopathol., 20, 143–166.
Burdon, J.J., Ericson, L. &
Muller, W.J. (1995). Temporal and spatial changes in a metapopulation of
the rust pathogen Triphragmium ulmariae and its host,Filipendula ulmaria. J. Ecol., 83, 979–989.
Burdon, J.J., Jarosz, A.M. &
Kirby, G.C. (1989). Pattern and patchiness in plant-pathogen
interactions–Causes and consequences. Ann. Rev.Ecol. Sys. 20, 119–136.
Busch, J.W., Neiman, M. &
Koslow, J.M. (2004). Evidence for maintenance of sex by pathogens in
plants. Evol, 58, 2584–2590.
Carver, T.L.W. & Gurr, S.J.
(2008). Filamentous fungi on plant surfaces. In: Annual Plant
Reviews Volume 23: Biology of the Plant Cuticle (eds. Riederer, M. &
Müller, C.). Blackwell Publishing Ltd, pp. 368–392.
Cazetta, E., Schaefer, H.M. &
Galetti, M. (2008). Does attraction to frugivores or defense against
pathogens shape fruit pulp composition? Oecologia, 155,
277–286.
Chattopadhyay, S., Ali, K.A.,
Doss, S.G., Das, N.K., Aggarwal, R.K., Bandopadhyay, T.K., et al.(2011). Association of leaf micro-morphological characters with powdery
mildew resistance in field-grown mulberry (Morus spp.) germplasm.AoB Plants, 2011, lr002.
Cipollini, D., Davis, S.,
Lieurance, D., Cipollini, K. & Bahn, V. (2020). Biogeographic variation
in resistance of the invasive plant, Alliaria petiolata, to a
powdery mildew fungus and effect of resistance on competitive dynamics.Biol. Inv., 22, 1657–1668.
Cipollini, D. & Enright, S.
(2009). A powdery mildew fungus levels the playing field for garlic
mustard (Alliaria petiolata) and a North American native plant.Invasive Plant Sci. Manage., 2, 253–259.
Cipollini, M.L., Paulk, E.,
Mink, K., Vaughn, K. & Fischer, T. (2004). Defense tradeoffs in fleshy
fruits: Effects of resource variation on growth, reproduction, and fruit
secondary chemistry in Solanum carolinense. J. Chem.
Ecol., 30, 1–17.
Clay, K. (1995). Correlates of
pathogen species richness in the grass family. Can. J. Bot., 73,
42–49.
Clay, K., Reinhart, K.,
Rudgers, J., Tintjer, T., Koslow, J. & Flory, S.L. (2008). Red queen
communities. In: Infectious Disease Ecology: Effects of Ecosystems
on Disease and of Disease on Ecosystems (ed. Ostfeld, R.S.). Princeton
University Press, Princeton, NJ, pp. 145–178.
Clay, K. & Schardl, C.
(2002). Evolutionary origins and ecological consequences of endophyte
symbiosis with grasses. Am. Nat., 160 Suppl 4, S99–S127.
Cobb, F.W., Jr, Slaughter,
G.W., Rowney, D.L. & DeMars, C.J. (1982). Rate of spread ofCeratocystis wageneri in ponderosa pine stands in the central
Sierra Nevada. Phytopathol., 72, 1359–1362.
Colautti, R.I. & Barrett,
S.C.H. (2013). Rapid adaptation to climate facilitates range expansion
of an invasive plant. Science, 342, 364–366.
Colautti, R.I., Ricciardi, A.,
Grigorovich, I.A. & MacIsaac, H.J. (2004). Is invasion success
explained by the enemy release hypothesis? Ecol. Lett., 7,
721–733.
Coley, P.D., Bryant, J.P. &
Chapin, F.S., 3rd. (1985). Resource availability and plant antiherbivore
defense. Science, 230, 895–899.
Connell, J.H. & Lowman, M.D.
(1989). Low-diversity tropical rain forests: Some possible mechanisms
for their existence. Am. Nat., 134, 88–119.
Conrath, U., Beckers, G.J.M.,
Flors, V., García-Agustín, P., Jakab, G., Mauch, F., et al.(2006). Priming: Getting ready for battle. Mol. Plant. Microbe.
Interact., 19, 1062–1071.
Costes, E., Lauri, P.E.,
Simon, S. & Andrieu, B. (2013). Plant architecture, its diversity and
manipulation in agronomic conditions, in relation with pest and pathogen
attacks. Eur. J. Plant Pathol., 135, 455–470.
Crocker, E.V., Karp, M.A. &
Nelson, E.B. (2015). Virulence of oomycete pathogens fromPhragmites australis-invaded and noninvaded soils to seedlings of
wetland plant species. Ecol. Evol., 5, 2127–2139.
Crocker, E.V., Lanzafane,
J.J., Karp, M.A. & Nelson, E.B. (2016). Overwintering seeds as
reservoirs for seedling pathogens of wetland plant species.Ecosphere, 7, e01281.
Cronin, J.P., Rúa, M.A. &
Mitchell, C.E. (2014). Why Is living fast dangerous? Disentangling the
roles of resistance and tolerance of disease. Am. Nat.,
184, 172–187.
Cunnington, J.H. & Pascoe,
I.G. (2003). First record of Insolibasidium deformans in
Australia. Australas. Plant Path., 32, 433.
Dalling, J.W., Davis, A.S.,
Schutte, B.J. & Elizabeth Arnold, A. (2011). Seed survival in soil:
interacting effects of predation, dormancy and the soil microbial
community. J. Ecol., 99, 89–95.
De la Cruz, R.G., Knudsen,
G.R., Carta, L.K. & Newcombe, G. (2018). Either low inoculum or a
multi-trophic interaction can reduce the ability of Sclerotinia
sclerotiorum to kill an invasive plant. Rhizosphere, 5, 76–80.
Dempsey, D.A. & Klessig, D.F.
(2012). SOS–too many signals for systemic acquired resistance?Trends Plant Sci., 17, 538–545.
Di Bello, P.L., Ho, T. &
Tzanetakis, I.E. (2015). The evolution of emaraviruses is becoming more
complex: Seven segments identified in the causal agent of Rose rosette
disease. Virus Res., 210, 241–244.
Diez, J.M., Dickie, I.,
Edwards, G., Hulme, P.E., Sullivan, J.J. & Duncan, R.P. (2010).
Negative soil feedbacks accumulate over time for non-native plant
species. Ecol. Lett., 13, 803–809.
Dini-Andreote, F. (2020).
Endophytes: The second layer of plant defense. Trends Plant Sci.,
25, 319–322.
Doherty, T.S., Glen, A.S.,
Nimmo, D.G., Ritchie, E.G. & Dickman, C.R. (2016). Invasive predators
and global biodiversity loss. PNAS, 113, 11261–11265.
Domínguez‐Begines, J., Ávila,
J.M., García, L.V. & Gómez‐Aparicio, L. (2020). Soil‐borne pathogens as
determinants of regeneration patterns at community level in
Mediterranean forests. New Phytol., 227, 588–600.
Dordas, C. (2008). Role of
nutrients in controlling plant diseases in sustainable agriculture. A
review. Agron. Sustain. Dev., 28, 33–46.
Duchesne, L.C., Peterson, R.L.
& Ellis, B.E. (1989). The time-course of disease suppression and
antibiosis by the ectomycorrhizal fungus Paxillus involutus.New Phytol., 111, 693–698.
Ďurkovič, J., Čaňová, I.,
Lagana, R., Kučerová, V., Moravčík, M., Priwitzer, T., et al.(2013). Leaf trait dissimilarities between Dutch elm hybrids with a
contrasting tolerance to Dutch elm disease. Ann. Bot., 111,
215–227.
Durrer, S. & Schmid-Hempel,
P. (1994). Shared use of flowers leads to horizontal pathogen
transmission. Proc. Roy. Soc B-Biol. Sci.,
258, 299–302.
El-Hajj, Z., Kavanagh, K.,
Rose, C. & Kanaan-Atallah, Z. (2004). Nitrogen and carbon dynamics of a
foliar biotrophic fungal parasite in fertilized Douglas-fir. New
Phytol., 163, 139–147.
Endara, M.-J. & Coley, P.D.
(2011). The resource availability hypothesis revisited: a meta-analysis.Funct. Ecol., 25, 389–398.
Enright, S.M. & Cipollin, D.
(2007). Infection by powdery mildew Erysiphe cruciferarum(Erysiphaceae) strongly affects growth and fitness of Alliaria
petiolata (Brassicaceae). Am. J. Bot., 94, 1813–1820.
Epstein, A.H., Hill, J.H. &
Nutter, F.W. (1997). Augmentation of rose rosette disease for biocontrol
of multiflora rose (Rosa multiflora). Weed Sci, 45,
172–178.
Erb, M., Lenk, C., Degenhardt,
J. & Turlings, T.C.J. (2009). The underestimated role of roots in
defense against leaf attackers. Trends Plant Sci., 14, 653–659.
Esler, K.J., van Wilgen, B.W.,
te Roller, K.S., Wood, A.R. & van der Merwe, J.H. (2010). A
landscape-scale assessment of the long-term integrated control of an
invasive shrub in South Africa. Biol. Inv., 12, 211–218.
Farr, D.F. & Castlebury, L.A.
(2001). Septoria epambrosiae sp. nov. on Ambrosia
artemisiifolia (common ragweed). Sydowia, 53, 81–92.
Fernández-Escobar, R. (2019).
Olive nutritional status and tolerance to biotic and abiotic stresses.Frontiers in Plant Science, 10, 1151.
Ferrari, M.J., Du, D., Winsor,
J.A. & Stephenson, A.G. (2007). Inbreeding depression of plant quality
reduces incidence of an insect-borne pathogen in a wild gourd.Int. J. Plant Sci., 168, 603–610.
Ferrenberg, S. & Mitton, J.B.
(2014). Smooth bark surfaces can defend trees against insect attack:
Resurrecting a “slippery” hypothesis. Funct. Ecol., 28,
837–845.
Fischer, G.W. (1937).
Observations on the comparative morphology and taxonomic relationships
of certain grass smuts in western North America. Mycologia, 29,
408–425.
Flory, S.L., Alba, C., Clay,
K., Holt, R.D. & Goss, E.M. (2018). Emerging pathogens can suppress
invaders and promote native species recovery. Biol. Inv., 20,
5–8.
Flory, S.L. & Clay, K.
(2013). Pathogen accumulation and long‐term dynamics of plant invasions.J. Ecol., 101, 607–613.
Flory, S.L., Kleczewski, N. &
Clay, K. (2011a). Ecological consequences of pathogen accumulation on an
invasive grass. Ecosphere, 2, 1–12.
Flory, S.L., Long, F. & Clay,
K. (2011b). Invasive Microstegium populations consistently
outperform native range populations across diverse environments.Ecology, 92, 2248–2257.
García De la Cruz, R.,
Knudsen, G.R., Carta, L.K. & Newcombe, G. (2018). Either low inoculum
or a multi-trophic interaction can reduce the ability ofSclerotinia sclerotiorum to kill an invasive plant.Rhizosphere, 5, 76–80.
Garrett, S.D. (1956). Biology
of root-infecting fungi. Soil Sci., 82, 97.
Gordon, A.J. (1999). A review
of established and new insect agents for the biological control ofHakea sericea Schrader (Proteaceae) in South Africa.African Entomology Memoir , 1, 35-43.
Gruntman, M., Segev, U.,
Glauser, G. & Tielbörger, K. (2017). Evolution of plant defences along
an invasion chronosequence: Defence is lost due to enemy release–but
not forever. J. Ecol., 105, 255–264.
Häffner, E., Konietzki, S. &
Diederichsen, E. (2015). Keeping control: The role of senescence and
development in plant pathogenesis and defense. Plants, 4,
449–488.
Handley, R.J., Steinger, T.,
Treier, U.A. & Müller-Schärer, H. (2008). Testing the evolution of
increased competitive ability (EICA) hypothesis in a novel framework.Ecology, 89, 407–417.
Hantsch, L., Braun, U., Haase,
J., Purschke, O., Scherer-Lorenzen, M. & Bruelheide, H. (2014). No
plant functional diversity effects on foliar fungal pathogens in
experimental tree communities. Fungal Divers., 66, 139–151.
Harms, N., Shearer, J.,
Cronin, J.T. & Gaskin, J.F. (2020). Geographic and genetic variation in
susceptibility of Butomus umbellatus to foliar fungal pathogens.Biol. Inv., 22, 535–548.
Hawkes, C.V. (2007). Are
invaders moving targets? The generality and persistence of advantages in
size, reproduction, and enemy release in invasive plant species with
time since introduction. Am. Nat., 170, 832–843.
Hejda, M., Pyšek, P. &
Jarosík, V. (2009). Impact of invasive plants on the species richness,
diversity and composition of invaded communities. J. Ecol., 97,
393–403.
Herms, D.A. & Mattson, W.J.
(1992). The dilemma of plants: To grow or defend. Q. Rev. Biol.,
67, 283–335.
Hilker, M., Schwachtje, J.,
Baier, M., Balazadeh, S., Bäurle, I., Geiselhardt, S., et al.(2016). Priming and memory of stress responses in organisms lacking a
nervous system. Biol. Rev. Camb. Philos. Soc., 91, 1118–1133.
Hoffland, E., van Beusichem,
M.L. & Jeger, M.J. (1999). Nitrogen availability and susceptibility of
tomato leaves to Botrytis cinerea. Plant Soil, 210,
263–272.
Hoffland, E., Jeger, M.J. &
van Beusichem, M.L. (2000). Effect of nitrogen supply rate on disease
resistance in tomato depends on the pathogen. Plant Soil, 218,
239–247.
Hoffland, E., Niemann, G.J.,
Van Pelt, J.A., Pureveen, J.B.M., Eijkel, G.B., Boon, J.J., et
al. (1996). Relative growth rate correlates negatively with pathogen
resistance in radish: The role of plant chemistry. Plant Cell
Environ., 19, 1281–1290.
Howard, C., Flather, C.H. &
Stephens, P.A. (2020). A global assessment of the drivers of threatened
terrestrial species richness. Nat. Commun., 11, 993.
Impson, F.A.C., Kleinjan,
C.A., Hoffmann, J.H., Post, J.A. & Wood, A.R. (2011). Biological
control of Australian Acacia species and Paraserianthes
lophantha (Willd.) Nielsen (Mimosaceae) in South Africa.Afr. Entomol., 19, 186–207.
Iversen, C.M., McCormack,
M.L., Powell, A.S., Blackwood, C.B., Freschet, G.T., Kattge, J.,et al. (2017). A global fine-root ecology database to address
below-ground challenges in plant ecology. New Phytol., 215,
15–26.
Jacobs, J.S., Sheley, R.L. &
Maxwell, B.D. (1996). Effect of Sclerotinia sclerotiorum on the
interference between bluebunch wheatgrass (Agropyron spicatum)
and spotted knapweed (Centaurea maculosa). Weed Technol.,
10, 13–21.
Jennersten, O., Nilsson, S.G.,
Wästljung, U. & Wastljung, U. (1983). Local plant populations as
ecological islands: The infection of Viscaria vulgaris by the
fungus Ustilago violacea. Oikos, 41, 391.
Joshi, J. & Vrieling, K.
(2005). The enemy release and EICA hypothesis revisited: incorporating
the fundamental difference between specialist and generalist herbivores.Ecol. Lett., 8, 704–714.
Josse, J., Husson, F. &
Others. (2016). missMDA: a package for handling missing values in
multivariate data analysis. J. Stat. Softw., 70, 1–31.
Karban, R. (2011). The ecology
and evolution of induced resistance against herbivores. Funct.
Ecol., 25, 339–347.
Kasson, M.T., Short, D.P.G.,
O’Neal, E.S., Subbarao, K.V. & Davis, D.D. (2014). Comparative
pathogenicity, biocontrol efficacy, and multilocus sequence typing ofVerticillium nonalfalfae from the invasive Ailanthus
altissima and other hosts. Phytopathol., 104, 282–292.
Kattge, J., Diaz, S., Lavorel,
S., Prentice, I.C., Leadley, P., Bönisch, G., et al. (2011).
TRY–a global database of plant traits. Glob. Chang. Biol., 17,
2905–2935.
Keane, R.M. & Crawley, M.J.
(2002). Exotic plant invasions and the enemy release hypothesis.Trends Ecol. Evol., 17, 164–170.
Kearing, S.A. (1996). Spotted
knapweed (Centaurea maculosa Lam) : water, nutrients, plant
competition, bacteria, and the seed head fly (Urophora affinisFrnfd.). Montana State University.
Kearing, S.A., Nowierski, R.M.
& Grey, W.E. (1997). First report of spotted knapweed (Centaurea
maculosa) stem dieback caused by Pseudomonas syringae.Plant Dis., 81, 113.
Kleczewski, N.M. & Luke
Flory, S. (2010). Leaf blight disease on the invasive grassMicrostegium vimineum caused by a Bipolaris sp.Plant Dis., 94, 807–811.
van Kleunen, M. & Fischer, M.
(2009). Release from foliar and floral fungal pathogen species does not
explain the geographic spread of naturalized North American plants in
Europe. J. Ecol., 97, 385–392.
van Kleunen, M., Weber, E. &
Fischer, M. (2010). A meta-analysis of trait differences between
invasive and non-invasive plant species. Ecol. Lett., 13,
235–245.
Klingeman, W.E., Bernard,
E.C., Boggess, S.L., Pietsch, G.M., Hadziabdic, D. & Trigiano, R.N.
(2019). First report of honeysuckle leaf blight on Amur honeysuckle
(Lonicera maackii) caused by Insolibasidium deformans in
Tennessee. Plant Dis., 103.
Kolkman, J.M. & Kelly, J.D.
(2002). Agronomic traits affecting resistance to white mold in common
bean. Crop Sci., 42, 693–699.
Kotzé, L.J.D., Wood, A.R. &
Lennox, C.L. (2015). Risk assessment of the Acacia cyclopsdieback pathogen, Pseudolagarobasidium acaciicola, as a
mycoherbicide in South African strandveld and limestone fynbos.Biol. Control, 82, 52–60.
Kramer-Walter, K.R.,
Bellingham, P.J., Millar, T.R., Smissen, R.D., Richardson, S.J. &
Laughlin, D.C. (2016). Root traits are multidimensional: specific root
length is independent from root tissue density and the plant economic
spectrum. J. Ecol., 104, 1299–1310.
Laliberté, E. (2017).
Below-ground frontiers in trait-based plant ecology. New Phytol.
Laliberté, E., Lambers, H.,
Burgess, T.I. & Joseph Wright, S. (2015). Phosphorus limitation,
soil-borne pathogens and the coexistence of plant species in
hyperdiverse forests and shrublands. New Phytol., 206, 507–521.
Lambdon, P.W. & Hulme, P.E.
(2006). How strongly do interactions with closely-related native species
influence plant invasions? Darwin’s naturalization hypothesis assessed
on Mediterranean islands. J. Biogeogr., 33, 1116–1125.
Leffler, A.J., James, J.J.,
Monaco, T.A. & Sheley, R.L. (2014). A new perspective on trait
differences between native and invasive exotic plants. Ecology,
95, 298–305.
Lê, S., Josse, J., Husson, F.
& Others. (2008). FactoMineR: an R package for multivariate analysis.J. Stat. Softw., 25, 1–18.
Levine, J.M., Vilà, M.,
D’Antonio, C.M., Dukes, J.S., Grigulis, K. & Lavorel, S. (2003).
Mechanisms underlying the impacts of exotic plant invasions.Proc. Roy. Soc. B-Biol. Sci., 270,
775–781.
Lewandowski, T.J., Dunfield,
K.E. & Antunes, P.M. (2013). Isolate identity determines plant
tolerance to pathogen attack in assembled mycorrhizal communities.PLoS One, 8, e61329.
Liang, M., Johnson, D.,
Burslem, D.F.R.P., Yu, S., Fang, M., Taylor, J.D., et al. (2020).
Soil fungal networks maintain local dominance of ectomycorrhizal trees.Nat. Commun., 11, 2636.
Li, C.X., Li, H.,
Sivasithamparam, K., Fu, T.D., Li, Y.C., Liu, S.Y., et al.(2006). Expression of field resistance under Western Australian
conditions to Sclerotinia sclerotiorum in Chinese and AustralianBrassica napus and Brassica juncea germplasm and its
relation with stem diameter. Aust. J. Agric. Res., 57,
1131–1135.
van Loon, L.C., Bakker,
P.A.H.M. & Pieterse, C.M.J. (1998). Systemic resistance induced by
rhizosphere bacteria. Annu. Rev. Phytopathol., 36, 453–483.
Maherali, H. (2014). Is there
an association between root architecture and mycorrhizal growth
response? New Phytol., 204, 192–200.
Malamy, J., Carr, J.P.,
Klessig, D.F. & Raskin, I. (1990). Salicylic Acid: a likely endogenous
signal in the resistance response of tobacco to viral infection.Science, 250, 1002–1004.
Maron, J.L., Vilà, M.,
Bommarco, R., Elmendorf, S. & Beardsley, P. (2004). Rapid evolution of
an invasive plant. Ecol. Monogr., 74, 261–280.
Marquis, R.J., Diniz, I.R. &
Morais, H.C. (2001). Patterns and correlates of interspecific variation
in foliar insect herbivory and pathogen attack in Brazilian cerrado.J. Trop. Ecol., 17, 127–148.
Marx, D.H. (1972).
Ectomycorrhizae as biological deterrents to pathogenic root infections.Annu. Rev. Phytopathol., 10, 429–454.
Maschek, O. & Halmschlager,
E. (2016). First report of verticillium wilt on Ailanthus
altissima in Europe caused by Verticillium nonalfalfae.Plant Dis., 100.
Maschek, O. & Halmschlager,
E. (2017). Natural distribution of Verticillium wilt on invasiveAilanthus altissima in eastern Austria and its potential for
biocontrol. Forest Pathol., 47, e12356.
Maschek, O. & Halmschlager,
E. (2018). Effects of Verticillium nonalfalfae on Ailanthus
altissima and associated indigenous and invasive tree species in
eastern Austria. Eur. J. For. Res., 137, 197–209.
Mauch-Mani, B. & Mauch, F.
(2005). The role of abscisic acid in plant–pathogen interactions.Curr. Opin. Plant Biol., 8, 409–414.
McArt, S.H., Koch, H., Irwin,
R.E. & Adler, L.S. (2014). Arranging the bouquet of disease: Floral
traits and the transmission of plant and animal pathogens. Ecol.
Lett., 17, 624–636.
McElrone, A.J., Reid, C.D.,
Hoye, K.A., Hart, E. & Jackson, R.B. (2005). Elevated CO2 reduces
disease incidence and severity of a red maple fungal pathogen via
changes in host physiology and leaf chemistry. Glob. Chang.
Biol., 11, 1828–1836.
Melotto, M., Underwood, W.,
Koczan, J., Nomura, K. & He, S.Y. (2006). Plant stomata function in
innate immunity against bacterial invasion. Cell, 126, 969–980.
Mendgen, K., Hahn, M. &
Deising, H. (1996). Morphogenesis and mechanisms of penetration by plant
pathogenic fungi. Annu. Rev. Phytopathol., 34, 367–386.
Meyer, S.E., Beckstead, J. &
Pearce, J. (2016). Community Ecology of Fungal Pathogens on Bromus
tectorum. In: Exotic Brome-Grasses in Arid and Semiarid
Ecosystems of the Western US, Springer Series on Environmental
Management (eds. Germino, M., Chambers, J. & Brown, C.). Springer, pp.
193–223.
Meyer, S.E., Nelson, D.L. &
Clement, S. (2001). Evidence for resistance polymorphism in theBromus tectorum - Ustilago bullata pathosystem:
Implications for biocontrol. Can. J. Plant Pathol., 23, 19–27.
Meyer, S.E., Nelson, D.L.,
Clement, S. & Beckstead, J. (2008). Cheatgrass (Bromus tectorum)
biocontrol using indigenous fungal pathogens. In:Proceedings-Shrublands under fire: disturbance and recovery in a
changing world (eds. Kitchen, S.G., Pendleton, R.L., Monaco, T.A. &
Vernon, J.). U.S. Department of Agriculture, Forest Service, Rocky
Mountain Research Station.
Mitchell, C.E., Blumenthal,
D., Jarošík, V., Puckett, E.E. & Pyšek, P. (2010). Controls on pathogen
species richness in plants’ introduced and native ranges: roles of
residence time, range size and host traits. Ecol. Lett., 13,
1525–1535.
Mitchell, C.E. & Power, A.G.
(2003). Release of invasive plants from fungal and viral pathogens.Nature, 421, 625–627.
Mollot, G., Pantel, J.H. &
Romanuk, T.N. (2017). The effects of invasive species on the decline in
species richness: a global meta-analysis. In: Advances in
Ecological Research. Elsevier, pp. 61–83.
Mordecai, E.A. (2011).
Pathogen impacts on plant communities: Unifying theory, concepts, and
empirical work. Ecol. Monogr., 81, 429–441.
Mordecai, E.A. (2013). Despite
spillover, a shared pathogen promotes native plant persistence in a
cheatgrass-invaded grassland. Ecology, 94, 2744–2753.
Morris, H., Brodersen, C.,
Schwarze, F.W.M.R. & Jansen, S. (2016). The parenchyma of secondary
xylem and its critical role in tree defense against fungal decay in
relation to the CODIT model. Front. Plant Sci., 7, 1665.
Morris, M.J. (1989). A method
for controlling Hakea sericea Schrad. seedlings using the fungusColletotrichum gloeosporioides (Penz.) Sacc. Weed Res.,
29, 449–454.
Morris, M.J. (1991). The use
of plant pathogens for biological weed control in South Africa.Agriculture, Ecosystems and Environment, 37, 239–255.
Newsham, K.K., Fitter, A.H. &
Watkinson, A.R. (1995). Arbuscular mycorrhiza protect an annual grass
from root pathogenic fungi in the field. J. Ecol., 83,
991–1000.
Noronha Souza, P.F., Abreu
Oliveira, J.T., Vasconcelos, I.M., Magalhães, V.G., Albuquerque Silva,
F.D., Guedes Silva, R.G., et al. (2020).
H2O2 accumulation, host cell death and
differential levels of proteins related to photosynthesis, redox
homeostasis, and required for viral replication explain the resistance
of EMS-mutagenized cowpea to cowpea severe mosaic virus. J. Plant
Physiol., 245, 153110.
O’Neal, E.S. & Davis, D.D.
(2015). Intraspecific root grafts and clonal growth withinAilanthus altissima stands influence Verticillium
nonalfalfae transmission. Plant Dis., 99.
Oswald, B.P. & Nuismer, S.L.
(2007). Neopolyploidy and pathogen resistance. Pro. Roy.Soc. B- Biol. Sci., 274, 2393–2397.
Packer, A. & Clay, K. (2000).
Soil pathogens and spatial patterns of seedling mortality in a temperate
tree. Nature, 404, 278–281.
Parker, I.M. & Gilbert, G.S.
(2004). The evolutionary ecology of novel plant-pathogen interactions.Annu. Rev. Ecol. Evol. Syst., 35, 675–700.
Parker, I.M. & Gilbert, G.S.
(2007). When there is no escape: the effects of natural enemies on
native, invasive, and noninvasive plants. Ecology, 88,
1210–1224.
Parker, I.M. & Gilbert, G.S.
(2018). Density-dependent disease, life-history trade-offs, and the
effect of leaf pathogens on a suite of co-occurring close relatives.J. Ecol., 106, 1829–1838.
Parker, I.M., Saunders, M.,
Bontrager, M., Weitz, A.P., Hendricks, R., Magarey, R., et al.(2015). Phylogenetic structure and host abundance drive disease pressure
in communities. Nature, 520, 542–544.
Parker, M.A. (1994). Pathogens
and sex in plants. Evol. Ecol., 8, 560–584.
Pemberton, H.B., Ong, K.,
Windham, M., Olson, J. & Byrne, D.H. (2018). What is rose rosette
disease? HortScience, 53, 592–595.
Pimentel, D., Zuniga, R. &
Morrison, D. (2005). Update on the environmental and economic costs
associated with alien-invasive species in the United States. Ecol.
Econ., 52, 273–288.
Policelli, N., Chiuffo, M.C.,
Moyano, J., Torres, A., Rodriguez-Cabal, M.A. & Nuñez, M.A. (2018).
Pathogen accumulation cannot undo the impact of invasive species.Biol. Inv., 20, 1–4.
Pouzoulet, J., Pivovaroff,
A.L., Santiago, L.S. & Rolshausen, P.E. (2014). Can vessel dimension
explain tolerance toward fungal vascular wilt diseases in woody plants?
Lessons from dutch elm disease and esca disease in grapevine.Front. Plant Sci., 5, 253.
Pozo, M.J. & Azcón-Aguilar,
C. (2007). Unraveling mycorrhiza-induced resistance. Curr. Opin.
Plant Biol., 10, 393–398.
Prentis, P.J., Wilson, J.R.U.,
Dormontt, E.E., Richardson, D.M. & Lowe, A.J. (2008). Adaptive
evolution in invasive species. Trends Plant Sci., 13, 288–294.
Prevéy, J.S. & Seastedt, T.R.
(2015). Increased winter precipitation benefits the native plant
pathogen Ustilago bullata that infects an invasive grass.Biol. Inv., 17, 3041–3047.
Pringle, E.G., Álvarez-Loayza,
P. & Terborgh, J. (2007). Seed characteristics and susceptibility to
pathogen attack in tree seeds of the Peruvian Amazon. Plant
Ecol., 193, 211–222.
Pyšek, P., Jarošík, V., Hulme,
P.E., Pergl, J., Hejda, M., Schaffner, U., et al. (2012). A
global assessment of invasive plant impacts on resident species,
communities and ecosystems: The interaction of impact measures, invading
species’ traits and environment. Glob. Chang. Biol., 18,
1725–1737.
Pyšek, P. & Richardson, D.M.
(2008). Traits Associated with Invasiveness in Alien Plants: Where Do We
Stand? In: Biological Invasions, Ecological Studies (Analysis and
Synthesis) (ed. Nentwig, W.). Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 97–125.
Pyšek, P., Richardson, D.M.,
Pergl, J., Jarošík, V., Sixtová, Z. & Weber, E. (2008). Geographical
and taxonomic biases in invasion ecology. Trends in Ecology &
Evolution, 23, 237–244.
Reich, P.B. (2014). The
world-wide “fast–slow” plant economics spectrum: a traits
manifesto. J. Ecol., 102, 275–301.
Richardson, D.M. & Manders,
P.T. (1985). Predicting pathogen‐induced mortality in Hakea
sericea (Proteaceae), an aggressive alien plant invader in South
Africa. Ann. Appl. Biol., 106, 243–254.
Ridenour, W.L. & Callaway,
R.M. (2003). Root herbivores, pathogenic fungi, and competition betweenCentaurea maculosa and Festuca idahoensis. Plant
Ecol., 169, 161–170.
Robert, C., Garin, G.,
Abichou, M., Houlès, V., Pradal, C. & Fournier, C. (2018). Plant
architecture and foliar senescence impact the race between wheat growth
and Zymoseptoria tritici epidemics. Ann. Bot., 121,
975–989.
Roche, B.M., Alexander, H.M.
& Maltby, A.D. (1995). Dispersal and disease gradients of anther-smut
infection of Silene alba at different life stages.Ecology, 76, 1863–1871.
Romero, C. & Bolker, B.M.
(2008). Effects of stem anatomical and structural traits on responses to
stem damage: An experimental study in the Bolivian Amazon. Can. J.
For. Res., 38, 611–618.
Sacdalan, A.D. (2015).Mimosa pigra dieback in the Northern Territory, Australia:
Investigation into possible causes. The University of Queensland.
Salguero-Gómez, R., Jones,
O.R., Jongejans, E., Blomberg, S.P., Hodgson, D.J., Mbeau-Ache, C.,et al. (2016). Fast–slow continuum and reproductive strategies
structure plant life-history variation worldwide. Proc. Natl.
Acad. Sci. U. S. A., 113, 230–235.
Schall, M.J. & Davis, D.D.
(2009). Verticillium wilt of Ailanthus altissima: Susceptibility
of associated tree species. Plant Dis., 93, 1158–1162.
Schardl, C.L., Leuchtmann, A.
& Spiering, M.J. (2004). Symbioses of grasses with seedborne fungal
endophytes. Annu. Rev. Plant Biol., 55, 315–340.
Serrano, M., Coluccia, F.,
Torres, M., L’Haridon, F. & Métraux, J.P. (2014). The cuticle and plant
defense to pathogens. Front. Plant Sci., 5, 274.
Shykoff, J.A. & Bucheli, E.
(1995). Pollinator visitation patterns, floral rewards and the
probability of transmission of Microbotryum violaceum, a veneral
disease of plants. J. Ecol., 83, 189–198.
Shykoff, J.A., Bucheli, E. &
Kaltz, O. (1996). Flower lifespan and disease risk. Nature, 379,
779–779.
Sikes, B.A., Cottenie, K. &
Klironomos, J.N. (2009). Plant and fungal identity determines pathogen
protection of plant roots by arbuscular mycorrhizas. J. Ecol.,
97, 1274–1280.
Simberloff, D. & Rejmanek, M.
(2011). Encyclopedia of Biological Invasions. Encyclopedias of
the Natural World. Univ of California Press.
Singh, J., Fabrizio, J.,
Desnoues, E., Silva, J.P., Busch, W. & Khan, A. (2019). Root system
traits impact early fire blight susceptibility in apple (Malus ×
domestica). BMC Plant Biol., 19, 579.
Smith, A.H., Potts, B.M.,
Ratkowsky, D.A., Pinkard, E.A. & Mohammed, C.L. (2018). Association ofEucalyptus globulus leaf anatomy with susceptibility toTeratosphaeria leaf disease. For. Pathol., 48, e12395.
Smith, L., de Lillo, E. &
Amrine, J.W. (2010). Effectiveness of eriophyid mites for biological
control of weedy plants and challenges for future research. Exp.
Appl. Acarol., 51, 115–149.
Snoeijers, S.S., Pérez-García,
A., Joosten, M.H. & De Wit, P.J. (2000). The effect of nitrogen on
disease development and gene expression in bacterial and fungal plant
pathogens. Eur. J. Plant Pathol., 106, 493–506.
Solla, A., Aguín, O., Cubera,
E., Sampedro, L., Mansilla, J.P. & Zas, R. (2011). Survival time
analysis of Pinus pinaster inoculated with Armillaria
ostoyae: Genetic variation and relevance of seed and root traits.Eur. J. Plant Pathol., 130, 477–488.
Solla, A., Martín, J.A.,
Corral, P. & Gil, L. (2005). Seasonal changes in wood formation ofUlmus pumila and U. minor and its relation with Dutch elm
disease. New Phytol., 166, 1025–1034.
Stack, R.W. (1975). Protection
of Douglas-fir seedlings against Fusarium root rot by a
mycorrhizal fungus in the absence of mycorrhiza formation.Phytopathology.
Stephenson, A.G. (2012). Safe
sex in plants. New Phytol., 193, 827–829.
Stricker, K.B., Harmon, P.F.,
Goss, E.M., Clay, K. & Luke Flory, S. (2016). Emergence and
accumulation of novel pathogens suppress an invasive species. Ecol
Lett., 19, 469–477.
Tamme, R., Götzenberger, L.,
Zobel, M., Bullock, J.M., Hooftman, D.A.P., Kaasik, A., et al.(2014). Predicting species’ maximum dispersal distances from simple
plant traits. Ecology, 95, 505–513.
Thompson, K. & Davis, M.A.
(2011). Why research on traits of invasive plants tells us very little.Trends Ecol. Evol., 26, 155–156.
Thomson, F.J., Moles, A.T.,
Auld, T.D. & Kingsford, R.T. (2011). Seed dispersal distance is more
strongly correlated with plant height than with seed mass. J.
Ecol., 99, 1299–1307.
Thrall, P.H., Biere, A. &
Antonovics, J. (1993). Plant life-history and disease
susceptibility–the occurrence of Ustilago violacea on
different species within the Caryophyllaceae. J. Ecol.,
81, 489–498.
Torchin, M.E. & Mitchell,
C.E. (2004). Parasites, pathogens, and invasions by plants and animals.Front. Ecol. Environ., 2, 183–190.
Tóth, T., Szilágyi, A. &
Kövics, G. (2018). Preliminary estimation of the efficacy ofFusarium sporotrichioides Sherb. as biological control agent
against common milkweed (Asclepias syriaca L.). Acta
Agraria Debreceniensis, 74, 201–204.
Trognitz, F., Hackl, E.,
Widhalm, S. & Sessitsch, A. (2016). The role of plant–microbiome
interactions in weed establishment and control. FEMS Microbiol.
Ecol., 92.
Underwood, W. (2012). The
plant cell wall: A dynamic barrier against pathogen invasion.Front. Plant Sci., 3, 85.
Valkama, E., Koricheva, J.,
Salminen, J.P., Helander, M., Saloniemi, I., Saikkonen, K., et
al. (2005). Leaf surface traits: Overlooked determinants of birch
resistance to herbivores and foliar micro-fungi? Trees, 19,
191–197.
Van Kleunen, M., Dawson, W.,
Schlaepfer, D., Jeschke, J.M. & Fischer, M. (2010). Are invaders
different? A conceptual framework of comparative approaches for
assessing determinants of invasiveness. Ecol. Lett., 13,
947–958.
Van Wees, S.C.M., Van der Ent,
S. & Pieterse, C.M.J. (2008). Plant immune responses triggered by
beneficial microbes. Curr. Opin. Plant Biol., 11,
443–448.
Veresoglou, S.D., Barto, E.K.,
Menexes, G. & Rillig, M.C. (2013). Fertilization affects severity of
disease caused by fungal plant pathogens. Plant Pathol., 62,
961–969.
Vidal, T., Gigot, C., de
Vallavieille-Pope, C., Huber, L. & Saint-Jean, S. (2018). Contrasting
plant height can improve the control of rain-borne diseases in wheat
cultivar mixture: modelling splash dispersal in 3-D canopies. Ann.
Bot., 121, 1299–1308.
Vilà, M., Espinar, J.L.,
Hejda, M., Hulme, P.E., Jarošík, V., Maron, J.L., et al. (2011).
Ecological impacts of invasive alien plants: a meta-analysis of their
effects on species, communities and ecosystems. Ecol. Lett., 14,
702–708.
Vitousek, P.M., D’Antonio,
C.M., Loope, L.L., Rejmánek, M. & Westbrooks, R. (1997). Introduced
species: A significant component of human-caused global change. N.
Z. J. Ecol., 21, 1–16.
Walters, D.R. & Bingham, I.J.
(2007). Influence of nutrition on disease development caused by fungal
pathogens: implications for plant disease control. Ann.Appl. Biol., 151, 307–324.
Watson, A.K., Copeman, R.J. &
Renney, A.J. (1974). A first record of Sclerotinia sclerotiorumand Microsphaeropsis centaureae on Centaurea diffusa.Can. J. Bot., 52, 2639–2640.
Wehner, J., Antunes, P.M.,
Powell, J.R., Caruso, T. & Rillig, M.C. (2011). Indigenous arbuscular
mycorrhizal fungal assemblages protect grassland host plants from
pathogens. PLoS One, 6, e27381.
Welsh, M.E., Cronin, J.P. &
Mitchell, C.E. (2016). The role of habitat filtering in the leaf
economics spectrum and plant susceptibility to pathogen infection.J. Ecol., 104, 1768–1777.
Whipps, J.M. (2004). Prospects
and limitations for mycorrhizas in biocontrol of root pathogens.Can. J. Bot., 82, 1198–1227.
Wilson, C.G. & Pitkethley,
N.R. (1992). Botryodiplodia dieback of Mimosa pigra, a
noxious weed in northern Australia. Plant Pathol., 41, 777–779.
Wood, A.R. & Ginns, J.
(2006). A new dieback disease of Acacia cyclops in South Africa
caused by Pseudolagarobasidium acaciicola sp.nov. Can. J.
Bot., 84, 750–758.
Wright, I.J., Reich, P.B.,
Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., et al.(2004). The worldwide leaf economics spectrum. Nature, 428,
821–827.
Yanai, R.D. & Eissenstat,
D.M. (2002). Coping with herbivores and pathogens: A model of optimal
root turnover. Funct. Ecol., 16, 865–869.
Zamioudis, C. & Pieterse,
C.M.J. (2012). Modulation of host immunity by beneficial microbes.Mol. Plant Microbe Interact., 25, 139–150.
Zhang, Q., Yang, R., Tang, J.,
Yang, H., Hu, S. & Chen, X. (2010). Positive feedback between
mycorrhizal fungi and plants influences plant invasion success and
resistance to invasion. PLoS One, 5, e12380–e12380.
Zhang, S., Jin, Y., Tang, J.
& Chen, X. (2009). The invasive plant Solidago canadensis L.
suppresses local soil pathogens through allelopathy. Appl. Soil
Ecol., 41, 215–222.
Zúñiga, E., Luque, J. &
Martos, S. (2019). Lignin biosynthesis as a key mechanism to repressPolystigma amygdalinum, the causal agent of the red leaf blotch
disease in almond. J. Plant Physiol., 236, 96–104.