REFERENCES
Abatenh, E., Gizaw, B., Tsegaye, Z., & Genene, T. (2018). Microbial Function on Climate Change - A Review. Environment Pollution and Climate Change, 02 . doi:10.4172/2573-458X.1000147
Andersen, R., Chapman, S. J., & Artz, R. R. E. (2013). Microbial communities in natural and disturbed peatlands: A review. Soil Biology and Biochemistry, 57 , 979-994. doi:10.1016/j.soilbio.2012.10.003
Anthony, M. A., Crowther, T. W., Maynard, D. S., van den Hoogen, J., & Averill, C. (2020). Distinct Assembly Processes and Microbial Communities Constrain Soil Organic Carbon Formation. One Earth, 2 (4), 349-360. doi: 10.1016/j.oneear.2020.03.006
Bai, E., Li, S., Xu, W., Li, W., Dai, W., & Jiang, P. (2013). A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199 (2), 441-451. doi:10.1111/nph.12252
Byrne, B. (2016). Structural Equation Modeling With AMOS. New York: Routledge, https://doi.org/10.4324/9781315757421
Boothroyd, I. M., Worrall, F., & Allott, T. E. H. (2015). Variations in dissolved organic carbon concentrations across peatland hillslopes.Journal of Hydrology, 530 , 372-383. doi: 10.1016/j.jhydrol.2015.10.002
Borken, W., & Matzner, E. (2009). Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology, 15 (4), 808-824. doi:10.1111/j.1365-2486.2008.01681.x
Bouwman, A. (1990). Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. Soils and Greenhouse Effect .
Breiman, L. (2001). Random Forests. Machine Learning, 45 (1), 5-32. doi:10.1023/A:1010933404324
Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: how well do we understand the processes and their controls?Philosophical Transactions of the Royal Society B: Biological Sciences, 368 (1621), 20130122. doi: 10.1098/rstb.2013.0122
Cai, Y., & Chang, S. (2020). Disturbance Effects on Soil Carbon and Greenhouse Gas Emissions in Forest Ecosystems. Forests, 11 , 297. doi:10.3390/f11030297
Cao, R., Chen, Y., Wu, X., Zhou, Q., & Sun, S. (2018). The effect of drainage on CO2, CH4 and N2O emissions in the Zoige peatland: a 40-month in situ study. Mires and Peat, 21 , 15. doi:10.19189/MaP.2017.OMB.292
Chapman, E. J., Cadillo-Quiroz, H., Childers, D. L., Turetsky, M. R., & Waldrop, M. P. (2017). Soil microbial community composition is correlated to soil carbon processing along a boreal wetland formation gradient. European Journal of Soil Biology, 82 , 17-26. doi: 10.1016/j.ejsobi.2017.08.001
Chapuis-Lardy, L., Wrage, N., Metay, A., Chotte, J.-L., & Bernoux, M. (2007). Soils, a sink for N2O? A review. Global Change Biology, 13 (1), 1-17. doi:10.1111/j.1365-2486.2006.01280.x
Chen, H., Yang, G., Peng, C., Zhang, Y., Zhu, D., Zhu, Q., . . . Wu, J. (2014). The carbon stock of alpine peatlands on the Qinghai–Tibetan Plateau during the Holocene and their future fate. Quaternary Science Reviews, 95 , 151-158. doi: 10.1016/j.quascirev.2014.05.003
Chen, X., Hu, Y., Feng, S., Rui, Y., Zhang, Z., He, H., . . . Su, Y. (2018). Lignin and cellulose dynamics with straw incorporation in two contrasting cropping soils. Scientific Reports, 8 (1), 1633. doi:10.1038/s41598-018-20134-5
Chen, X., Wang, G., Zhang, T., Mao, T., Wei, D., Song, C., . . . Huang, K. (2017). Effects of warming and nitrogen fertilization on GHG flux in an alpine swamp meadow of a permafrost region. Science of The Total Environment, 601-602 , 1389-1399. doi:10.1016/j.scitotenv.2017.06.028
Chen, Y. T., Borken, W., Stange, C. F., & Matzner, E. (2012). Dynamics of Nitrogen and Carbon Mineralization in a Fen Soil Following Water Table Fluctuations. Wetlands, 32 (3), 579-587. doi:10.1007/s13157-012-0295-7
Chimner, R. A., Pypker, T. G., Hribljan, J. A., Moore, P. A., & Waddington, J. M. (2017). Multi-decadal Changes in Water Table Levels Alter Peatland Carbon Cycling. Ecosystems, 20 (5), 1042-1057. doi:10.1007/s10021-016-0092-x
Craine, J. M., Fierer, N., & McLauchlan, K. K. (2010). Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nature Geoscience, 3 (12), 854-857. doi:10.1038/ngeo1009
Cui, Q., Song, C., Wang, X., Shi, F., Yu, X., & Tan, W. (2018). Effects of warming on N2O fluxes in a boreal peatland of Permafrost region, Northeast China. Science of The Total Environment, 616 , 427-434. doi:10.1016/j.scitotenv.2017.10.246
Danevčič, T., Mandic-Mulec, I., Stres, B., Stopar, D., & Hacin, J. (2010). Emissions of CO2, CH4 and N2O from Southern European peatlands.Soil Biology and Biochemistry, 42 (9), 1437-1446. doi: 10.1016/j.soilbio.2010.05.004
de Vries, F. T., Griffiths, R. I., Bailey, M., Craig, H., Girlanda, M., Gweon, H. S., . . . Bardgett, R. D. (2018). Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 9 (1), 3033. doi:10.1038/s41467-018-05516-7
Dedysh, S. (2011). Cultivating Uncultured Bacteria from Northern Wetlands: Knowledge Gained and Remaining Gaps. Frontiers in Microbiology, 2 (184). doi:10.3389/fmicb.2011.00184
Di Lonardo, D. P., De Boer, W., Klein Gunnewiek, P. J. A., Hannula, S. E., & Van der Wal, A. (2017). Priming of soil organic matter: Chemical structure of added compounds is more important than the energy content.Soil Biology and Biochemistry, 108 , 41-54. doi: 10.1016/j.soilbio.2017.01.017
Dillon, M. E., Wang, G., & Huey, R. B. (2010). Global metabolic impacts of recent climate warming. Nature, 467 (7316), 704-706. doi:10.1038/nature09407
Dise, N. B., & Phoenix, G. K. (2011). Peatlands in a changing world.New Phytologist , 191(2), 309-311. doi:10.1111/j.1469-8137.2011.03801.x
Dong, Z., Hu, G., Yan, C., Wang, W., & Lu, J. (2010). Aeolian desertification and its causes in the Zoige Plateau of China’s Qinghai–Tibetan Plateau. Environmental Earth Sciences, 59 (8), 1731-1740. doi:10.1007/s12665-009-0155-9
Duval, T. P., & Radu, D. D. (2018). Effect of temperature and soil organic matter quality on greenhouse-gas production from temperate poor and rich fen soils. Ecological Engineering, 114 , 66-75. doi:10.1016/j.ecoleng.2017.05.011
Eriksson, T., Öquist, M. G., & Nilsson, M. B. (2010). Effects of decadal deposition of nitrogen and sulfur, and increased temperature, on methane emissions from a boreal peatland. Journal of Geophysical Research: Biogeosciences, 115 (G4). doi:10.1029/2010jg001285
Fenner, N., & Freeman, C. (2011). Drought-induced carbon loss in peatlands. Nature Geoscience, 4 (12), 895-900. doi:10.1038/ngeo1323
Freeman, C., Lock, M. A., & Reynolds, B. (1992). Fluxes of CO2, CH4 and N2O from a Welsh peatland following simulation of water table draw-down: Potential feedback to climatic change. Biogeochemistry, 19 (1), 51-60. doi:10.1007/BF00000574
Gatis, N., Grand-Clement, E., Luscombe, D. J., Hartley, I. P., Anderson, K., & Brazier, R. E. (2019). Growing season CO2 fluxes from a drained peatland dominated by Molinia caerulea. Mires and Peat, 24 . doi:10.19189/MaP.2019.OMB.StA.1812
Gill, A. L., Giasson, M.-A., Yu, R., & Finzi, A. C. (2017). Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog. Global Change Biology, 23 (12), 5398-5411. doi:10.1111/gcb.13806
Gong, Y., Wu, J., Vogt, J., & Le, T. B. (2019). Warming reduces the increase in N2O emission under nitrogen fertilization in a boreal peatland. Science of The Total Environment, 664, 72-78. doi:https://doi.org/10.1016/j.scitotenv.2019.02.012
Goodfellow, M., & Williams, S. T. (1983). Ecology of actinomycetes.Annu Rev Microbiol, 37 , 189-216. doi:10.1146/annurev.mi.37.100183.001201
Grace, J. B. (2006). Structural Equation Modeling and Natural Systems . Cambridge: Cambridge University Press.
Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria.Microbiological Reviews, 60 (2), 439-471.
Holden, J., Chapman, P. J., Lane, S. N., & Brookes, C. (2006). Chapter 22 Impacts of artificial drainage of peatlands on runoff production and water quality. In I. P. Martini, A. Martínez Cortizas, & W. Chesworth (Eds.), Developments in Earth Surface Processes (Vol. 9, pp. 501-528): Elsevier.
Hooijer, A., Page, S., Canadell, J., Silvius, M., Kwadijk, J., Wösten, H., & Jauhiainen, J. (2010). Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences . doi:10.5194/bg-7-1505-2010
Hopple, A. M., Wilson, R. M., Kolton, M., Zalman, C. A., Chanton, J. P., Kostka, J., . . . Bridgham, S. D. (2020). Massive peatland carbon banks vulnerable to rising temperatures. Nature Communications, 11 (1), 2373-2373. doi:10.1038/s41467-020-16311-8
Hou, C., Song, C., Li, Y., Wang, J., Song, Y., & Wang, X. (2013). Effects of water table changes on soil CO2, CH4 and N2O fluxes during the growing season in freshwater marsh of Northeast China.Environmental Earth Sciences, 69 (6), 1963-1971. doi:10.1007/s12665-012-2031-2
Huang, Y., Zou, J., Zheng, X., Wang, Y., & Xu, X. (2004). Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios. Soil Biology and Biochemistry, 36 (6), 973-981. doi: 10.1016/j.soilbio.2004.02.009
Ise, T., Dunn, A. L., Wofsy, S. C., & Moorcroft, P. R. (2008). High sensitivity of peat decomposition to climate change through water-table feedback. Nature Geoscience , 1(11), 763-766. doi:10.1038/ngeo331
Jaatinen, K., Fritze, H., Laine, J., & Laiho, R. (2007). Effects of short- and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland. Global Change Biology, 13 (2), 491-510. doi:10.1111/j.1365-2486.2006.01312.x
Jaatinen, K., Laiho, R., Vuorenmaa, A., Del Castillo, U., Minkkinen, K., Pennanen, T., . . . Fritze, H. (2008). Responses of aerobic microbial communities and soil respiration to water-level drawdown in a northern boreal fen. Environmental Microbiology, 10 (2), 339-353. doi:10.1111/j.1462-2920.2007.01455.x
Jaatinen, K., Laiho, R., Vuorenmaa, A., del Castillo, U., Minkkinen, K., Pennanen, T., . . . Fritze, H. (2008). Responses of aerobic microbial communities and soil respiration to water-level drawdown in a northern boreal fen. Environ Microbiol, 10 (2), 339-353. doi:10.1111/j.1462-2920.2007.01455.x
Johnson, C. P., Pypker, T. G., Hribljan, J. A., & Chimner, R. A. (2013). Open Top Chambers and Infrared Lamps: A Comparison of Heating Efficacy and CO2/CH4 Dynamics in a Northern Michigan Peatland.Ecosystems, 16 (5), 736-748. doi:10.1007/s10021-013-9646-3
Kang, X., Yan, L., Cui, L., Zhang, X., Hao, Y., Wu, H., . . . Wang, J. (2018). Reduced Carbon Dioxide Sink and Methane Source under Extreme Drought Condition in an Alpine Peatland. Sustainability, 10 , 4285. doi:10.3390/su10114285
Knorr, K. H., Glaser, B., & Blodau, C. (2008). Fluxes and 13C isotopic composition of dissolved carbon and pathways of methanogenesis in a fen soil exposed to experimental drought. Biogeosciences, 5 (5), 1457-1473. doi:10.5194/bg-5-1457-2008
Knowles, R. (1982). Denitrification. Microbiological Reviews, 46 (1), 43-70.
Kwon, M. J., Haraguchi, A., & Kang, H. (2013). Long-term water regime differentiates changes in decomposition and microbial properties in tropical peat soils exposed to the short-term drought. Soil Biology and Biochemistry, 60 , 33-44. doi:10.1016/j.soilbio.2013.01.023
Laiho, R. (2006). Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biology and Biochemistry, 38 (8), 2011-2024. doi: 10.1016/j.soilbio.2006.02.017
Laiho, R., Silvan, N., Cárcamo, H., & Vasander, H. (2001). Effects of water level and nutrients on spatial distribution of soil mesofauna in peatlands drained for forestry in Finland. Applied Soil Ecology, 16 (1), 1-9. doi:10.1016/S0929-1393(00)00103-7
Laine, A. M., Makiranta, P., Laiho, R., Mehtatalo, L., Penttila, T., Korrensalo, A., . . . Tuittila, E.-S. (2019). Warming impacts on boreal fen CO2 exchange under wet and dry conditions. Global Change Biology, 25 (6), 1995-2008. doi:10.1111/gcb.14617
Laine, A. M., Mehtatalo, L., Tolvanen, A., Frolking, S., & Tuittila, E. S. (2019). Impacts of drainage, restoration and warming on boreal wetland greenhouse gas fluxes. Science of The Total Environment, 647 , 169-181. doi:10.1016/j.scitotenv.2018.07.390
Laine, J., Silvola, Tolonen, K., Alm, J., Nykänen, H., Vasander, H., . . . Martikainen, P. (1996). Effect of water-level drawdown on global climatic warming: Northern peatlands. Ambio, 25 .
Leifeld, J., Steffens, M., & Galego-Sala, A. (2012). Sensitivity of peatland carbon loss to organic matter quality. Geophysical Research Letters, 39 (14). doi:10.1029/2012gl051856
Leifeld, J., Wüst-Galley, C., & Page, S. (2019). Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100.Nature Climate Change, 9 (12), 945-947. doi:10.1038/s41558-019-0615-5
Liu, L., Chen, H., Jiang, L., Zhan, W., Hu, J., He, Y., . . . Yang, G. (2019). Response of anaerobic mineralization of different depths peat carbon to warming on Zoige plateau. Geoderma, 337 , 1218-1226. doi: 10.1016/j.geoderma.2018.10.031
Liu, L., Chen, H., Zhu, Q., Yang, G., Zhu, E., Hu, J., . . . Zhu, D. (2016). Responses of peat carbon at different depths to simulated warming and oxidizing. Science of The Total Environment, 548-549 , 429-440. doi: 10.1016/j.scitotenv.2015.11.149
Louca, S., Parfrey, L. W., & Doebeli, M. (2016). Decoupling function and taxonomy in the global ocean microbiome. Science, 353 (6305), 1272. doi:10.1126/science.aaf4507
Ludley, K., & Robinson, C. (2008). ‘Decomposer’ Basidiomycota in Arctic and Antarctic ecosystems. Soil Biology and Biochemistry, 40 , 11-29. doi:10.1016/j.soilbio.2007.07.023
Maljanen, M., Hytönen, J., & Martikainen, P. J. (2001). Fluxes of N2O, CH4 and CO2 on afforested boreal agricultural soils. Plant and Soil, 231 (1), 113-121. doi:10.1023/A:1010372914805
Martikainen, P. J., Nykänen, H., Crill, P., & Silvola, J. (1993). Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature, 366 (6450), 51-53. doi:10.1038/366051a0
McPartland, M. Y., Kane, E. S., Falkowski, M. J., Kolka, R., Turetsky, M. R., Palik, B., & Montgomery, R. A. (2019). The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide. Global Change Biology, 25 (1), 93-107. doi:10.1111/gcb.14465
Miller, C., Benscoter, B., & Turetsky, M. (2015). The effect of long-term drying associated with experimental drainage and road construction on vegetation composition and productivity in boreal fens.Wetlands Ecology and Management, 23 . doi:10.1007/s11273-015-9423-5
Minick, K. J., Mitra, B., Li, X., Noormets, A., & King, J. S. (2019). Water Table Drawdown Alters Soil and Microbial Carbon Pool Size and Isotope Composition in Coastal Freshwater Forested Wetlands.Frontiers in Forests and Global Change, 2 (7). doi:10.3389/ffgc.2019.00007
Mpamah, P. A., Taipale, S., Rissanen, A. J., Biasi, C., & Nykanen, H. K. (2017). The impact of long-term water level draw-down on microbial biomass: A comparative study from two peatland sites with different nutrient status. European Journal of Soil Biology, 80 , 59-68. doi:10.1016/j.ejsobi.2017.04.005
Muhr, J., Höhle, J., Otieno, D. O., & Borken, W. (2011). Manipulative lowering of the water table during summer does not affect CO2 emissions and uptake in a fen in Germany. Ecological Applications, 21 (2), 391-401. doi:10.1890/09-1251.1
Munir, T. M., & Strack, M. (2014). Methane Flux Influenced by Experimental Water Table Drawdown and Soil Warming in a Dry Boreal Continental Bog. Ecosystems, 17 (7), 1271-1285. doi:10.1007/s10021-014-9795-z
Murphy, M., Laiho, R., & Moore, T. R. (2009). Effects of Water Table Drawdown on Root Production and Aboveground Biomass in a Boreal Bog.Ecosystems, 12 (8), 1268-1282. doi:10.1007/s10021-009-9283-z
Nichols, J. E., & Peteet, D. M. (2019). Rapid expansion of northern peatlands and doubled estimate of carbon storage. Nature Geoscience, 12 (11), 917-921. doi:10.1038/s41561-019-0454-z
Nieveen, J. P., Campbell, D. I., Schipper, L. A., & Blair, I. J. (2005). Carbon exchange of grazed pasture on a drained peat soil.Global Change Biology, 11 (4), 607-618. doi:10.1111/j.1365-2486.2005.00929.x
Norberg, L., Berglund, Ö., & Berglund, K. (2018). Impact of drainage and soil properties on carbon dioxide emissions from intact cores of cultivated peat soils. Mires and Peat, 21 . doi:10.19189/MaP.2017.OMB.284
Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., & Erasmi, S. (2016). Greenhouse gas emissions from soils—A review.Geochemistry, 76 (3), 327-352. doi: 10.1016/j.chemer.2016.04.002
Pal, L., Stres, B., Danevčič, T., Leskovec, S., & Mandic-Mulec, I. (2010). Transformations of mineral nitrogen applied to peat soil during sequential oxic/anoxic cycling. Soil Biology and Biochemistry, 42 (8), 1338-1346. doi: 10.1016/j.soilbio.2010.03.013
Pankratov, T., Dedysh, S., & Zavarzin, G. A. (2006). The leading role of actinobacteria in aerobic cellulose degradation in Sphagnum peat bogs. Doklady Biological Sciences, 410 , 428-430. doi:10.1134/S0012496606050243
Pearson, M., Penttilä, T., Harjunpää, L., Laiho, R., Laine, J., Sarjala, T., . . . Silvan, N. (2015). Effects of temperature rise and water-table-level drawdown on greenhouse gas fluxes of boreal sedge fens. Boreal Environment Research, 20 , 489-505.
Peltoniemi, K., Fritze, H., & Laiho, R. (2009). Response of fungal and actinobacterial communities to water-level drawdown in boreal peatland sites. Soil Biology and Biochemistry, 41 (9), 1902-1914. doi:10.1016/j.soilbio.2009.06.018
Peltoniemi, K., Laiho, R., Juottonen, H., Bodrossy, L., Kell, D. K., Minkkinen, K., . . . Fritze, H. (2016). Responses of methanogenic and methanotrophic communities to warming in varying moisture regimes of two boreal fens. Soil Biology and Biochemistry, 97 , 144-156. doi:10.1016/j.soilbio.2016.03.007
Peng, H.-Y., Li, X.-Y., Li, G.-Y., Zhang, Z.-H., Zhang, S.-Y., Li, L., . . . Ma, Y.-J. (2013). Shrub encroachment with increasing anthropogenic disturbance in the semiarid Inner Mongolian grasslands of China.CATENA, 109 , 39-48. doi: 10.1016/j.catena.2013.05.008
Qiu, J. (2007). Riding on the roof of the world. Nature, 449 (7161), 398-402. doi:10.1038/449398a
R Core Team (2018) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing , Vienna.https://www.R-project.org
Regina, K., Silvola, J., & Martikainen, P. J. (1999). Short-term effects of changing water table on N2O fluxes from peat monoliths from natural and drained boreal peatlands. Global Change Biology, 5 (2), 183-189. doi:10.1046/j.1365-2486.1999.00217.x
Ren, M., Zhang, Z., Wang, X., Zhou, Z., Chen, D., Zeng, H., . . . Peng, N. (2018). Diversity and Contributions to Nitrogen Cycling and Carbon Fixation of Soil Salinity Shaped Microbial Communities in Tarim Basin.Frontiers in Microbiology, 9 , 431-431. doi:10.3389/fmicb.2018.00431
Rhymes, J., Jones, L., Wallace, H., Jones, T. G., Dunn, C., & Fenner, N. (2016). Small changes in water levels and groundwater nutrients alter nitrogen and carbon processing in dune slack soils. Soil Biology and Biochemistry, 99 , 28-35. doi:10.1016/j.soilbio.2016.04.018
Salm, J.-O., Kimmel, K., Uri, V., & Mander, U. (2009). Global warming potential of drained and undrained peatlands in estonia: A synthesis.Wetlands, 29 (4), 1081-1092. doi:10.1672/08-206.1
Saurich, A., Tiemeyer, B., Dettmann, U., & Don, A. (2019). How do sand addition, soil moisture and nutrient status influence greenhouse gas fluxes from drained organic soils? Soil Biology and Biochemistry, 135 , 71-84. doi:10.1016/j.soilbio.2019.04.013
Schimel, J. P., & Gulledge, J. A. Y. (1998). Microbial community structure and global trace gases. Global Change Biology, 4 (7), 745-758. doi:10.1046/j.1365-2486.1998.00195.x
Schnecker, J., Wild, B., Takriti, M., Eloy Alves, R. J., Gentsch, N., Gittel, A., . . . Richter, A. (2015). Microbial community composition shapes enzyme patterns in topsoil and subsoil horizons along a latitudinal transect in Western Siberia. Soil Biology and Biochemistry, 83 , 106-115. doi: 10.1016/j.soilbio.2015.01.016
Siljanen, H. M. P., Saari, A., Bodrossy, L., & Martikainen, P. J. (2012). Seasonal variation in the function and diversity of methanotrophs in the littoral wetland of a boreal eutrophic lake.FEMS Microbiology Ecology, 80 (3), 548-555. doi:10.1111/j.1574-6941.2012.01321.x
Singh, B. K., Bardgett, R. D., Smith, P., & Reay, D. S. (2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology, 8 (11), 779-790. doi:10.1038/nrmicro2439
Swails, E., Jaye, D., Verchot, L., Hergoualc’h, K., Schirrmann, M., Borchard, N., . . . Lawrence, D. (2018). Will CO2 Emissions from Drained Tropical Peatlands Decline Over Time? Links Between Soil Organic Matter Quality, Nutrients, and C Mineralization Rates. Ecosystems, 21 (5), 868-885. doi:10.1007/s10021-017-0190-4
Thompson, J., Johansen, R., Dunbar, J., & Munsky, B. (2019). Machine learning to predict microbial community functions: An analysis of dissolved organic carbon from litter decomposition. PLOS ONE, 14 (7), e0215502. doi:10.1371/journal.pone.0215502
Tiemeyer, B., Albiac Borraz, E., Augustin, J., Bechtold, M., Beetz, S., Beyer, C., . . . Zeitz, J. (2016). High emissions of greenhouse gases from grasslands on peat and other organic soils. Global Change Biology, 22 (12), 4134-4149. doi:10.1111/gcb.13303
Turetsky, M. R., Treat, C. C., Waldrop, M. P., Waddington, J. M., Harden, J. W., & McGuire, A. D. (2008). Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. Journal of Geophysical Research: Biogeosciences, 113 (G3). doi:10.1029/2007jg000496
Urbanova, Z., & Barta, J. (2016). Effects of long-term drainage on microbial community composition vary between peatland types. Soil Biology and Biochemistry, 92 , 16-26. doi:10.1016/j.soilbio.2015.09.017
van den Berg, L. J. L., Shotbolt, L., & Ashmore, M. R. (2012). Dissolved organic carbon (DOC) concentrations in UK soils and the influence of soil, vegetation type and seasonality. Science of The Total Environment, 427-428 , 269-276. doi: 10.1016/j.scitotenv.2012.03.069
Voigt, C., Lamprecht, R. E., Marushchak, M. E., Lind, S. E., Novakovskiy, A., Aurela, M., . . . Biasi, C. (2017). Warming of subarctic tundra increases emissions of all three important greenhouse gases – carbon dioxide, methane, and nitrous oxide. Global Change Biology, 23 (8), 3121-3138. doi:10.1111/gcb.13563
Voigt, C., Marushchak, M. E., Lamprecht, R. E., Jackowicz-Korczyński, M., Lindgren, A., Mastepanov, M., . . . Biasi, C. (2017). Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw.Proceedings of the National Academy of Sciences, 114 (24), 6238. doi:10.1073/pnas.1702902114
Wang, H., Yu, L., Zhang, Z., Liu, W., Chen, L., Cao, G., . . . He, J.-S. (2017). Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland. Global Change Biology, 23 (2), 815-829. doi:10.1111/gcb.13467
Wang, X., Siciliano, S., Helgason, B., & Bedard-Haughn, A. (2017). Responses of a mountain peatland to increasing temperature: A microcosm study of greenhouse gas emissions and microbial community dynamics.Soil Biology and Biochemistry, 110 , 22-33. doi: 10.1016/j.soilbio.2017.02.013
Ward, S. E., Bardgett, R. D., McNamara, N. P., Adamson, J. K., & Ostle, N. J. (2007). Long-Term Consequences of Grazing and Burning on Northern Peatland Carbon Dynamics. Ecosystems, 10 (7), 1069-1083. doi:10.1007/s10021-007-9080-5
Weedon, J. T., Aerts, R., Kowalchuk, G. A., van Logtestijn, R., Andringa, D., & van Bodegom, P. M. (2013). Temperature sensitivity of peatland C and N cycling: Does substrate supply play a role? Soil Biology and Biochemistry, 61, 109-120. doi:https://doi.org/10.1016/j.soilbio.2013.02.019
Weil, R., & Brady, N. (2017). The Nature and Properties of Soils. 15th edition .
Wen, Y., Zang, H., Freeman, B., Musarika, S., Evans, C. D., Chadwick, D. R., & Jones, D. L. (2019). Microbial utilization of low molecular weight organic carbon substrates in cultivated peats in response to warming and soil degradation. Soil Biology and Biochemistry, 139 . doi:10.1016/j.soilbio.2019.107629
Wiedermann, M. M., Kane, E. S., Potvin, L. R., & Lilleskov, E. A. (2017). Interactive plant functional group and water table effects on decomposition and extracellular enzyme activity in Sphagnum peatlands.Soil Biology and Biochemistry, 108 , 1-8. doi: 10.1016/j.soilbio.2017.01.008
Xue, D., Chen, H., Chen, F., He, Y., Zhao, C., Zhu, D., . . . Li, W. (2016). Analysis of the rumen bacteria and methanogenic archaea of yak (Bos grunniens) steers grazing on the Qinghai-Tibetan Plateau.Livestock Science , 188, 61-71. doi:https://doi.org/10.1016/j.livsci.2016.04.009
Yang, G., Chen, H., Wu, N., Tian, J., Peng, C., Zhu, Q., . . . Zhang, C. (2014). Effects of soil warming, rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China. Soil Biology and Biochemistry, 78 , 83-89. doi: 10.1016/j.soilbio.2014.07.013
Zhang, G. S., Yu, X. B., Gao, Y., Li, Y., Zhang, Q. J., Liu, Y., . . . Xia, S. X. (2018). Effects of water table on cellulose and lignin degradation of Carex cinerascens in a large seasonal floodplain.Journal of Freshwater Ecology, 33 (1), 311-325. doi:10.1080/02705060.2018.1459324
Zhang, J., Liu, Y.-X., Zhang, N., Hu, B., Jin, T., Xu, H., . . . Bai, Y. (2019). NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 37 (6), 676-684. doi:10.1038/s41587-019-0104-4
Zhang, W., Wang, J., Hu, Z., Li, Y., Yan, Z., Zhang, X., . . . Kang, X. (2020). The Primary Drivers of Greenhouse Gas Emissions Along the Water Table Gradient in the Zoige Alpine Peatland. Water Air and Soil Pollution, 231 (5). doi:10.1007/s11270-020-04605-y
Zhong, Q., Chen, H., Liu, L., He, Y., Zhu, D., Jiang, L., . . . Hu, J. (2017). Water table drawdown shapes the depth-dependent variations in prokaryotic diversity and structure in Zoige peatlands. FEMS Microbiology Ecology, 93 (6). doi:10.1093/femsec/fix049
Zhong, Q., Xue, D., Chen, H., Liu, L., He, Y., Zhu, D., & He, Z. (2020). Structure and distribution of nitrite-dependent anaerobic methane oxidation bacteria vary with water tables in Zoige peatlands.FEMS Microbiology Ecology, 96 (5). doi:10.1093/femsec/fiaa039
Zhou, W., Cui, L., Wang, Y., & Li, W. (2017). Methane emissions from natural and drained peatlands in the Zoigê, eastern Qinghai-Tibet Plateau. Journal of Forestry Research, 28 (3), 539-547. doi:10.1007/s11676-016-0343-x