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The paper is concerned with the multiple solutions of a nonhomogeneous elliptic
system with critical exponent over a non-contractible domain, precisely, a smooth
bounded annular domain. We prove the existence of four solutions using variational
methods and Lusternik-Schnirelmann theorey, when the inner hole of the annulus is
sufficiently small.
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1 INTRODUCTION

The paper deals with the following nonhomogeneous elliptic system with critical exponent
⎧

⎪

⎨

⎪

⎩

−Δu = |u|2∗−2u + �
2∗
|u|�−2u|v|� + �f in Ω,

−Δv = |v|2∗−2v + �
2∗
|u|�|v|�−2v + �g in Ω,

u = v = 0 x ∈ )Ω,
(1)

where Ω is a smooth bounded domain in ℝN with N ≥ 3, �, � > 1 and � + � = 2∗ = 2N
N−2

. Functions f (x), g(x) satisfy
0 ≤ f, g ∈ L∞(Ω) and f, g ≢ 0. Equation (1) arises from many physical problems, especially in describing some phenomena
in nonlinear optics1,2. It is also a model in Hartree-Fock theory for a double condensate, i.e., a binary mixture of Bose-Einstein
condensates in two different hyperfine states |1⟩ and |2⟩3,4. For more physical background of coupled elliptic system, we refer
the readers to Cheng and Zou5,6.
Problem (1) can be seen as a counterpart of the following scalar equation

−Δu = |u|2∗−2u + f in Ω, u = 0 in )Ω, (2)

where Ω is a smooth bounded domain. A remarkable result by Tarantello7 established that there exist at least two solutions of
(2) by splitting Nehari manifold into three parts. For a non-contractible domain Ω, where Ω satisfies:
(V ) Ω is a smooth bounded domain in ℝN and there exist constants 0 < R1 < R2 <∞ such that

{x ∈ ℝN ∶ R1 < |x| < R2} ⊂ Ω, {x ∈ ℝN ∶ |x| < R1} ⊈ Ω̄,
8it is shown that there exist at least four solutions of (2) by using the splitting Nehari manifold method and Lusternik-
Schnirelmann theorey.
Recently, significant effort has been focused on coupled elliptic system with critical exponent. Peng et al9 showed that, in the

case � = 0 and Ω = ℝN , (1) has a kind of uniqueness result on the least energy solutions and a non-degeneracy result on a spe-
cial family of positive solutions. Moreover, they investigated the existence of positive vector solutions of (1) with � = 0 when
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Ω satisfies condition (V ). The multiplicity results of (1) with � = 0 by Clapp and Faya10 established the existence of a pre-
scribed number of nontrivial solutions under suitable symmetry assumptions on smooth bounded domain Ω and the existence
of infinitely many solutions on ℝN . The literatures above mainly focus on problem (1) with � = 0. It is natural to consider what
happens if � ≠ 0. The result as follows:

Theorem 1. Assume that Ω satisfies condition (V ). Then there exists a �′ > 0 such that, for 0 < � < �′, (1) has at least three
solutions, one of which is a positive least energy solution. Furthermore, if R1 is small enough, then there exists a �′′ > 0 such
that (1) has at least four solutions whenever 0 < � < �′′.

It is known that the established method to deal with nonhomogeneous problems is the splitting Nehari manifold method
introduced from Tarantello7. This idea was also used to study other nonhomogeneous problems, for instance, Qi and Zhang4,
Cao and Zhou11, Clapp et al12 and Shen et al13. However, to the best of our knowledge, there is almost no research applying the
idea to study nonhomogeneous elliptic systems with critical exponents. In fact, the energy functional associated to (1) does not
satisfy the global (PS)c condition since it includes critical exponents. We have to find the range of c where the (PS)c condition
holds for the energy functional.
The proof of Theorem 1 mainly takes inspiration from He8 and Peng9. To prove Theorem 1, we follow the idea of Qi and

Zhang4 to split the Nehari manifold into three parts, where the Nehari manifold is defined by

� ∶= {(u, v) ∈ H1
0 (Ω) ×H

1
0 (Ω) ∶ ⟨

′
� (u, v), (u, v)⟩ = 0} (3)

and its three parts
{ +

� ∶= (u, v) ∈� ∶ ⟨�′�(u, v), (u, v)⟩ > 0},
{ 0

� ∶= (u, v) ∈� ∶ ⟨�′�(u, v), (u, v)⟩ = 0},
{ −

� ∶= (u, v) ∈� ∶ ⟨�′�(u, v), (u, v)⟩ < 0},
(4)

where � is the energy functional associated to (1) (given by (6)) and

��(u, v) ∶= ⟨ ′
� (u, v), (u, v)⟩. (5)

For the first solution, we seek the help of Nehari manifold method to prove the existence of positive least energy solution
(u1, v1) ∈ +

� . To proceed further, we prove some estimates of the energy functional. With the help of these estimates we find
that there exists a t0 > 0 such that (u1 + t0u

�,�
� , v1 + t0v

�,�
� ) ∈ −

� , where u
�,�
� , v�,�� are related to the minimizers of the Sobolev

constant S. Moreover, �(u1 + t0u
�,�
� , v1 + t0v

�,�
� ) is below the first critical level and satisfies the Palais-Smale condition, where

the first critical level is
�(u1, v1) +

1
N
S

N
2
�,�

and S�,� is defined in (10). Subsequently, by using Lusternik-Schnirelmann theorey and the well-known result of Ambraosetti14,
we prove the existence of the second and third solutions of (1) in  −

� . In order to prove the existence of the fourth solution, a
high energy solution in −

� , we use a version of global compactness lemma from Peng et al9 to prove that the energy functional
� satisfies the Palais-Smale condition between the first and second critical levels, where the second critical level is

inf
(u,v)∈ −

�

�(u, v) +
1
N
S

N
2
�,� .

On the other hand, applying the minimax Lemma of Brezis and Nirenberg15, Theorem 1, we find a Palais-Smale sequence (un, vn)
of ̌� , where ̌�(u, v) = �(t−(u,v)(u, v)) and t

−
(u,v)(u, v) ∈ −

� . Then it follows from the idea of Szulkin andWeth16, Corollary 2.10 that
t−(un,vn)(un, vn) is a Palais-Smale sequence of � , which on using the obtained Palais-Smale condition yields the desired result.
The paper is organized by the following way. In Section 2, we give some preliminary results and the variational framework.

We prove the existence of the first-fourth solutions in Sections 3-5 respectively.

2 PRELIMINARIES

We denote some basic notations used in the paper. We first denote H1
0 (Ω) with the norm ‖u‖ = (∫Ω |∇u|

2dx)
1
2 and E ∶=

H1
0 (Ω) ×H

1
0 (Ω) with the norm

‖(u, v)‖2 ∶= ∫
Ω

|∇u|2 + |∇v|2dx.
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Throughout the paper we use | ⋅ |p to denote the Lp(Ω)-norm. The energy functional � ∶ E → ℝ is defined by

�(u, v) ∶=
1
2
‖(u, v)‖2 − 1

2∗ ∫
Ω

|u|2∗ + |v|2∗ + |u|�|v|�dx − � ∫
Ω

fu + gvdx. (6)

It is known that the critical points of � correspond to the weak solutions of (1). We shall constraint the energy functional on the
Nehari manifold (3). It is clear that only  0

� contains the element (0, 0). Obviously,  +
� ∪ 0

� and  −
� ∪ 0

� are both closed
subset of E. Next we give an explanation of the three parts of� . Before doing this we denote

A(u, v) ∶= ‖(u, v)‖2, B(u, v) ∶= ∫Ω |u|
2∗ + |v|2∗ + |u|�|v|�dx, D(u, v) ∶= ∫Ω fu + gvdx. (7)

The Nehari manifold� is closely linked to the behaviour of '�(t) ∶ t→ �(tu, tv), where '�(t) is defined by

'�(t) = �(tu, tv) =
A(u,v)
2
t2 − B(u,v)

2∗
t2∗ − �D(u, v)t for t > 0. (8)

Obviously, (tu, tv) ∈� if and only if
'′�(t) =

1
t
⟨ ′

� (tu, tv), (tu, tv)⟩ = 0.

Furthermore, one easily checks that, for (tu, tv) ∈� , there holds

'′′� (t) =
1
t2
[⟨�′�(tu, tv), (tu, tv)⟩ − ��(tu, tv)] =

1
t2
⟨�′�(tu, tv), (tu, tv)⟩.

It follows from (4) that
{(tu, tv) ∈ +

� , t > 0⇔ '′�(t) = 0, '
′′
� (t) > 0},

{(tu, tv) ∈ 0
� , t > 0⇔ '′�(t) = 0, '

′′
� (t) = 0},

{(tu, tv) ∈ −
� , t > 0⇔ '′�(t) = 0, '

′′
� (t) < 0}.

(9)

We denote the constant

S�,�(Ω) ∶= inf
(u,v)∈Y (Ω)×Y (Ω)∖{(0,0)}

∫Ω |∇u|
2 + |∇v|2dx

(∫Ω |u|2
∗ + |v|2∗ + |u|�|v|�dx)2∕2∗

, (10)

where Y (ℝN ) = D1,2(ℝN ) if Ω = ℝN and Y (Ω) = H1
0 (Ω) if Ω is a smooth bounded domain. We recall the Sobolev constant

S(Ω) = inf
u∈Y (Ω)∖{0}

∫Ω |∇u|
2dx

(∫Ω |u|2
∗dx)2∕2∗

.

It is known that S(ℝN ) is achieved by the function17, Theorem 1.42

U (x) =
[N(N − 2)]

N−2
4

(1 + |x|2)
N−2
2

,

which is a solution of −Δu = |u|2∗−2u for x ∈ ℝN with

∫
ℝN

|∇U |

2dx = ∫
ℝN

U 2∗dx = S
N
2 . (11)

Then, we have the following result.

Lemma 1. Let Ω be ℝN or a bounded domain of ℝN . Then
(i) S�,�(Ω) = F (�min)S(Ω) and

1
22∕2∗

≤ F (�min) ∶= min�≥0
F (�) ≤ 1, where F (�) ∶ [0,+∞)→ ℝ+ and F (�) = 1+�2

(1+��+�2∗ )2∕2∗
;

(ii) S�,�(ℝN ) has the minimizers {(Ux0
� , �minU

x0
� )}, where U

x0
� (x) ∶= �

2−N
2 U ( x−x0

�
), x0 ∈ ℝN and � > 0.

Proof. By the definition of F (�min), we find that F (�min) ≤ 1. Moreover, since �� ≤ 1 + �2∗ , we have that
1 + �2

(1 + �� + �2∗)2∕2∗
≥ 1 + �2

22∕2∗(1 + �2∗)2∕2∗
≥ 1
22∕2∗

for any � ≥ 0.

In the following we only need to check that part (i) holds for a bounded domain of ℝN . For the case Ω = ℝN , parts (i) and
(ii) were proved by Peng et al9, Lemma 2.1. Let {wn} ⊂ H1

0 (Ω)∖{0} be a minimizing sequence for S(Ω). Define un = wn and
vn = �minwn. By the definition of S�,�(Ω), we have that S�,�(Ω) ≤ F (�min)S(Ω). Moreover, in a fashion similar to the argument
of Peng et al9, Lemma 2.1(i), S�,�(Ω) ≥ F (�min)S(Ω).



4 DUAN ET AL

18It is known that S(Ω) = S(ℝN ) if Ω is bounded, which implies by Lemma 1 that S�,�(Ω) = S�,�(ℝN ). So, in the fol-
lowing we may write S = S(Ω) = S(ℝN ) and S�,� = S�,�(Ω) = S�,�(ℝN ). Moreover, it follows from the arguments of
Willem17, Proposition 1.43 that S(Ω) is never achieved in a domain Ω ≠ ℝN . In a standard way, we see that S�,�(Ω) = F (�min)S(Ω)
is never achieved in a domain Ω ≠ ℝN .

Lemma 2. Assume that Ω satisfies (V ). Then
(i) � is coercive and bounded from below on�(thus on +

� and −
� );

(ii) there exists a �0 > 0 such that, for 0 < � < �0,  0
� = {(0, 0)} and  ±

� ≠ ∅. Furthermore, for any (u, v) ∈ E∖{(0, 0)},
if D(u, v) > 0, then there exists a unique number t+(u,v) and a unique number t−(u,v) satisfying 0 < t+(u,v) < tmax < t−(u,v) such that
t+(u,v)(u, v) ∈  +

� and t−(u,v)(u, v) ∈  −
� ; if D(u, v) ≤ 0, then there exists a unique number t−(u,v) satisfying 0 < tmax < t−(u,v)

such that t−(u,v)(u, v) ∈  −
� , where tmax = [ A(u,v)

(2∗−1)B(u,v)
]

1
2∗−2 . Moreover, �(t+(u,v)(u, v)) = inf

0≤t≤t−(u,v)
�(t(u, v)) and �(t−(u,v)(u, v)) =

max
t≥tmax

�(t(u, v));
(iii) −

� is closed.

Proof. (i) It is clear that, for any (u, v) ∈� , there holds

�(u, v) = (
1
2
− 1
2∗
)‖(u, v)‖2 − (1 − 1

2∗
)� ∫

Ω

fu + gvdx.

By a direct calculation, we get that

∫Ω fu + gvdx ≤ max{‖f‖H−1 , ‖g‖H−1}(‖u‖ + ‖v‖) ≤
√

2max{‖f‖H−1 , ‖g‖H−1}‖(u, v)‖. (12)

Thus,
�(u, v) ≥ (

1
2
− 1
2∗
)‖(u, v)‖2 −

√

2�(1 − 1
2∗
) max{‖f‖H−1 , ‖g‖H−1}‖(u, v)‖,

which implies that � is coercive and bounded from below on� .
(ii) From the definition of '� in (8), we get that

'′�(t) = r(t) − �D(u, v),

where r(t) ∶= A(u, v)t − B(u, v)t2∗−1 for t > 0. For any (u, v) ∈ E∖{(0, 0)}, we have that r′′(t) < 0, r(0) = 0, r(t) → −∞ as
t → +∞ and r(t) > 0 for a small t > 0. So, r(t) has a unique global maximum value r(tmax) =

(2∗−2)A(u,v)
2∗−1

[ A(u,v)
(2∗−1)B(u,v)

]
1

2∗−2 . If
0 < �D(u, v) < r(tmax), '′�(t) = 0 has two solutions t+(u,v), t

−
(u,v) satisfying 0 < t+(u,v) < tmax < t−(u,v). Since '

′′
� (t

+
(u,v)) > 0 and

'′′� (t
−
(u,v)) < 0, we infer that t

+
(u,v)(u, v) ∈  +

� and t−(u,v)(u, v) ∈  −
� . Moreover, if �D(u, v) ≤ 0, '′�(t) = 0 has only one solution

t−(u,v) satisfying t
−
(u,v) > tmax. Obviously, '

′′
� (t

−
(u,v)) < 0 and t

−
(u,v)(u, v) ∈ −

� . It follows from the analysis above that

�(t+(u,v)(u, v)) = inf
0≤t≤t−(u,v)

�(t(u, v)), �(t−(u,v)(u, v)) = maxt≥tmax
�(t(u, v)).

To prove  0
� = {(0, 0)}, we only need to check that '′′� (t) > 0 or '′′� (t) < 0 for any '′�(t) = 0 and (u, v) ∈ E∖{(0, 0)}.

We assume, without loss of generality, that ‖(u, v)‖ = 1. By the analysis above, we find that  0
� = {(0, 0)} if the following

inequality holds,
�D(u, v) < r(tmax) =

2∗−2
2∗−1

[ 1
(2∗−1)B(u,v)

]
1

2∗−2 . (13)
Next we shall find a constant �0 > 0 such that, for 0 < � < �0, (13) holds. From (12), we get that D(u, v) ≤
√

2max{‖f‖H−1 , ‖g‖H−1}. Since A(u, v) = 1, B(u, v) is bounded from above. There exists a �0 > 0 such that
√

2�0max{‖f‖H−1 , ‖g‖H−1} ≤ 2∗−2
2∗−1

[ 1
(2∗−1) sup

‖(u,v)‖=1
B(u,v)

]
1

2∗−2 . (14)

It is easily seen that (13) holds if 0 < � < �0. Hence, 0
� = {(0, 0)}. Moreover, the sets {(u, v) ∈ E ∶ ‖(u, v)‖ = 1, �D(u, v) ≤ 0}

and {(u, v) ∈ E ∶ ‖(u, v)‖ = 1, 0 < �D(u, v) < r(tmax)} are nonempty, which implies that ±
� ≠ ∅.

(iii) It is clear that (0, 0) ∉ −
� and cl( −

� ) ⊂ −
� ∪{(0, 0)}, where cl(

−
� ) denotes the closure of

−
� . So, to prove that

−
�

is closed, we only need to check that dist((0, 0), −
� ) > 0. For any (u, v) ∈ −

� , we denote (u0, v0) = (
u

‖(u,v)‖
, v
‖(u,v)‖

). Applying
the proof of (ii), we get that '′�(t) = 0 has a solution t

−
(u0,v0)

satisfying t−(u0,v0) > tmax such that t
−
(u0,v0)

(u0, v0) = (u, v) ∈ −
� . Thus

t−(u0,v0) = ‖(u, v)‖ > tmax = (
1

(2∗−1)B(u0,v0)
)

1
2∗−2 . Moreover, B(u0, v0) is bounded from above since A(u0, v0) = 1. So, there exists a

� > 0 such that ‖(u, v)‖ > �. In conclusion, we have that dist((0, 0), −
� ) = inf

(u,v)∈ −
�

‖(u, v)‖ ≥ � > 0.
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In the following we may always assume that � < �0. We denote the minimization problems

c�(Ω) ∶= inf
(u,v)∈�

�(u, v), c+� (Ω) ∶= inf
(u,v)∈ +

�

�(u, v), c−� (Ω) ∶= inf
(u,v)∈ −

�

�(u, v). (15)

Note that c0(Ω) is independent of Ω and c0(Ω) = c0(ℝN ) = 1
N
S

N
2
�,� .

Lemma 3. For each (u, v) ∈  +
� , one has D(u, v) > 0 and �(u, v) < 0. In particular, c+� (Ω) < 0. Moreover, there exists a �1

satisfying 0 < �1 ≤ �0 such that c−� (Ω) > 0 for 0 < � < �1.

Proof. For each (u, v) ∈ +
� , we have that A(u, v) − (2

∗ − 1)B(u, v) > 0. Hence,

�D(u, v) = A(u, v) − B(u, v) > (2∗ − 2)B(u, v) > 0

and
�(u, v) =

1
2
A(u, v) − 1

2∗
B(u, v) − �D(u, v)

= ( 1
2
− 1

2∗
)B(u, v) − (1 − 1

2∗
)�D(u, v) < −[2 ⋅ 2∗ − 3] 2

∗−2
2⋅2∗

B(u, v) < 0.
This inequality implies that c+� (Ω) < 0.
Recalling Lemma 2 and its proof, we find that, for any (u, v) ∈ E∖{(0, 0)}, there holds �(t−(u,v)(u, v)) ≥ �(tmax(u, v)). So, to

prove c−� (Ω) > 0, we only need to prove that there exists a C > 0 such that '�(tmax) ≥ C > 0. As the proof of Lemma 2 (ii), we
take (u, v) ∈ E∖{(0, 0)} such that ‖(u, v)‖ = 1. For 0 < � < �0, equation (13) holds. In a fashion similar to the arguments for
(13), we find that there exists a �1 satisfying 0 < �1 ≤ �0 such that, for 0 < � < �1, there holds

�D(u, v) < 2∗ − 2
2 ⋅ 2∗ ⋅ (2∗ − 1)

[ 1
(2∗ − 1)B(u, v)

]
1

2∗−2 .

We use this inequality to deduce that

'�(tmax) =
1
2
t2max −

B(u,v)
2∗

t2∗max − �D(u, v)tmax
≥ (2∗−2)(2∗+1)

2⋅2∗⋅(2∗−1)
2∗
2∗−2

[ 1
B(u,v)

]
2

2∗−2 − 2∗−2
2⋅2∗⋅(2∗−1)

[ 1
(2∗−1)B(u,v)

]
2

2∗−2

= 2∗⋅(2∗−2)

2⋅2∗⋅(2∗−1)
2∗
2∗−2

[ 1
B(u,v)

]
2

2∗−2 .

Since A(u, v) = 1 and B(u, v) has its upper bound, we get that

'�(tmax) ≥
2∗ ⋅ (2∗ − 2)

2 ⋅ 2∗ ⋅ (2∗ − 1)
2∗
2∗−2

[ 1
sup

‖(u,v)‖=1
B(u, v)

]
2

2∗−2 ∶= C > 0.

Hence, c−� (Ω) > 0.

Lemma 4. If c�(Ω) is achieved by (u0, v0) ∈� , then (u0, v0) ∈ +
� and �(u0, v0) = c�(Ω) = c+� (Ω) < 0. Moreover, if c+� (Ω)

(or c−� (Ω)) is achieved by (u0, v0) ∈ +
� (or (u0, v0) ∈ −

� ), then (u0, v0) is a nontrivial solution of (1).

Proof. Let (u0, v0) ∈ � be such that �(u0, v0) = c�(Ω). It follows from Lemma 3 that c�(Ω) ≤ c+� (Ω) < 0. We suppose, by
contradiction, that (u0, v0) ∈ −

� . Reviewing Lemma 2 (ii) and its proof, we get that there exists a unique number t−(u0,v0) = 1 >
tmax > t+(u0,v0) > 0 such that

c�(Ω) ≤ c+� (Ω) ≤ �(t+(u0,v0)(u0, v0)) < �(t−(u0,v0)(u0, v0)) = c�(Ω),

a contradiction. So, (u0, v0) ∈ +
� and c+� (Ω) ≤ �(u0, v0) = c�(Ω) ≤ c+� (Ω). The proof of the second assertion follows from Qi

and Zhang4, Lemma 3.2.

Lemma 5. There exists a bounded sequence (un, vn) ⊂  +
� (

−
� or �) such that �(un, vn) → c+� (Ω)(c

−
� (Ω) or c�(Ω)) and

 ′
� (un, vn)→ 0 as n→∞.

The proof of Lemma 5 follows from the arguments of Qi and Zhang4, Lemma 4.6 and Lemma 4.7.
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3 EXISTENCE OF FIRST SOLUTION

In this section we shall prove the existence of the first solution in +
" .

Proposition 1. Let 0 < � < �1, where �1 is given by Lemma 3. Then there exists a (u1, v1) ∈  +
� such that �(u1, v1) =

c+� (Ω) = c�(Ω) < 0 and (u1, v1), u1, v1 > 0 is a positive least energy solution of (1).

Proof. It follows from Lemma 5 that we find a bounded (PS)c�(Ω) sequence {(un, vn)} of � on � . We may assume that
(un, vn)⇀ (u0, v0) weakly in E. Passing to a subsequence, (un, vn)→ (u0, v0) for a.e. x ∈ Ω. Recalling that the sequences

yn ∶= |un|
�−2un|vn|

� and zn ∶= |un|
�
|vn|

�−2vn, � + � = 2∗

are uniformly bounded in L(2∗)′(Ω) and converge pointwisely to y0 = |u0|�−2u0|v0|� and z0 = |u0|�|v0|�−2v0 respectively, we
get that (yn, zn) ⇀ (y0, z0) weakly in L(2∗)′(Ω) × L(2∗)′(Ω). So, ⟨ ′

� (un, vn), (', )⟩ → ⟨ ′
� (u0, v0), (', )⟩ for any (', ) ∈ E.

We get that  ′
� (u0, v0) = 0 and (u0, v0) ∈� .

Since
�(un, vn) = c�(Ω) + on(1) and ⟨ ′

� (un, vn), (un, vn)⟩ = on(1),
we apply the weakly lower semi continuous of A(un, vn) and the fact D(un, vn)→ D(u0, v0) to obtain that

c�(Ω) = lim infn→∞
(1
2
− 1
2∗
)A(un, vn) − lim

n→∞
(1 − 1

2∗
)�D(un, vn) ≥ �(u0, v0) ≥ c�(Ω).

Applying Lemma 4, we get that (u0, v0) ∈  +
� and �(u0, v0) = c�(Ω) = c+� (Ω) < 0. Moreover, (u0, v0) is a nontrivial solution

of (1).
In the following we prove that (u1, v1) ∶= t+(|u0|,|v0|)(|u0|, |v0|) ∈ +

� is a positive least energy solution of (1). Let (|u′|, |v′|) ∶=
(|u0|,|v0|)

‖(|u0|,|v0|)‖
and (u′, v′) ∶= (u0,v0)

‖(u0,v0)‖
. It follows from Lemma 3 that D(|u0|, |v0|) ≥ D(u0, v0) > 0. By Lemma 2, we get that there

exists a unique number t+(|u0|,|v0|) > 0 such that t
+
(|u0|,|v0|)

(|u0|, |v0|) ∈ +
� . It is clear that ‖(u0, v0)‖ = ‖(|u0|, |v0|)‖. We infer that

t+(|u0|,|v0|)‖(u0, v0)‖(|u
′
|, |v′|) = t+(|u0|,|v0|)‖(|u0|, |v0|)‖(|u

′
|, |v′|) = t+(|u0|,|v0|)(|u0|, |v0|) ∈ +

� . (16)

Moreover,
‖(u0, v0)‖(u′, v′) ∈ +

� . (17)
Next we compare t+(|u0|,|v0|)‖(u0, v0)‖ with ‖(u0, v0)‖. Equivalently, recalling the proof in Lemma 2 (ii), we compare the first
solution of '′�(t) = 0 under the case (u, v) = (|u

′
|, |v′|)with its first solution under the case (u, v) = (u′, v′). SinceD(|u′|, |v′|) ≥

D(u′, v′) > 0, A(|u′|, |v′|) = A(u′, v′) and B(|u′|, |v′|) = B(u′, v′), taking account of the graph of '′�(t) = 0, we get that
t+(|u0|,|v0|)‖(u0, v0)‖ ≥ ‖(u0, v0)‖. Equivalently,

t+(|u0|,|v0|) ≥ 1. (18)
Since t+(|u0|,|v0|)(|u0|, |v0|) ∈ +

� , from Lemma 2, we get that

�(t+(|u0|,|v0|)(|u0|, |v0|)) ≤ �(|u0|, |v0|).

Hence,
c�(Ω) ≤ c+� (Ω) ≤ �(t+(|u0|,|v0|)(|u0|, |v0|)) ≤ �(|u0|, |v0|) ≤ �(u0, v0) = c�(Ω).

From Lemma 4, we get that (u1, v1) = t+(|u0|,|v0|)(|u0|, |v0|), u1, v1 ≥ 0 is a nonnegative solution of (1). In view of (1), we get that
u1, v1 ≢ 0 since f, g ≢ 0. Applying the maximum principle to each equality of (1), we get that (u1, v1), u1, v1 > 0 is a positive
least energy solution of (1).

4 EXISTENCE OF SECOND AND THIRD SOLUTIONS

In this section we shall find two solutions of (1) in −
� under suitable range of critical level.

Lemma 6. If {(un, vn)} is a (PS)c-sequence of � with

c < c�(Ω) +
1
N
S

N
2
�,� .

Then {(un, vn)} has a convergent subsequence.
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Proof. Let (u0, v0) be the weak limit of (un, vn) and (�n, �n) ∶= (un − u0, vn − v0). Then (�n, �n)⇀ (0, 0) in E. We introduce the
following version of Brezis-Lieb Lemma from Han19, Lemma 3.4,

∫
Ω

|un|
�
|vn|

�dx = ∫
Ω

|�n|
�
|�n|

� + |u0|
�
|v0|

�dx + on(1), � + � = 2∗,

and the Brezis-Lieb Lemma for the other terms,

∫Ω |∇un|
2dx = ∫Ω |∇�n|

2 + |∇u0|2dx + on(1), ∫Ω |un|
2∗dx = ∫Ω |�n|

2∗ + |u0|2
∗dx + on(1).

Moreover, ∫Ω fun + gvndx = ∫Ω fu0 + gv0dx + on(1). We have that

c ← �(un, vn) = �(u0, v0) +
1
2
‖(�n, �n)‖2 −

1
2∗
∫Ω |�n|

2∗ + |�n|2
∗ + |�n|�|�n|�dx + on(1). (19)

In a fashion similar to the proof in Lemma 1 that ⟨ ′
� (un, vn), (', )⟩ → ⟨ ′

� (u0, v0), (', )⟩ for any (', ) ∈ E. We get that
 ′
� (u0, v0) = 0 and (u0, v0) ∈� . Hence

on(1) = ⟨ ′
� (un, vn), (un, vn)⟩ = ‖(�n, �n)‖2 − ∫Ω |�n|

2∗ + |�n|2
∗ + |�n|�|�n|�dx + on(1). (20)

We may assume that there exists a constant b ≥ 0 such that

‖(�n, �n)‖2 → b and ∫
Ω

|�n|
2∗ + |�n|

2∗ + |�n|
�
|�n|

�dx→ b.

By the definition of S�,� , we get that S�,�b
2
2∗ ≤ b. Hence, we have either b = 0 or b ≥ S

N
2
�,� . If b = 0, the proof is completed.

Otherwise b ≥ S
N
2
�,� . From (19), we get that

c = �(u0, v0) +
1
N
b ≥ c�(Ω) +

1
N
S

N
2
�,� .

This contradicts to c < c�(Ω) +
1
N
S

N
2
�,� . Thus, b = 0.

In the following we may assume that

R1 = � and R2 =
1
�

for � ∈ (0, 1
2
).

Now, we denote the radially symmetric function '� ∈ C∞c (ℝ
N ) such that 0 ≤ '� ≤ 1 for all x ∈ ℝN and

'�(x) =

⎧

⎪

⎨

⎪

⎩

0, 0 ≤ |x| ≤ 3�
2
,

1, 2� ≤ |x| ≤ 1
2�
,

0, |x| ≥ 3
4�
.

Moreover, for � ∈ SN−1 ∶= {x ∈ ℝN ∶ |x| = 1} and 0 < � < 1, we denote

U�
� (x) =

[N(N − 2)�2]
N−2
4

(�2 + |x − (1 − �)�|2)
N−2
2

,

which is a form of the translation and dilation of U (x) (in (11)). From Lemma 1, we know that S�,�(ℝN ) is realized by
(U�

� (x), �minU
�
� (x)). Let

u�,�� (x) ∶= '�(x)U�
� (x) ∈ H

1
0 (Ω) and v�,�� (x) ∶= �min'�(x)U�

� (x) ∈ H
1
0 (Ω). (21)

Then we have the following estimates.

Lemma 7. There hold
(i)A(u�,�� , v�,�� ) ≤ (1+�2min)S

N
2 +O(�N−2) andA(u�,�� , v�,�� ) ≥ (1+�2min)S

N
2 −O(�N−2). Moreover,A(u�,�� , v�,�� ) = (1+�2min)S

N
2 +

o�(1) uniformly in � as � → 0;
(ii) B(u�,�� , v�,�� ) ≤ (1 + ��min + �

2∗
min)S

N
2 + O(�N ) and B(u�,�� , v�,�� ) ≥ (1 + ��min + �

2∗
min)S

N
2 − O(�N ). Moreover, B(u�,�� , v�,�� ) =

(1 + ��min + �
2∗
min)S

N
2 + o�(1) uniformly in � as � → 0;

(iii) (u�,�� , v�,�� )⇀ (0, 0) weakly in E uniformly in � as � → 0;

(iv) 0(u
�,�
� , v�,�� ) ≤ 1

N
S

N
2
�,� + O(�

N−2).
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Proof. (i) It is clear that there exist constants d1, d2 > 0 such that d1 < |x−(1− �)�| < d2 for all x ∈ B2� whenever � < 1−2�.
By direct calculations, we get that

| ∫
ℝN

|∇u�,�� |

2 − |∇U�
� |
2dx|

≤ ∫
(ℝN∖B 1

2�
)∪B2�

|∇U�
� |
2dx + C�−2 ∫

B2�
|U�

� |
2dx + C�2 ∫

B 3
4�
∖B 1

2�

|U�
� |
2dx

≤ C�N−2 ∫
(ℝN∖B 1

2�
)∪B2�

|x−(1−�)�|2

|x−(1−�)�|2N
dx + C�N−2 ∫

B2�∪(B 3
4�
∖B 1

2�
)

dx
|x−(1−�)�|2(N−2)

dx = O(�N−2).

(22)

From (11), we find that ∫
ℝN

|∇u�,�� |

2dx ≤ ∫
ℝN

|∇U�
� |
2dx + O(�N−2) = S

N
2 + O(�N−2). Hence, A(u�,�� , v�,�� ) =

(1 + �2min) ∫
ℝN

|∇u�,�� |

2dx ≤ (1 + �2min)S
N
2 + O(�N−2). By a similar way, we obtain A(u�,�� , v�,�� ) ≥ (1 + �2min)S

N
2 − O(�N−2). So,

part (i) holds.
(ii) It is clear that B(u�,�� , v�,�� ) = (1 + ��min + �2∗min) ∫

Ω
|u�,�� |

2∗dx. We have that ∫
Ω
|u�,�� |

2∗dx ≤ ∫
B 3
4�
∖B 3�

2

|U�
� |
2∗dx =

{ ∫
B 3
4�
∖B 1

2�

+ ∫
B 1
2�
∖B 3�

2

}|U�
� |
2∗dx. Moreover, ∫

B 1
2�
∖B 3�

2

|U�
� |
2∗dx ≤ ∫

ℝN
|U�

� |
2∗dx = S

N
2 and ∫

B 3
4�
∖B 1

2�

|U�
� |
2∗dx ≤

C�N ∫
B 3
4�
∖B 1

2�

dx
|x−(1−�)�|2N

= O(�N ). Hence, B(u�,�� , v�,�� ) ≤ (1 + ��min + �
2∗
min)S

N
2 + O(�N ).

Now we prove the second assertion. It is clear that

∫
Ω

|u�,�� |

2∗dx ≥ ∫
B 1
2�
∖B2�

|U�
� |
2∗dx = {∫

ℝN

− ∫
ℝN∖B 1

2�

−∫
B2�

}|U�
� |
2∗dx.

By direct calculations, we get that ∫
ℝN∖B 1

2�

|U�
� |
2∗dx ≤ C�N ∫

ℝN∖B 1
2�

dx
|x−(1−�)�|2N

= O(�N ). Moreover, there exist constants d1, d2 >

0 such that d1 < |x − (1 − �)�| < d2 for all x ∈ B2� when � < 1 − 2�. Hence, ∫
B2�

|U�
� |
2∗dx ≤ C�N ∫

B2�

dx
|x−(1−�)�|2N

= O(�N )

and B(u�,�� , v�,�� ) = (1 + ��min + �
2∗
min) ∫

Ω
|u�,�� |

2∗dx ≥ (1 + ��min + �
2∗
min)S

N
2 −O(�N ). The third assertion follows from the first and

second assertions.
(iii) It follows from the arguments of He and Yang8, Lemma 4.2(iii) that (u�,�� , v�,�� )⇀ (0, 0) weakly in E as � → 0.
(iv) For t > 0, we denote that

K(t) ∶= t2

2
[(1 + �2min)S

N
2 + O(�N−2)] − t2∗

2∗
[(1 + ��min + �

2∗
min)S

N
2 − O(�N )].

Then K(t) → −∞ as t → ∞ and K(t) > 0 for a sufficiently small t > 0. So, there exists a t� > 0 such that max
t>0

K(t) is attained

and t� = [
(1+�2min)S

N
2 +O(�N−2)

(1+��min+�
2∗
min)S

N
2 −O(�N )

]
1

2∗−2 . Moreover, there exist t1, t2 > 0 such that t1 < t� < t2 for a small � > 0. Clearly, by parts (i)

and (ii), K(t) is an increasing function in (0, t�] and 0(tu
�,�
� , tv�,�� ) ≤ K(t). Hence,

0(u
�,�
� , v�,�� ) ≤ max

t>0
0(tu

�,�
� , tv�,�� ) ≤ K(t�) =

1
N
S

N
2
�,� + O(�

N−2). (23)

Lemma 8. There exists a �0 > 0 such that, for 0 < � < �0,

sup
t≥0

�(u1 + tu
�,�
� , v1 + tv

�,�
� ) < c�(Ω) +

1
N
S

N
2
�,� (24)

uniformly in � ∈ SN−1, where (u1, v1), u1, v1 > 0 is given by Lemma 1.

Proof. It follows from Lemma 1 that �(u1, v1) = c�(Ω) and

t[⟨u1, u
�,�
� ⟩H1

0 (Ω)
+ ⟨v1, v

�,�
� ⟩H1

0 (Ω)
− �D(u�,�� , v�,�� )]

= t ∫Ω u
2∗−1
1 u�,�� + v2∗−11 v�,�� + �

2∗
u�−11 v�1u

�,�
� + �

2∗
u�1v

�−1
1 v�,�� dx.
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So, we have that
�(u1 + tu

�,�
� , v1 + tv

�,�
� ) = 1

2
A(u1, v1) +

1
2
A(tu�,�� , tv�,�� )

+⟨u1, tu
�,�
� ⟩H1

0 (Ω)
+ ⟨v1, tv

�,�
� ⟩H1

0 (Ω)
− 1

2∗
B(u1 + tu

�,�
� , v1 + tv

�,�
� ) − �D(u1, v1) − �D(tu

�,�
� , tv�,�� )

= �(u1, v1) +
t2

2
A(u�,�� , v�,�� ) − t2∗

2∗
B(u�,�� , v�,�� )

− 1
2∗
∫Ω[(u1 + tu

�,�
� )�(v1 + tv

�,�
� )� − u�1v

�
1 − (tu

�,�
� )�(tv�,�� )� − �u�−11 v�1tu

�,�
� − �u�1v

�−1
1 tv�,�� ]dx

− 1
2∗
∫Ω[(u1 + tu

�,�
� )2∗ − u2∗1 − (tu

�,�
� )2∗ − 2∗u2∗−11 tu�,�� ]dx

− 1
2∗
∫Ω[(v1 + tu

�,�
� )2∗ − v2∗1 − (tu

�,�
� )2∗ − 2∗v2∗−11 tv�,�� ]dx.

(25)

Moreover, the following claims 1-2 hold.
Claim 1 ∶ ∫Ω[(u1 + tu

�,�
� )�(v1 + tv

�,�
� )� − u�1v

�
1 − (tu

�,�
� )�(tv�,�� )� − �u�−11 v�1tu

�,�
� − �u�1v

�−1
1 tv�,�� ]dx ≥ 0.

To prove Claim 1, we define f (x, y) ∶ [0,+∞) × [0,+∞)→ ℝ by

f (x, y) = (1 + x)�(1 + y)� − 1 − x�y� − �x − �y.

By direct calculations, we have that
)f (x,y)
)x

= �(1 + x)�−1(1 + y)� − �x�−1y� − �
≥ �(1 + x)�−1(1 + y�) − �x�−1y� − �
= �(1 + x)�−1 − � + �(1 + x)�−1y� − �x�−1y� ≥ 0.

Similarly, )f (x,y)
)y

≥ 0. Moreover, f (0, 0) = 0. So, we get that f (x, y) ≥ 0 for any x ≥ 0 and y ≥ 0. Applying the inequality
f (x, y) ≥ 0 and the fact u1, v1 > 0, we obtain claim 1.
Claim 2 ∶ ∫Ω(u1 + tu

�,�
� )2∗ − u2∗1 − (tu

�,�
� )2∗ −2∗u2∗−11 tu�,�� dx ≥ O(�

N−2
2 ) and ∫Ω(v1 + tv

�,�
� )2∗ − v2∗1 − (tv

�,�
� )2∗ −2∗v2∗−11 tv�,�� dx ≥

O(�
N−2
2 ).

The proof of Claim 2 follows from He and Yang8, Equations (4.7) and (4.8). By using Claims 1-2 and Lemma 7, we infer from (25)
that

�(u1 + tu
�,�
� , v1 + tv

�,�
� ) ≤ �(u1, v1) +

t2

2
[(1 + �2min)S

N
2 + O(�N−2)]

− t2∗

2∗
[(1 + ��min + �

2∗
min)S

N
2 − O(�N )] − O(�

N−2
2 ).

(26)

Let K(t) ∶= t2

2
[(1 + �2min)S

N
2 +O(�N−2)] − t2∗

2∗
[(1 + ��min + �

2∗
min)S

N
2 −O(�N )]. Then lim

t→0+
K(t) > 0 and K(t)→ −∞ as t→ +∞.

So, there exists a t� > 0 such that sup
t>0

K(t) is attained and t� = [
(1+�2min)S

N
2 +O(�N−2)

(1+��min+�
2∗
min)S

N
2 −O(�N )

]
1

2∗−2 . Moreover,

sup
t>0

K(t) = K(t�) =
1
N
S

N
2
�,� + O(�

N−2).

We infer from (26) that
�(u1 + tu

�,�
� , v1 + tv

�,�
� ) ≤ c�(Ω) +

1
N
S

N
2
�,� + O(�

N−2) − O(�
N−2
2 ).

So, there exists a �0 > 0 such that, for 0 < � < �0, the result holds.

Lemma 9. There exists a t0 > 0 such that (u1 + t0u
�,�
� , v1 + t0v

�,�
� ) ∈ −

� for 0 < � < �0. Moreover, c−� (Ω) < c�(Ω) +
1
N
S

N
2
�,� .

Proof. By the definition of  −
� , we have that 

−
� = {(u, v) ∈ E∖{(0, 0)} ∶ 1

‖(u,v)‖
t−(u,v)
‖(u,v)‖

= 1}. Moreover, E∖ −
� = U1 ∪ U2,

where
U1 ∶= {(u, v) ∈ E∖{(0, 0)} ∶ ‖(u, v)‖ < t−(u,v)

‖(u,v)‖

} ∪ {(0, 0)},

U2 ∶= {(u, v) ∈ E∖{(0, 0)} ∶ ‖(u, v)‖ > t−(u,v)
‖(u,v)‖

}.

We claim that +
� ⊂ U1. Indeed, let (u, v) ∈ +

� , we have that 1 = t
+
(u,v) < tmax < t

−
(u,v) =

1
‖(u,v)‖

t−(u,v)
‖(u,v)‖

.

Next we prove that there exists a s0 > 1 such that (u1 + s0u
�,�
� , v1 + s0v

�,�
� ) ∈ U2 for 0 < � < �0. It follows from Lemma 2

that there exists a unique number t−
(u1+s0u

�,�
� ,v1+s0v

�,�
� )

‖(u1+s0u
�,�
� ,v1+s0v

�,�
� )‖

> 0 such that t−
(u1+s0u

�,�
� ,v1+s0v

�,�
� )

‖(u1+s0u
�,�
� ,v1+s0v

�,�
� )‖

(u1+s0u
�,�
� ,v1+s0v

�,�
� )

‖(u1+s0u
�,�
� ,v1+s0v

�,�
� )‖

∈ −
� . Since � is coercive
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on  −
� , there exists a c > 0 such that 0 < t−

(u1+s0u
�,�
� ,v1+s0v

�,�
� )

‖(u1+s0u
�,�
� ,v1+s0v

�,�
� )‖

< c. In view of Lemma 7 (i), for a sufficiently small �, there holds

‖(u�,�� , v�,�� )‖ ≥ S
N
4 . Let s0 =

|c2−‖(u1,v1)‖2|
1
2

S
N
4

+ 1. We have that s0 ≥
|c2−‖(u1,v1)‖2|

1
2

‖(u�,�� ,v�,�� )‖
+ 1 and

‖(u1 + s0u
�,�
� , v1 + s0v

�,�
� )‖2

= ‖(u1, v1)‖2 + s20‖(u
�,�
� , v�,�� )‖2 + 2s0(⟨u1, u

�,�
� ⟩ + ⟨v1, v

�,�
� ⟩)

≥ ‖(u1, v1)‖2 + |c2 − ‖(u1, v1)‖2| ≥ c2 > (t−
(u1+s0u

�,�
� ,v1+s0v

�,�
� )

‖(u1+s0u
�,�
� ,v1+s0v

�,�
� )‖

)2,

which implies (u1 + s0u
�,�
� , v1 + s0v

�,�
� ) ∈ U2.

For each 0 < � < �0, we define a path ��(r) = (u1, v1) + rs0(u
�,�
� , v�,�� ) for r ∈ [0, 1]. Then

��(0) = (u1, v1) and ��(1) = (u1 + s0u
�,�
� , v1 + s0v

�,�
� ).

It is clear that (u1, v1) ∈  +
� ⊂ U1 and (u1 + s0u

�,�
� , v1 + s0v

�,�
� ) ∈ U2. Moreover, 1

‖(u,v)‖
t−(u,v)
‖(u,v)‖

is a continuous function and

��([0, 1]) is connected. So, there exists a r0 ∈ (0, 1) such that ��(r0) = (u1 + r0s0u
�,�
� , v1 + r0s0v

�,�
� ) ∈  −

� . Let t0 = r0s0, we
have that (u1 + t0u

�,�
� , v1 + t0v

�,�
� ) ∈ −

� . Applying Lemma 8, we get that

c−� (Ω) ≤ �(u1 + t0u
�,�
� , v1 + t0v

�,�
� ) < c�(Ω) +

1
N
S

N
2
�,� .

In the following we shall show that, for a sufficiently small � > 0,

cat({(u, v) ∈ −
� ∶ �(u, v) ≤ c�(Ω) +

1
N
S

N
2
�,� − �}) ≥ 2,

where
cat(X) ∶= min{k ∈ ℕ ∶ tℎere exist closed subsets X1, ..., Xk ⊂ X sucℎ
tℎat Xj is contractible to a point in X for all j and ∪kj=1 Xj = X}.

To start with, we introduce the following two lemmas for our proof.

Lemma 10. 14 Suppose that X is a Hilbert manifold and G ∈ C1(X,ℝ). Assume that for c′ ∈ ℝ and k ∈ ℕ
1. G satisfies the Palais-Smale condition for energy level c ≤ c′;
2. cat({x ∈ X ∶ G(x) ≤ c′}) ≥ k.
Then G has at least k critical points in {x ∈ X ∶ G(x) ≤ c′}.

Lemma 11. 20, Theorem 2.5 Let X be a topological space. Suppose that there are two continuous maps Φ ∶ SN−1 → X and
Ψ ∶ X → SN−1 such that Ψ◦Φ is homotopic to the identity map of SN−1. Then cat(X) ≥ 2.

Note that, for each (u, v) ∈ E∖{(0, 0)}, there exists a unique number t∗ > 0 such that t∗(u, v) ∈0.

Lemma 12. For each (u, v) ∈ E∖{(0, 0)} and 0 < � < 1, there holds

(1 − ��)
N
2 0(t∗(u, v)) −

�
2�
(‖f‖2H−1 + ‖g‖2H−1) ≤ �(t−(u,v)(u, v)) ≤ (1 + ��)

N
2 0(t∗(u, v)) +

�
2�
(‖f‖2H−1 + ‖g‖2H−1).

Proof. For c ∈ ℝ, we denote that

Bc(u, v) = cB(u, v), c(u, v) =
1
2
A(u, v) − 1

2∗
Bc(u, v),

c = {(u, v) ∈ E∖{(0, 0)} ∶ ⟨′c(u, v), (u, v)⟩ = 0}.
Now we study the relationship between � and c . For each (u, v) ∈ E∖{(0, 0)} and 0 < � < 1, we have that

|∫
Ω

fu + gvdx| ≤ ‖f‖H−1‖u‖ + ‖g‖H−1‖v‖ ≤ �
2
‖(u, v)‖2 + 1

2�
(‖f‖2H−1 + ‖g‖2H−1).

So, there holds
1−��
2
A(u, v) − 1

2∗
B(u, v) − �

2�
(‖f‖2H−1 + ‖g‖2H−1) ≤ �(u, v) ≤

1+��
2
A(u, v) − 1

2∗
B(u, v) + �

2�
(‖f‖2H−1 + ‖g‖2H−1).

Equivalently,

(1 − ��) 1
1−��
(u, v) − �

2�
(‖f‖2H−1 + ‖g‖2H−1) ≤ �(u, v) ≤ (1 + ��) 1

1+��
(u, v) + �

2�
(‖f‖2H−1 + ‖g‖2H−1). (27)



DUAN ET AL 11

Next we seek the help of function c to prove the lemma. For each (u, v) ∈ E∖{(0, 0)}, we denote k(t) ∶= c(t(u, v)) =
1
2
A(u, v)t2 − 1

2∗
Bc(u, v)t2

∗ . Let tc = (
A(u,v)
Bc (u,v)

)
1

2∗−2 > 0. By direct calculations, we get that tc(u, v) ∈c and

max
t≥0

c(t(u, v)) = c(tc(u, v)) =
1
N

A(u, v)
N
2

Bc(u, v)
N−2
2

.

From Lemma 3, we get that c−� (Ω) > 0. So, maxt>0
�(tu, tv) = �(t−(u,v)(u, v)). This fact together with (27) yield that

(1 − ��) 1
1−��
(t 1

1−��
(u, v)) − �

2�
(‖f‖2H−1 + ‖g‖2H−1) ≤ �(t−(u,v)(u, v))

≤ (1 + ��) 1
1+��
(t 1

1+��
(u, v)) + �

2�
(‖f‖2H−1 + ‖g‖2H−1).

(28)

Moreover, we find that

 1
1−��
(t 1

1−��
(u, v)) =

(1 − ��)
N−2
2

N
A(u, v)

N
2

B(u, v)
N−2
2

= (1 − ��)
N−2
2 0(t∗(u, v)),

where t∗(u, v) ∈0. The result follows from (28).

Lemma 13. Assume that Ω satisfies condition (V ). Then there exists a �0 > 0 such that if (u, v) ∈ 0 with 0(u, v) ≤
1
N
S

N
2
�,� + �0, then | ∫ℝN

x
|x|
(|∇u|2 + |∇v|2)dx| ≠ 0.

Proof. Let {(un, vn)} ⊂ 0 be such that 0(un, vn) =
1
N
S

N
2
�,� + on(1). In a fashion similar to the argument for the second

assertion in Lemma 5 that we infer  ′
0 (un, vn) → 0. So, {(un, vn)} is a Palais-Smale sequence of 0 at the level

1
N
S

N
2
�,� . Note

that S�,� = F (�min)S is never achieved in a bounded domain Ω. In other words, if (u0, v0) is a solution of (1) with � = 0, then

0(u0, v0) >
1
N
S

N
2
�,� . Now, using the global compactness lemma from Peng et al9, Theorem 1.7, we get that

(un, vn) = (r1n)
2−N
2 (U1(

x − x1n
r1n

), V1(
x − x1n
r1n

)) + on(1)

in D1,2(ℝN ) × D1,2(ℝN ), where r1n → 0 as n → ∞, x1n ∈ Ω̄ and (U1, V1) ≠ (0, 0) is a solution of (1) with � = 0 and Ω = ℝN .
Suppose, up to a subsequence, that x1n

|x1n|
→ y0 as n→∞, where y0 is a unit vector in ℝN . We have that

| ∫ℝN
x
|x|
(|∇un|2 + |∇vn|2)dx|

= | ∫ℝN
x
|x|
(|∇(r1n)

2−N
2 U1(

x−x1n
r1n
)|2 + |∇(r1n)

2−N
2 V1(

x−x1n
r1n
)|2)dx| + on(1)

= | ∫ℝN
x1n+r

1
nz

|x1n+r1nz|
(|∇U1(z)|2 + |∇V1(z)|2)dz| + on(1)

= |y0 ∫ℝN (|∇U1(z)|2 + |∇V1(z)|2)dz| + on(1) ≠ 0.

For 0 < � < �0 (given by Lemma 9), we defineH� ∶ SN−1 → E by

H�(�) = (u1 + t0u
�,�
� , v1 + t0v

�,�
� ) ∈ −

� , (29)

where (u1 + t0u
�,�
� , v1 + t0v

�,�
� ) is given by Lemma 9. From Lemma 8, we find that there exists a �� > 0 such that

�(u1 + t0u
�,�
� , v1 + t0v

�,�
� ) ≤ c�(Ω) +

1
N
S

N
2
�,� − �� ,

which implies that
H�(SN−1) ⊂ {(u, v) ∈ −

� ∶ �(u, v) ≤ c�(Ω) +
1
N
S

N
2
�,� − ��}. (30)

Lemma 14. There exists a �2 > 0 such that, for 0 < � < �2 and any

(u0, v0) ∈ {(u, v) ∈ −
� ∶ �(u, v) ≤ c�(Ω) +

1
N
S

N
2
�,�},

there holds | ∫ℝN
x
|x|
(|∇u0|2 + |∇v0|2)dx| ≠ 0.
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Proof. Let (u0, v0) ∈ {(u, v) ∈ −
� ∶ �(u, v) ≤ c�(Ω) +

1
N
S

N
2
�,�}. Then t

−
(u0,v0)

= 1. It is clear that c�(Ω) < 0. So,

�(u0, v0) ≤
1
N
S

N
2
�,� .

From Lemma 12, we have that there exists a 0 < �0 < 1 such that

(1 − ��0)
N
2 0(t∗(u0, v0)) −

�
2�0
(‖f‖2H−1 + ‖g‖2H−1) ≤ �(t−(u0,v0)(u0, v0)) = �(u0, v0),

where t∗(u0, v0) ∈0. Hence,

0(t∗(u0, v0)) ≤ (1 − ��0)
−N

2 [�(u0, v0) +
�
2�0
(‖f‖2H−1 + ‖g‖2H−1)]

≤ (1 − ��0)
−N

2 [ 1
N
S

N
2
�,� +

�
2�0
(‖f‖2H−1 + ‖g‖2H−1)]

= [(1 − ��0)
−N

2 − 1] 1
N
S

N
2
�,� + [

1
N
S

N
2
�,� +

�

2�0(1−��0)
N
2
(‖f‖2H−1 + ‖g‖2H−1)].

We easily find that there exists a �2 > 0 such that, for 0 < � < �2, there hold [(1 − ��0)
−N

2 − 1] 1
N
S

N
2
�,� < �0

2
and

�

2�0(1−��0)
N
2
(‖f‖2H−1 + ‖g‖2H−1) <

�0
2
, where �0 is defined in Lemma 13. Hence, we obtain that

0(t∗(u0, v0)) ≤
1
N
S

N
2
�,� + �0.

This inequality together with Lemma 13 yield the result.

We define G ∶ {(u, v) ∈ −
� ∶ �(u, v) ≤ c�(Ω) +

1
N
S

N
2
�,�}→ SN−1 by

G(u, v) =
∫ℝN

x
|x|
(|∇u|2 + |∇v|2)dx

| ∫ℝN
x
|x|
(|∇u|2 + |∇v|2)dx|

.

Note that G is well defined since Lemma 14.

Lemma 15. For 0 < � < �2 and 0 < � < �0, the map

G◦H� ∶ SN−1 → SN−1

is homotopic to the identity, whereH�(�) is defined in (29).

Proof. We define
 = {(u, v) ∈ E∖{(0, 0)} ∶ |∫

ℝN

x
|x|
(|∇u|2 + |∇v|2)dx| ≠ 0}

and Ḡ ∶  → SN−1 by

Ḡ(u, v) =
∫ℝN

x
|x|
(|∇u|2 + |∇v|2)dx

| ∫ℝN
x
|x|
(|∇u|2 + |∇v|2)dx|

as an extension of G.
It is clear that there exists a t∗ > 0 such that t∗(u�,�� , v�,�� ) ∈0. From (23), we find that

0(t∗u
�,�
� , t∗v�,�� ) ≤ max

t>0
0(tu

�,�
� , tv�,�� ) ≤ 1

N
S

N
2
�,� + O(�

N−2).

For a sufficiently small �, this inequality together with Lemma 13 yield that | ∫ℝN
x
|x|
(|∇u�,�� |

2 + |∇v�,�� |

2)dx| ≠ 0. Thus,
Ḡ(u�,�� , v�,�� ) is well defined. Let y ∶ [s1, s2]→ SN−1 be a regular geodesic between Ḡ(u�,�� , v�,�� ) and Ḡ(H�(�)) such that

y(s1) = Ḡ(u
�,�
� , v�,�� ) and y(s2) = Ḡ(H�(�)).

Moreover, in a fashion similar to the argument in Lemma 7 and the analysis above, there exists a t′ > 0 such that
t′(u�,�2(1−k)� , v

�,�
2(1−k)�) ∈0 and

0(t′u
�,�
2(1−k)� , t

′v�,�2(1−k)�) ≤ maxt>0
0(tu

�,�
2(1−k)� , tv

�,�
2(1−k)�) ≤

1
N
S

N
2
�,� + �0
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for a sufficiently small � and k ∈ [ 1
2
, 1), where �0 is defined in Lemma 13. So, | ∫ℝN

x
|x|
(|∇u�,�2(1−k)�|

2 + |∇v�,�2(1−k)�|
2)dx| ≠ 0 and

Ḡ(u�,�2(1−k)� , v
�,�
2(1−k)�) is well defined for k ∈ [

1
2
, 1). Now we define &�(k, �) ∶ [0, 1] × SN−1 → SN−1 by

&�(k, �) =

⎧

⎪

⎨

⎪

⎩

y(2k(s1 − s2) + s2), if k ∈ [0, 1
2
),

Ḡ(u�,�2(1−k)� , v
�,�
2(1−k)�), if k ∈ [ 1

2
, 1),

�, if k = 1.

We claim that lim
k→1−

&�(k, �) = � and lim
k→ 1

2

−
&�(k, �) = Ḡ(u

�,�
� , v�,�� ).

(i) lim
k→1−

&�(k, �) = �: let kn → 1− as n→∞. Since u�,�� (x) = �
2−N
2 '�(x)U (

x−(1−�)�
�

), we use the equality to deduce that

∫ℝN
x
|x|
(|∇u�,�2(1−kn)�|

2 + |∇v�,�2(1−kn)�|
2)dx

= (1 + �2min) ∫ℝN
x
|x|
([2(1 − kn)�]

2−N
2
|∇('�(x)U (

x−[1−2(1−kn)�]�
2(1−kn)�

))|2dx

= (1 + �2min) ∫ℝN
2(1−kn)�z+[1−2(1−kn)�]�
|2(1−kn)�z+[1−2(1−kn)�]�|

|∇('�(x)U (z))|2dz.

Moreover, 2(1−kn)�z+[1−2(1−kn)�]�
|2(1−kn)�z+[1−2(1−kn)�]�|

→ � as kn → 1− and

∫
ℝN

|∇('�(x)U (z))|2dz = ∫
ℝN

|∇u�,�2(1−kn)�|
2dx→ S

N
2 as kn → 1−.

Hence,

∫
ℝN

x
|x|
(|∇u�,�2(1−kn)�|

2 + |∇v�,�2(1−kn)�|
2)dx→ (1 + �2min)S

N
2 �

and lim
k→1−

&�(k, �) = �.
(ii) lim

k→ 1
2

−
&�(k, �) = Ḡ(u

�,�
� , v�,�� ): one has that

lim
k→ 1

2

−
&�(k, �) = lim

k→ 1
2

−
y(2k(s1 − s2) + s2) = y(s1) = Ḡ(u

�,�
� , v�,�� ).

Moreover, &� ∈ C([0, 1] × SN−1,SN−1), &�(0, �) = Ḡ(H�(�)) and &�(1, �) = � for � ∈ SN−1 provided 0 < � < �0 and
0 < � < �2. Thus the result follows.

Proposition 2. Let 0 < � < �′ = min{�1, �2}, where �i, i = 1, 2 are defined in Lemmas 3 and 14 respectively. Then � has two
critical points in

{(u, v) ∈ −
� ∶ �(u, v) ≤ c�(Ω) +

1
N
S

N
2
�,�}.

Equivalently, (1) has solutions (ui, vi) ∈ −
� , i = 2, 3 with �(ui, vi) ≤ c�(Ω) +

1
N
S

N
2
�,� .

Proof. Applying Lemma 11, Lemma 15 and (30), we have that

cat({(u, v) ∈ −
� ∶ �(u, v) ≤ c�(Ω) +

1
N
S

N
2
�,� − ��}) ≥ 2.

Now from Lemma 6 and Lemma 10, we find two solutions of (1) in −
� with �(u, v) ≤ c�(Ω) +

1
N
S

N
2
�,� .

5 EXISTENCE OF FOURTH SOLUTION

In this section, we shall prove the existence of a high energy solution in  −
� by using the minimax lemma of Brezis and

Nirenberg15, Theorem 1.

Lemma 16. Let 0 < � ≤ �3, where

�3 = [
2∗

2 ⋅ 2∗(2∗ − 1) + �(� − 1) + �(� − 1)
]

1
2∗−2

2
√

2S
N
4

(N + 2)max{‖f‖H−1 , ‖g‖H−1}
.

Then (u1, v1) is the unique critical point of � in +
� .
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Proof. Let r0 = [
2∗

2⋅2∗(2∗−1)+�(�−1)+�(�−1)
]

1
2∗−2S

N
4 . Then,

Claim 1: +
� ⊂ Br0(0) = {(u, v) ∈ E∖{(0, 0)} ∶ ‖(u, v)‖ < r0}.

Indeed, if (u, v) ∈ +
� , then A(u, v) > (2

∗ − 1)B(u, v). By using (12), we get that

A(u, v) = B(u, v) + �D(u, v) < 1
2∗−1

A(u, v) +
√

2�max{‖f‖H−1 , ‖g‖H−1}‖(u, v)‖,

which implies that, for 0 < � < �3,

‖(u, v)‖ <

√

2(N + 2)�3max{‖f‖H−1 , ‖g‖H−1}
4

= r0.

Claim 2: �(u, v) is strictly convex in Br0(0).
For all (u, v) ∈ Br0(0), one has that

 ′′
� (u, v)((', ), (', )) = ‖(', )‖2 − (2∗ − 1) ∫Ω |u|

2∗−2'2 + |v|2∗−2 2dx
− �(�−1)

2∗
∫Ω |u|

�−2
|v|�'2dx − �(�−1)

2∗
∫Ω |u|

�
|v|�−2 2dx

≥ ‖(', )‖2 − (2∗ − 1)|u|2∗−22∗ |'|22∗ − (2
∗ − 1)|v|2∗−22∗ | |22∗

− �(�−1)
2∗

|u|�−22∗ |v|�2∗ |'|
2
2∗ −

�(�−1)
2∗

|u|�2∗ |v|
�−2
2∗ | |22∗

≥ ‖(', )‖2{1 − [2(2∗ − 1) + �(�−1)
2∗

+ �(�−1)
2∗

]S−
N
N−2

‖(u, v)‖2∗−2} > 0,

where (', ) ∈ E∖{(0, 0)}. Claims 1-2 imply that (u1, v1) is the unique critical point of � in +
� .

The following global compactness lemma is a version of Peng et al9, Theorem 1.7.

Lemma 17. LetΩ be a bounded smooth domain inℝN , {(un, vn)} be a Palais-Smale sequence for� at level c, i.e.�(un, vn)→ c
and  ′

� (un, vn) → 0 in H−1 as n → +∞. Then there exists a solution (u0, v0) of (1), l sequences of positive numbers {rjn}n
1 ≤ j ≤ l and l sequences of points {xjn}n 1 ≤ j ≤ l in Ω̄, such that up to a subsequence,

(i) (un, vn) = (u0, v0) +
l
∑

j=1
(rjn)

N−2
2 (Uj(r

j
n(x − x

j
n)), Vj(r

j
n(x − x

j
n))) + (�1n , �

2
n ), in D

1,2(ℝN ) × D1,2(ℝN ), where ‖(�1n , �
2
n )‖ → 0,

rjn →∞ as n→∞ and (Uj , Vj) are nonzero critical points of

∞(u, v) ∶=
1
2 ∫
ℝN

|∇u|2 + |∇v|2dx − 1
2∗ ∫

ℝN

|u|2∗ + |v|2∗ + |u|�|v|�dx;

(ii) �(un, vn) = �(u0, v0) +
l
∑

j=1
∞(Uj , Vj) + on(1),

where on(1)→ 0 as n→∞.

Lemma 18. Let {(un, vn)} ⊂ −
� be a (PS)c sequence for � with

c�(Ω) +
1
N
S

N
2
�,� < c < c

−
� (Ω) +

1
N
S

N
2
�,� .

Then there exists s subsequence still denoted by {(un, vn)} and a nonzero (u0, v0) ∈ −
� such that (un, vn)→ (u0, v0) strongly in

E and �(u0, v0) = c.

Proof. Let {(un, vn)} be a (PS)c sequence. Then by standard arguments, (un, vn) is bounded inE, and there exists a subsequence
still denoted by {(un, vn)} and (u0, v0) such that (un, vn) ⇀ (u0, v0) in E. In a fashion similar to the arguments in Proposition 1,
we get that  ′

� (u0, v0) = 0 and (u0, v0) ∈ � . It is clear that (0, 0) is not a solution of (1). So, we infer from Lemma 16 that

either (u0, v0) ∈ −
� or (u0, v0) = (u1, v1). By Lemma 3 and Lemma 9, we find that c > c�(Ω) +

1
N
S

N
2
�,� > c

−
� (Ω) > 0. It follows

from Lemma 17 that

c�(Ω) +
l
N
S

N
2
�,� ≤ c = �(u0, v0) +

l
∑

j=1
∞(Uj , Vj) < c−� (Ω) +

1
N
S

N
2
�,� .

So, we have that l ≤ 1. If l = 0, then we are done. If l = 1 and (u0, v0) = (u1, v1), then

c = �(u1, v1) +
1
N
S

N
2
�,� = c�(Ω) +

1
N
S

N
2
�,� ,
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a contradiction. If l = 1 and (u0, v0) ∈ −
� , then

c = �(u0, v0) +
1
N
S

N
2
�,� ≥ c−� (Ω) +

1
N
S

N
2
�,� ,

again a contradiction. Hence l = 0 and the result follows from Lemma 17.

Let
(ū�,�� , v̄�,�� ) = (u�,�� ,v�,�� )

(∫Ω |u�,�� |

2∗+|v�,�� |

2∗+|u�,�� |

�
|v�,�� |

�dx)
1
2∗
, (31)

where (u�,�� , v�,�� ) is defined in (21).

Lemma 19. There hold:
(i) A(ū�,�� , v̄�,�� )→ S�,� as � → 0 uniformly in � ∈ SN−1;
(ii) There exists a �0 > 0 such that sup

�∈SN−1,�∈(0,1)
A(ū�,�� , v̄�,�� ) < 2

2
N S�,� for 0 < � < �0.

Proof. (i) It is clear that A(ū�,�� , v̄�,�� ) = A(u�,�� ,v�,�� )

B(u�,�� ,v�,�� )
2
2∗
. The result follows from Lemma 1 and Lemma 7.

(ii) In a fashion similar to the arguments of Goel and Sreenadh21, Lemma 4.2, we find that
lim
�→0

sup
�∈SN−1,�∈(0,1)

∫ℝN |∇u�,�� |

2 − |∇U�
� |
2dx = 0, lim

�→0
sup

�∈SN−1,�∈(0,1)
∫ℝN |u�,�� |

2∗ − |U�
� |
2∗dx = 0.

Since ∫ℝN |∇U�
� |
2dx = ∫ℝN |U�

� |
2∗dx = S

N
2 , we have that

sup
�∈SN−1,�∈(0,1)

A(ū�,�� , v̄�,�� )→ F (�min)S = S�,� as �→ 0,

where F (�min) is given by Lemma 1. So, there exists a �0 > 0 such that sup
�∈SN−1,�∈(0,1)

A(ū�,�� , v̄�,�� ) < 2
2
N S�,� for 0 < � < �0.

Let
M = {(u, v) ∈ E ∶ ∫

Ω

|u|2∗ + |v|2∗ + |u|�|v|�dx = 1}. (32)

Now, for any (u, v) ∈ E, we denote the functionH ∶M → ℝN by

H(u, v) = ∫
Ω

x(|u|2∗ + |v|2∗ + |u|�|v|�)dx

and also let
M0 = {(u, v) ∈M ∶ H(u, v) = 0}. (33)

Proposition 3. There hold:
(a) lim

�→0
H(ū�,�� , v̄�,�� ) = �, where (ū�,�� , v̄�,�� ) is defined by (31);

(b) Let m0 = inf
(u,v)∈M0

A(u, v), then S�,� < m0;

(c) There exists a �0 > 0 such that, for 0 < � < �0 and |�| = 1, we have S�,� < A(ū
�,�
� , v̄�,�� ) < m0+S�,�

2
.

Proof. (a)We have that
∫Ω(x − �)(|u

�,�
� |

2∗ + |v�,�� |

2∗ + |u�,�� |

�
|v�,�� |

�)dx
= (1 + ��min + �

2∗
min) ∫Ω(x − �)|u

�,�
� |

2∗dx
≤ (1 + ��min + �

2∗
min)[| ∫ℝN (x − �)|U�

� |
2∗dx| + | ∫ℝN (x − �)('2

∗

� (x) − 1)|U
�
� |
2∗dx|],

where �min is defined by Lemma 1. It follows from the argument of He and Yang22, Lemma 3.4 that

|∫
ℝN

(x − �)|U�
� |
2∗dx| + |∫

ℝN

(x − �)('2∗� (x) − 1)|U
�
� |
2∗dx| → 0 as � → 0.

Hence,

H(ū�,�� , v̄�,�� ) − � =
∫Ω(x − �)(|u

�,�
� |

2∗ + |v�,�� |

2∗ + |u�,�� |

�
|v�,�� |

�)dx

∫Ω |u
�,�
� |

2∗ + |v�,�� |

2∗ + |u�,�� |

�
|v�,�� |

�dx
→ 0.
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(b) In a fashion similar to the proof of He and Yang22, Lemma 3.3, we obtain (b).
(c) Apparently S�,� ≤ A(ū�,�� , v̄�,�� ). Note that S�,� is not attained in a domain Ω ≠ ℝN . So, S�,� < A(ū�,�� , v̄�,�� ). Moreover, by
Lemma 19(i) and Part (b), we get the desired result.

Let r0 = 1 − �0, where �0 is given by Proposition 3 (c). For � ∈ SN−1 and |(1 − �)�| ≥ r0, i.e. 0 < � ≤ �0. We denote

B̄r0 = {(1 − �)� ∈ ℝN ∶ |(1 − �)�| ≤ r0, � ∈ SN−1, 0 < � < 1}.

and a subset Σ of E by
Σ = {(ū�,�� , v̄�,�� ) ∶ (1 − �)� ∈ B̄r0}.

Let
 = {ℎ ∈ C(M,M) ∶ ℎ(u, v) = (u, v) for (u, v) sucℎ tℎat A(u, v) <

m0 + S�,�
2

}

and Λ = {T ⊂ M ∶ T = ℎ(Σ), ℎ ∈ }. Since id ∈ ,  is nonempty. Then we introduce the following result of He and
Yang22, Lemma 3.6.

Lemma 20. If T ∈ Λ, then T ∩M0 ≠ ∅, whereM0 is defined in (33).

It follows from Lemma 3 that c−� (Ω) > 0 for 0 < � < �1. Now we define ̌� ∶ E → ℝN by

̌�(u, v) ∶= maxt>0
�(tu, tv) = �(t−(u,v)(u, v)), (34)

where t−(u,v) is given by Lemma 2. For each (u, v) ∈ E, ⟨ ′
� (t

−
(u,v)(u, v)), (u, v)⟩ = 0 and d2

dt2
|t=t−(u,v)

�(t(u, v)) < 0. By implicit
function theorem, we get that t−(u,v) ∈ C

1(E, (0,∞)). As a result, ̌�(u, v) = �(t−(u,v)(u, v)) ∈ C
1(E,ℝ). Then we follow the idea

of Szulkin and Weth16, Corollary 2.10 to get the following lemma.

Lemma 21. The following holds:
(a) If {(un, vn)} ⊂ E∖{(0, 0)} is a (PS)c sequence of ̌� , then {t−(un,vn)(un, vn)} ⊂ −

� is a (PS)c sequence of �;
(b) If (u, v) ∈ E∖{(0, 0)} is a critical point of ̌� , then t−(u,v)(u, v) ∈ −

� is a critical point of � .

Proof. (a) For each (u, v) ∈ E∖{(0, 0)}, we have that ̌�(u, v) = �(t−(u,v)(u, v)) ∈ C1(E,ℝ). Let m̂ ∶ E∖{(0, 0)} →  be a
map given by m̂(u, v) ∶= t−(u,v)(u, v). Next we check that m̂ is a continuous map. Let (un, vn) → (u′, v′) and tn = t−(un,vn), then
m̂(un, vn) = tn(un, vn). If tn → +∞, then

◦(1) =
�(un, vn)

t2n
≤

�(m̂(un, vn))
t2n

→ −∞,

a contradiction. We may assume that tn → t0 ≥ 0. Hence,

�(t−(u′,v′)(u
′, v′)) ≥ �(t0(u′, v′)) = lim

n→∞
�(tn(un, vn)) ≥ lim

n→∞
�(t−(u′,v′)(un, vn)) = �(t−(u′,v′)(u

′, v′)).

As a result, t0 = t−(u′,v′) > 0, which implies that m̂ is continuous. Thus m = m̂|S1 , where S1 ∶= {(u, v) ∈ E ∶ ‖(u, v)‖ = 1} is
the unit sphere in E, is a homeomorphism. The inverse function is given by m−1(u, v) = (u,v)

‖(u,v)‖
for (u, v) ∈  −

� . Applying the
result of Szulkin and Weth16, Proposition 2.9, we get that �◦m̂ ∈ C1(E∖{(0, 0)},ℝ) and

⟨(�◦m̂)′(u, v), (', )⟩ =
‖m̂(u,v)‖
‖(u,v)‖

⟨ ′
� (m̂(u, v)), (', )⟩ (35)

for (u, v), (', ) ∈ E and (u, v) ≠ (0, 0). Moreover, �◦m ∶ S1 → ℝ is of C1-class16, Corollary 2.10. Let (ūn, v̄n) =
(un,vn)

‖(un,vn)‖
∈ S1.

Then
m(ūn, v̄n) = t−(un,vn)‖(un, vn)‖(ūn, v̄n) ∈ −

� .

Since {(un, vn)} is a (PS)c sequence of ̌� , we have that

̌�(un, vn) = �(t−(un,vn)(un, vn)) = (�◦m)(ūn, v̄n)→ c

and (�◦m)′(ūn, v̄n)→ 0. It is clear that m(ūn, v̄n) = t−(un,vn)(un, vn) ∈ −
� and

‖t−(un,vn)(un, vn)‖⟨
′
� (t

−
(un,vn)

(un, vn)), (ūn, v̄n)⟩ = ⟨ ′
� (t

−
(un,vn)

(un, vn)), t−(un,vn)(un, vn)⟩ = 0.
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It follows from (35) that
⟨(�◦m)′(ūn, v̄n), (', )⟩ = ‖t−(un,vn)(un, vn)‖⟨

′
� (t

−
(un,vn)

(un, vn)), (', )⟩
= ‖t−(un,vn)(un, vn)‖⟨

′
� (t

−
(un,vn)

(un, vn)), ((', ) + t(ūn, v̄n))⟩

for (', ) ∈ T(ūn,v̄n)S
1 and t ∈ ℝ, where T(ūn,v̄n)S

1 stands for the tangent space S1 at (ūn, v̄n). Hence

0← ‖(�◦m)′(ūn, v̄n)‖ = sup
(', )∈T(ūn ,v̄n)S

1,‖(', )‖=1
⟨(�◦m)′((ūn, v̄n)), (', )⟩ = ‖t−(un,vn)(un, vn)‖‖

′
� (t

−
(un,vn)

(un, vn))‖.

Since t−(un,vn)(un, vn) ∈ −
� , we have that ‖t

−
(un,vn)

(un, vn)‖ ≥ � > 0. We infer from the equation above that  ′
� (t

−
(un,vn)

(un, vn))→ 0.
Hence {t−(un,vn)(un, vn)} is a (PS)c sequence of � .
(b) The proof is similar as it in part (a).

We introduce the following minimax lemma of Brezis and Nirenberg15, Theorem 1.

Lemma 22. Let E be a Banach space and ̌� ∈ C1(E,ℝ). Let K be a compact metric space, K0 ⊂ K be a closed set and
y ∈ C(K0, E). Define

Γ = {g ∈ C(K,E) ∶ g(s) = y(s) if s ∈ K0}, c∗� = infg∈Γ
sup
s∈K

̌�(g(s)), c∗∗� = sup
y(K0)

̌� .

If c∗� > c∗∗� then there exists a sequence {!n} ⊂ E satisfying ̌�(!n) → c∗� and ̌ ′
� (!n) → 0. Further, if ̌� satisfies (PS)c∗�

condition then there exists a !0 ∈ E such that ̌�(!0) = c∗� and ̌
′
� (!0) = 0.

It follows from (32) thatM ⊂ E. We set that

F = {q ∈ C(B̄r0 ,M) ∶ q
|)Br0

= (ū�,�� , v̄�,�� )}.

and
c̄ = inf

q∈F
sup

(1−�)�∈B̄r0

‖q((1 − �)�)‖2, ĉ = sup
)Br0

‖(ū�,�� , v̄�,�� )‖2. (36)

Obviously, q((1 − �)�) = (ū�,�� , v̄�,�� ) ∈ F for (1 − �)� ∈ B̄r0 . It follows from Lemma 19 (ii) that, for 0 < � < �0, there holds

c̄ ≤ sup
(1−�)�∈B̄r0

‖(ū�,�� , v̄�,�� )‖2 ≤ sup
�∈SN−1,�∈(0,1)

‖(ū�,�� , v̄�,�� )‖2 < 2
2
N S�,� . (37)

By Lemma 20, we have that, for ℎ ∈ , there exists (1 − �̄)�̄ ∈ B̄r0 such that ℎ(ū
�̄,�
�̄
, v̄�̄,�
�̄
) ∈M0. So

m0 ≤ ‖ℎ(ū�̄,�
�̄
, v̄�̄,�
�̄
)‖2 ≤ sup

(1−�)�∈B̄r0

‖ℎ(ū�,�� , v̄�,�� )‖2,

where m0 is given by Proposition 3 (b). Moreover, for ℎ ∈ , ℎ(ū�,�� , v̄�,�� ) = (ū�,�� , v̄�,�� ) ∈ F . Hence,

m0 ≤ inf
ℎ(ū�,�� ,v̄�,�� )∈F

sup
(1−�)�∈B̄r0

‖ℎ(ū�,�� , v̄�,�� )‖2 = c̄.

This inequality together with Proposition 3 (b) and (37) yield that

S�,� < m0 ≤ c̄ < 2
2
N S�,� for 0 < � < �0. (38)

Moreover, from Proposition 3 (c), we find that

ĉ = sup
)Br0

‖(ū�,�� , v̄�,�� )‖2 <
m0 + S�,�

2
< m0 ≤ c̄.

Let
c∗� = infq∈F

sup
(1−�)�∈B̄r0

̌�(q((1 − �)�)). (39)

Lemma 23. There hold:
(i) ̌�(ū

�,�
� , v̄�,�� ) = 1

N
S

N
2
�,� + o(1) as � → 0;

(ii) For 0 < � < �0 (given by Lemma 19), there exists a �4 > 0 such that if 0 < � < �4, then

c�(Ω) +
1
N
S

N
2
�,� < c

∗
� < c

−
� (Ω) +

1
N
S

N
2
�,� .
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Proof. (i) It follows from Lemma 7 (iii) that (ū�,�� , v̄�,�� ) ⇀ (0, 0) weakly in E uniformly in � as � → 0. Let '�(t) =
�(t(ū

�,�
� , v̄�,�� )). Solving

'′�(t) = A(ū
�,�
� , v̄�,�� )t − t2∗−1 − � ∫

Ω

f ū�,�� + gv̄�,�� dx = 0,

We conclude t� = (A(ū
�,�
� , v̄�,�� ))

1
2∗−2 + o(1) as � → 0. Combining Lemma 19 (i) and (39), we get that

̌�(ū
�,�
� , v̄�,�� ) = max

t>0
�(t(ū

�,�
� , v̄�,�� )) = max

t>0
'�(t) = '�(t�) =

1
N
S

N
2
�,� + o(1) as � → 0.

(ii) It follows from (34) that

̌0(u, v) = maxt>0
0(tu, tv) =

1
N

A(u, v)
N
2

B(u, v)
N−2
2

.

For each q ∈ F and (1 − �)� ∈ B̄r0 , we have that

̌0(q((1 − �)�)) =
1
N

‖q((1 − �)�)‖N .

This equality together with (36) and (39) yield that

c∗0 =
1
N
inf
q∈F

sup
(1−�)�∈B̄r0

‖q((1 − �)�)‖N = 1
N
c̄
N
2 . (40)

It follows from (38) that
1
N
S

N
2
�,� < c

∗
0 <

2
N
S

N
2
�,� for 0 < � < �0. (41)

In view of Lemma 12 and (34) , for a fix 0 < � < 1, there holds

(1 − ��)
N
2 ̌0(q((1 − �)�)) −

�
2�
(‖f‖2H−1 + ‖g‖2H−1) ≤ ̌�(q((1 − �)�))

≤ (1 + ��)
N
2 ̌0(q((1 − �)�)) +

�
2�
(‖f‖2H−1 + ‖g‖2H−1).

and
(1 − ��)

N
2 c∗0 −

�
2�
(‖f‖2H−1 + ‖g‖2H−1) ≤ c∗� ≤ (1 + ��)

N
2 c∗0 +

�
2�
(‖f‖2H−1 + ‖g‖2H−1).

So, for any � > 0, there exists a �1(�) > 0 such that if 0 < � < �1(�) then

c∗0 − � < c
∗
� < c

∗
0 + �. (42)

Moreover, from Lemma 12, we have that

(1 − ��)
N
2
1
N
S

N
2
�,� −

�
2�
(‖f‖2H−1 + ‖g‖2H−1) ≤ c−� (Ω) ≤ (1 + ��)

N
2
1
N
S

N
2
�,� +

�
2�
(‖f‖2H−1 + ‖g‖2H−1).

So, for any � > 0 there exists a �2(�) > 0 such that if 0 < � < �2(�) then
1
N
S

N
2
�,� − � < c

−
� (Ω) <

1
N
S

N
2
�,� + �. Equivalently,

2
N
S

N
2
�,� − � < c

−
� (Ω) +

1
N
S

N
2
�,� <

2
N
S

N
2
�,� + �. (43)

In view of (41), for a fix 0 < � ≤ min{
2
N
S
N
2
�,� −c

∗
0

2
, c∗0 −

1
N
S

N
2
�,�}, if 0 < � < �4 = min{�1(�), �2(�)}, then applying (41), (42) and

(43), we get
c�(Ω) +

1
N
S

N
2
�,� <

1
N
S

N
2
�,� ≤ c∗0 − � < c

∗
� < c

∗
0 + 2� − � ≤

2
N
S

N
2
�,� − � < c

−
� (Ω) +

1
N
S

N
2
�,� . (44)

So, the result follows.

Proposition 4. If 0 < � < �0 and 0 < � < �
′′ = min{�′, �3, �4}, where �0, �′, �3 and �4 are given by Lemma 19, Proposition 2,

Lemma 16 and Lemma 23 respectively, then there exists a solution (u4, v4) ∈ −
� of (1) with

c�(Ω) +
1
N
S

N
2
�,� < �(u4, v4) < c−� (Ω) +

1
N
S

N
2
�,� .

Proof. It follows from (44) that c∗� >
1
N
S

N
2
�,� . From Lemma 23 (i), we have that c∗� > ̌�(ū

�,�
� , v̄�,�� ) = 1

N
S

N
2
�,� +o(1) whenever � is

sufficiently small. So, applying Lemma 22 and (39), we get that there exists a sequence {(un, vn)} ⊂ E such that ̌�(un, vn)→ c∗�
and ̌ ′

� (un, vn)→ 0. Then by Lemma 21, we find that {t−(un,vn)(un, vn)} ⊂ −
� is a (PS)c∗� of � , which on using Lemma 18 gives

that
t−(un,vn)(un, vn)→ t−(u0,v0)(u0, v0) ∶= (u4, v4) ∈ −

� strongly in E
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and �(u4, v4) = c∗� . So, the result follows from Lemma 23 (ii).

proof of Theorem 1 : By Proposition 1, we find the first solution (u1, v1) ∈  +
� with u1, v1 > 0 and �(u1, v1) = c�(Ω)

whenever 0 < � < �1. Let 0 < � < �′, then by Proposition 2, we get two solutions (u2, v2), (u3, v3) ∈  −
� of (1) with

�(u2, v2),�(u3, v3) ≤ c�(Ω) +
1
N
S

N
2
�,� . Finally, if 0 < � < �0 and 0 < � < �′′, as a result of Proposition 4, we have that

(u4, v4) ∈ −
� is a solution of (1) with c�(Ω) +

1
N
S

N
2
�,� < �(u4, v4) < c−� (Ω) +

1
N
S

N
2
�,� .
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