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Abstract: Protein Secondary Structure (PSS) prediction is crucial for examining and studying the protein structure and its function. PSS helps to predict the tertiary structure and offers to understand about its structures, which in turn helps to design various drugs. The existing PSS prediction techniques are capable of achieving Q3 accuracy of nearly 80%, and there has not any improvement till now. In this paper, we propose a novel technique that uses amino acid sequences alone as an input feature, and the respected feature vector matrix is given through the deep learning model (DLM) for PSS prediction. Apart from all deep learning methods, we use OneHotEncoding and LSTM (Long short term memory) technique to forecast PSS that helps to give more accuracy. The one hot encoder is used to extract the local contexts of amino-acid sequences, and BLSTM (Bi-directional LSTM) captures the long-distance interdependencies among amino-acids. LSTM is one of the new deep learning models successfully applied in the field of bioinformatics to solve problems. LSTM is very efficient in mapping the long term dependencies of sequence information, which is more capable than the convolutional neural networks (CNN’s). The performance of the proposed system is estimated on the openly available datasets such as CullPDB, CASP10, and CASP11. Results show that the performance of the proposed technique achieved superior outcomes than the existing approaches on the three similar datasets. 
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1. Introduction
Computer science is penetrating diverse fields with the advancements in the AI and Deep Learning. In Computational Biology, there is a complex reliance between protein sequence and its structure [1]. Protein is one of the most significant structures present in the body tissues, and they additionally go about as a fuel source, thus the 3-D structure of a protein is significant. As it is known that the structure of a protein is framed from the information picked up from the amino-acid sequence. It is discovered that still, it is hard to foresee the structure dependent on the sequence. The information about the structure is significant for protein functional analysis and drug design. The residues in the amino acids like α-helix and β-strand assume a significant job in the assurance of the structure. 
The 3-D structure of a protein is shaped by the neighborhood sections in the protein arrangements is known as Protein Secondary Structure [2-5], and this grouping folds to from tertiary structure, where the secondary structure is transitional before the tertiary structure. A major step in anticipating the tertiary structure is to foresee the auxiliary structure, which is seen as a platform between the tertiary structure and the protein succession. The investigation of the sequence and tertiary structure of the protein helps in finding out about the function of the protein and in drug design. Yet this should be possible if the secondary structure of a protein is done as it understands the intricate dependence among the protein as well as tertiary structure. The exploratory distinctive PSS verification is expensive and repetitive, and subsequently, it gets basic to make beneficial computational techniques for foreseeing PSS reliant on sequence information with no assistance. Nevertheless, correctly foreseeing PSS [6-8] from the course of information and understanding dependence among progressions and structures are considered a troublesome undertaking in the field of computational science.
PSS is often classified into three classifications and additionally arranged into eight classifications. The 3-states prediction from protein sequences is termed as Q3 prediction, and 8-states prediction is called Q8 prediction. The techniques for PSS forecast are arranged into 3-classification expectation and 8-class forecast. Contrasted with the 3-classification forecast, the expectation of 8-classification auxiliary arrangement can uncover additional detail of protein structures also, the assignment remains increasingly intricate and testing. Consequently, our work spotlights on 8-class PSS expectations dependent on the protein sequence. Numerous techniques have been suggested to distinguish secondary structures (SS), for example, Support vector machines [9, 10], Constraint random fields, and the techniques have accomplished striking exhibitions. 
Other techniques such as statistical strategies were utilized to recognize the SS via breaking down the likelihood of particular amino acid, however, its exhibitions are a long way from the use because of the insufficient extracted features [11-13]. Along these lines, many scientists and researchers additionally offered SS prediction techniques dependent on SVM. Even though the techniques have been utilized effectively, both measurable models and conventional AI strategies have their confinements. To sum things up, conventional techniques intensely depend on handmade highlights and effectively overlook the long-separation conditions of protein sequences. Motivated by the amazing achievement deep learning based techniques are currently utilized in numerous natural research fields, for instance, availability of chromatin, protein function, drug target binding affinity, and protein contact map [14, 15]. The primary favorable circumstances of deep learning strategies are that they can naturally speak to the crude arrangement also gain proficiency with the concealed examples through nonlinear changes. Also, these RNNs (Recurrent NNs), CNN is useful to foresee PSS [16]. 
Generally, in Protein sequence, there lives a connection between the residues of amino acids ordinarily incorporate nearby settings and long separation interdependencies. Because of these conditions, including the amino acid residue, techniques utilized in Deep Learning can be named as three classifications: neighborhood setting, long-separation reliance based strategies, and both. Recognizing the secondary structure is done utilizing the amino acids, and it depends on neighborhood settings or statistical features in sequences [17-20]. Deep CNF can likewise be utilized to foresee the Secondary structure and for other reasons like protein model quality assessment. RNN and its different applications in numerous fields, for example, prediction and classification [21] and One Hot encoder strategies that can give the component vector network from the succession. It offers an innovative strategy, termed OneHotEncoder-BLSTM, to anticipate 8-classification PSS. 
	
Motivation
In all biological processes, Proteins play a significant role because proteins are considered as the basis of life. Its amino acid arrangement identifies the structure of a protein, and it mainly includes four levels such as primary, secondary, tertiary, and quaternary. PSS is considered as an information link which is used to connect the primary and tertiary sequence. The three general states of PSS are helices (H), strands (E), and coils (C). A new assignment technique named DSSP (Dictionary of Secondary Structure of Proteins) extended the 3-states into 8-states as a 3-turn helix (G), 5-turn helix (I), expanded strand in parallel as well as hostile to parallel β-sheet adaptation (E), 4-turn helix (H), buildup in segregated β-connect (B), curve (S), hydrogen reinforced turn (H) and coil (C). Among these 8-states L, T, and S-state come under the coil. The prediction of PSS is a challenging and essential problem in the field of bioinformatics. Therefore, Deep Learning techniques have been proposed for the accurate prediction of PSS. 
Objectives
The main objectives of this research include: 
· To propose an innovative deep learning model named OneHotEncoding-LSTM. 
· To predict PSS, which helps to give more accuracy for Q3 and Q8 structures. 
· To efficiently capture and then process local and global interactions among amino acids in a protein sequence. 
· To conduct wide experiments with the prevalent benchmark datasets to prove that the proposed technique has achieved better outcomes compared to existing techniques. 
The rest of this paper is defined as follows: The following subdivision 2 analyses some research works interrelated to this work. The proposed scheme is clearly explained in subdivision 3. Results are displayed in section 4 with a related explanation. Finally, the overall work is concluded in the last section with future suggestions and references.       

2. Related Works	
Fang et al. [22] introduced a method named DeepRIN (Deep Residual Inception Network) to calculate the protein backbone torsion angles (PBTA). In order to evaluate the 8-state SS features, a feature matrix was given as input to DeepRIN, and HHBlits software generated a 30-dimensional HMM sequence profile also a 20-D PSSM (Position-Specific Substitution Matrix) was created. The architecture of DeepRIN was designed based on residual and inception networks. Thus the results proved that DeepRIN created accurate predictions compared to the existing methods.
Zhou et al. [23] developed a technique named CNNH_PSS (Convolutional Neural Networks with Highways), mainly for 8-class PSS prediction. CNNH_PSS can extract interdependencies and contexts by combining highway and multi-scale CNN. The evaluation outcomes prove that CNNH_PSS was a useful tool for PSS and has attained better performance in prediction. Hence, CNNH_PSS outperforms CNF (Conditional Neural Fields), DeepCNF, as these existing methods cannot extract long-range interdependencies. 
Zhang et al. [24] introduced a sequence-to-sequence deep learning model known as CRRNN (Convolutional, Residual and Recurrent NN) for predicting PSS. The global context features were captured using gated recurrent units, and the local features were captured using convolutional filters. Also, a convolutional 1D filter with a kernel was utilized to minimize high dimensionality obtained from hidden-layer input. The datasets used for the prediction of 8 and 3-state were CASP 10, CASP 11, and CASP 12. Thus it is proved that CRRNN can effectively predict the PSS with higher accuracy. 
Guo et al. [25] presented a hybrid framework called 2C-BRNNs (2-dimensional convolutional bidirectional RNNs) to predict PSS. The discriminative local interaction among the amino acid residues was extracted by the proposed hybrid algorithm. Meanwhile, the increase in hidden layer units achieved higher Q8 accuracy. The proposed framework makes use of models such as 2DConv-BLSTM (2-dimensional convolutional bidirectional long short term memory), 2DConv-BGRUs (2-dimensional convolutional bidirectional gated recurrent units), 2DCNN-BLSTM (2-dimensional convolutional neural network-BLSTM) and 2DCNN-BGRUs (2-dimensional convolutional neural network-BGRUs). 
Jones et al. [26] built up a two-stage NN technique PSIPRED, that takes PSI-BLAST grouping profile as info also gets ~80% accuracy for 3-state prediction. Additional AI strategies incorporate bidirectional RNN [27], probabilistic graphical models [28], SVM and HMM [12, 13]. Baldi et al. [27] displayed a layout based strategy to forecast SS, which can yield better exactness utilizing comprehended structures as layouts. In any case, when close layouts are not accessible, Baldi's technique achieves marginally more awful than PSIPRED. 
Cheng et al. proposed a deep learning model in [3] deal with 3-state SS prediction utilizing unsupervised learning method where Restricted Boltzmann machine (RBM) was a layer in belief network, and learning by contrastive divergence was used.  Beitzel [29] submitted a thesis with the topic On Understanding and Classifying Web Queries. Wang and Roland [30] presented a public server named PISCES (Protein Sequence Culling Server) to offer culled lists or else chains provided by the user.  

2.1 Problem Statement
Proteins are considered as the core elements of biological processes. The prediction of protein structure can be mainly used to identify the shape of a protein from its amino acid sequence. This is considered a major problem because the function of a protein depends on its structure, and it seems difficult to determine protein structures. Moreover, it is essential to determine the 3D protein structure to detect the protein functions at the molecular level. The most interesting and challenging task in the field of computational biology is to predict the protein structures reliably and accurately. Thus the prediction of PSS offers information about the protein activity, functions, and relationships. Although the various techniques have been developed to improve the accuracy, these techniques are time-consuming and difficult to process. As a result, years of theoretical research has attempted for the PSS prediction from the sequences of amino acid. The models that already reviewed usually use CNN (Convolutional Neural Networks), which have less capability of connecting or else interpreting the long term dependencies of protein sequences.
In contrast to CNN, another option is RNN (Recurrent Neural Network), which has significant applications in speech recognition, robot control, machine translation, etc. RNN has more capability of predicting protein structure accurately since it has a memory of one layer. To overcome all these difficulties, a new method is proposed in this work. 

3. Proposed Methodology
In this work, OneHotEncoder-LSTM technique is proposed for the effective prediction of PSS. The one hot encoder method is joined with BLSTM neural systems to predict 8-state classification of PSS using the element vector measurement of the protein highlight grid. The one hot encoder process is utilized to separate complicated neighborhood settings between amino-corrosive build-ups in protein groupings. This component vector grid is fed into the BLSTM to create the required results. To confirm the viability of the proposed OneHotEncoder-LSTM, 8-class PSS forecast is performed in this work and examined on three open datasets separately: CULLPDB, CASP10, and 11. Trials show that the proposed approach reliably beats former benchmark strategies. The proposed model uses one hot encoding technique, which helps to convert the whole protein sequence into the input feature vector. Then the input vector is sent through the BLSTM model for training purpose, which helps to predict PSS. Fig 1 signifies the block diagram of the PSS proposed model.

Fig 1: PSS Proposed Model

3.1 OneHotEncoding Module
The process of converting the categorical data into numerical form by performing binarization procedure and including it as a feature to train the model is termed as OneHotEncoding. The name states that only one bit is true at any time. The proposed model is represented in vector form, whereas all the vector elements are represented as zero except one with value 1. For example [0 0 0 1 0 0], this indicates an OneHot vector. Thus, the transformation of categorical features to binary format performs better with regression and classification algorithms. 
In this work, every protein sequence in the dataset is converted into n-grams of any particular length. Here, n-gram is a contiguous sequence of n items from a given sample of text or speech. The process of dividing the whole chunk of sequences into n numbered string or word is termed as n-grams. After converting into n grams, the tokenization technique is used to transform whole n grams lists into feature vector matrix, which is sent through the model for prediction. We use fit_on_texts and texts_to_sequence methods from the tokenization module of the keras library to convert into the input vector.
fit_on_texts:  Updates internal data, based on a list of texts. This method creates the vocabulary index based on word frequency. So if you give it something like, "The cat sat on the mat." It will create a dictionary s.t.word_index ["the"] = 1; word index ["cat"] = 2 it is word -> index dictionary so every word gets a unique integer value. 0 is reserved for padding. So lower integer means more frequent words (often the first few are stop words because they appear a lot).
texts_to_sequences: Here, each text is changed into integer sequences. Therefore, it essentiallyconsiders each word in the text and interchanges it with its equivalent integer value from the word_index dictionary. 
Sequence.pad_sequences: These structures are mainly used to certify that all sequences in a list have similar lengths. Each sequence has the length as same as the longest sequence; for such lengthy sequence the zero (0) padding operation at the beginning of each sequence is carried out as a default operation.
to_categorical: It helps to convert the integer values into binary number, i.e., either 1 or 0. The whole vector class of all integer matrix is converted into binary numbers.
Thus, the OneHotEncoding module helps to get the input feature vector matrix that is fed through the LSTM network to produce desirable PSS prediction results.



3.2 LSTM
LSTM networks are the broadly used type of RNN structural design. The architecture of LSTM is better than traditional RNNs for capturing long-term dependencies. The difference between the LSTM model and regular RNN is that each traditional node in the hidden layer of LSTM is interchanged with memory cells (MCs). These MCs are considered as the furthermost important structures to overcome the problems of traditional RNNs during the process of learning. The segment of long-distance dependency encoding (LDE) incorporates dual stacked BLSTM NNs. This segment portrays the LSTM unit and clarifies how BLSTM be able to produce a fixed-length include vector of every amino acid. The diagrammatic representation of the LSTM memory block is presented in Fig 2. 

Fig 2: LSTM Memory Block



The architecture of LSTM includes memory cells, gate units, and memory blocks. The gate units in LSTM are utilized to control the flow of information. The 3 gate units are input, forget and output gate. Information can be stored or else disappeared from the memory cell through the input and forget gate coordination. To avoid the negative effects created from the unrelated inputs, multiplicative input gate units are used. The input flow to the MC is controlled by the input gate, whereas the output of the hidden state is controlled using the output gate. All these gates are implemented using the sigmoid function, which ranges from 0 and 1. 
In the memory block of LSTM, the forget gate is controlled by one-layer NN. The activation function is expressed as:

                      (1)





Where,  denotes forget gate, indicate weight vectors, input series is, hidden state of previous block and bias is denoted as.

The input gate produces values in the range (0 to 1) after the input squashing, and the new memory is formed by a simple NN with the previous memory block and the activation function.  The expressions for the input gate and input squashing function are:

                      (2)

                      (3)
The activation function of the memory cell to control each amino acid information processing at time t is expressed as,

                       (4)
The proposed LSTM block output is generated at the output gate which is represented in eqn (5), and the hidden vector is represented in eqn (6)

                       (5)

                       (6)

Where, indicate the element-wise multiplication. Also, in this work, the long-distance interdependencies among amino-acids are captured using BLSTM. The signal propagates forward as well as backward in time at BLSTM. Therefore, BLSTM can enhance LSTM performance at the time of classification. BLSTM includes two LSTM networks in which one network process using the input sequences, and another network runs on the reverse order of the input. 







The encoding module incorporates dualistic stacked BLSTM neural systems. The first BLSTM uses the sequence of proteins  to achieve hidden states in left to right  and right to left  sequences. The next BLSTM also get the similar hidden states as  and based on the past hidden state vectors, . Both forward and backward hidden sequences are combined to obtain the output sequence. Also, the protein features are recorded, and the feature representation is acquired. 

                      (7)
Finally, the prediction component takes the depictions generated by the OneHotEncoding element and LDE module as input, then forecasts 8-category SS of each amino-acid residue via the softmax function.

                     (8)


4. Results and Discussion
In this section, simulation results of the proposed One hot encoding with BLSTM is presented with the experimental settings, dataset description, and evaluation of performance metrics. Also, the results of the proposed technique are compared with existing methods on multiple benchmarks to prove the effectiveness of the proposed methodology.

4.1 Experimental Settings 	
The input of this method is a matrix, as m represents the input sequence length, and n signifies vectors dimension. All the proteins in the dataset is normalized to the required length of the sequence, that means the protein sequences greater than particular length is being truncated from the input vector. The whole input protein chains are divided into the training, testing, and validation datasets. To prevent the proposed model from over fitting, recurrent dropout techniques are used to reduce the possibilities of error in the results during the training process of our OneHotEncoding-BLSTM. The dropout is first used among OneHotEncoding and the BLSTM component. After that, the recurrent dropout is applied in between the prediction LDE component. The OneHotEncoding-BLSTM method is trained on a solitary NVIDIA GeForce GTX 1060 GPU with 6GB.

4.2 Dataset Description
The proposed method is tested on the publically available datasets. The datasets used for processing are CULLPDB, CASP 10, and 11. The detailed description is given below:
CULLPDB: The dataset CullPDB [30] was created earlier to CASP10, and any two proteins in this set share less than 25% chain identity with any of two proteins. This dataset is considered as a non-homologous huge dataset with 6128 protein amino acid sequences. The whole dataset of CullPDB is divided into dual subsets (training, testing). The proposed training set encloses ~5600 CullPDB proteins, and the residual ~500 PDB proteins are used as the test data.
CASP10 and CASP11: CASP stands for Critical Assessment of protein Structure Prediction. CASP 10 and 11 are publically available datasets from the protein structure prediction center. The CASP10 and CASP11 [14, 15] datasets hold 123 domain sequences that can be extracted from the 103 chains, and 105 sequences were present in CASP11 extracted from 85 chains. These are often regarded as the test datasets.

4.3 Evaluation Metrics
These works focus on the prediction of PSS on 8, 3-category. The Q8, Q3 accuracy analysis is the primary estimation scale in 8, 3-category SS prediction. The performance of this model is evaluated in terms of precision, recall, F1-score, and by the percentage of accuracy of both Q3 and Q8 secondary structure predictions. The higher the percentage value, the more accurate prediction. The precision and recall [11] values help to know about PSS and their SS8 labels more precisely. These metrics on the test data tell about protein’s most possible predicted states of all the eight states in secondary structure. F1-score [29] acts as a measurement for the accuracy of the test. The higher the F1-score value for any state in the SS8 label is the most probable prediction in the protein sequence.
Precision: This metric assesses the classifier exactness. The Numerator part is the correct positive predictions (True positives), and the denominator is the sum of a truly positive and false positive.

                         (9)
Recall: This metric evaluates the sensitivity of the classifier. The recall is otherwise known as sensitivity. The Numerator part is the correct positive predictions (True positives), and the denominator is the sum of a true positive and false negative.

                      (10)
F1-score: This is the weighted harmonic mean of precision as well as recall. Other names of F1-score are the F-measure metric and F-score.

                     (11)
4.4 Performance Comparison
The proposed system has experimented on three main datasets such as CULLPDB, CASP10, and CASP11. The below results are the percentages of the accuracy of both Q3 and Q8 states. The proposed OneHotEncoding-LSTM performance is compared with the following techniques like SSpro [16], RaptorX-SS8 [18], ICML2014 and Deep CNF-SS [20] for 8-state PSS prediction. Also, the techniques SSpro, PSIPRED [26], RaptorX-SS8, SPINE-X [18], JPRED [19] for 3-state PSS prediction.
 
Table1: PSS Q3 percentages of different methods on three datasets

Table 1 shows the representation of PSS prediction on three datasets for Q3 percentages. The existing techniques have shown fewer prediction percentages when compared with the proposed method. For the CullPDB dataset, the proposed method has attained the highest prediction percentage (86.54). The next highest value is obtained by DeepCNF-SS with (85.4) for the same dataset. Similarly, for the CASP10 dataset, the proposed method has achieved the highest prediction percentage of (85.2). Considering the similar dataset, the next highest prediction percentage is (84.4) obtained by the DeepCNF method. For the CASP11, the proposed method has attained the highest prediction percentage (85.7). The next highest value is obtained by DeepCNF-SS with (84.7) for the same dataset.

Table 2: PSS Q8 percentages of different methods on three datasets

Table 2 shows the representation of PSS prediction on three datasets for Q8 percentages. The existing techniques have shown less prediction percentages when compared with the proposed method. For CullPDB dataset, the proposed method has attained the highest prediction percentage (77.8). The next highest value is obtained by Deep CNF-SS with (75.2) for the same dataset. Similarly, for the CASP10 dataset, the proposed method has achieved the highest prediction percentage of (72.5). Considering the similar dataset, the next highest prediction percentage is (71.8) obtained by the Deep CNF method. For the CASP11, the proposed method has attained the highest prediction percentage (74.9). The next highest value is obtained by Deep CNF-SS with (72.3) for the same dataset. Thus the proposed method can produce more accurate results compared to existing methods in both Q3 and Q8 accuracies.

Table 3: Comparison of Precision values for all labels of Q8 PSS

Table 3 shows the precision value comparison for 8-state PSS. The eight labels are L, B, E, G, I, H, S, and T. From the table, and it is proved that the proposed method achieved higher precision values compared to the existing methods such as Deep-CNF and ICML-2014.
  
Table 4: Comparison of Recall values for all labels of Q8 PSS

Table 4 shows the recall value comparison for 8-state PSS. The eight labels are L, B, E, G, I, H, S, and T. From the table, and it is proved that the proposed method achieved higher precision values compared to the existing methods such as Deep-CNF and ICML-2014. 
 
Table 5:  Comparison of F1-score values for all labels of Q8 PSS

Table 5 shows the F1-score comparison for 8-state PSS. The eight labels are L, B, E, G, I, H, S, and T. From the table, and it is proved that the proposed method achieved higher precision values compared to the existing methods such as Deep-CNF and ICML-2014.  

Fig 3: Precision Comparison 

Fig 3 shows the comparison graph of precision. From the graph, it is proved that the proposed method achieved higher precision values compared to the existing methods such as Deep-CNF and ICML-2014.  The proposed precision values of eight labels are L (0.649), B (0.166), E (0.819, G (0.484), I (0.0), H (0.734), S (0.245) and T (0.644). All the models fail on I state since it is very rare to find on test sets. On overall comparison, this proposed method can able to obtain high values on the sates like L, B, E, G, H compared to the existing models.

Fig 4: Recall Comparison 

Fig 4 shows the comparison graph of recall. From the graph, it is proved that the proposed method achieved higher precision values compared to the existing methods such as Deep-CNF and ICML-2014.  The proposed precision values of eight labels are L (0.818), B (0.07), E (0.88), G (0.359), I (0.0), H (0.818), S (0.156) and T (0.604). All the models fail on I state since it is very rare to find on test sets. On overall comparison, this proposed method can able to obtain high values on the sates like L, B, E, G, H compared to the existing models.

Fig 5: F1-score Comparison 

Fig 5 shows the comparison graph of the F1-score. From the graph, it is proved that the proposed method achieved higher precision values compared to the existing methods such as Deep-CNF and ICML-2014.  The proposed precision values of eight labels are L (0.720), B(0.098), E (0.843), G (0.412), I (0.0), H (0.773), S (0.109) and T (0.623). All the models fail on I state since it is very rare to find on test sets. On overall comparison, this proposed method can able to obtain high values on the sates like L, B, E, G, H compared to the existing models.

	Fig 6: Q8 accuracy Comparison 

Fig 6 illustrates the Q8 accuracy comparison of the model. The accuracy of Q8 state can be depicted on the graph drawn for each epoch. This plot represents the gradual increase of epoch from 3 to 15. After some epochs, the graph starts decreasing and that epoch we take into consideration. Here we take 5 epochs, and the results of Q8 accuracy with various regularization factors on the CullPDB training set are shown. 

5. Conclusion 
In this work, a new model named OneHotEncoding – LSTM is developed, which helps to predict protein secondary structure more accurately on the CULLPDB dataset compared to all other existing computational techniques. In contrast, all other models, this model uses bidirectional LSTM which have access to the inputs from both forward and backward layer in the neural network at the same time. So, this bidirectional long short memory can precisely address and solve the long term dependency, which differentiates apart from all other models. This method can predict the accuracy of 77.8 % on 8-state structure and 86.54% on 3-state structure on the CULLPDB dataset. Compared with previous deep learning methods, we have used latest techniques like LSTM and one hot encoding that have specialized architecture that can able to predict protein secondary structure based on the fine-tuned parameters like proteins sequences i.e. amino acids residue and respective Q8 and Q3 states for each protein in the dataset. In future, the use of various fusion strategy and evolutionary algorithms will bring enhancement in the PSS prediction strategy. 
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List of table
Table1: PSS Q3 percentages of different methods on three datasets
	
Methods
	Q3%

	
	CullPDB
	CASP10
	CASP11

	SSPro(without template)[34]
	79.5
	78.5
	77.6

	Spine-X[49]
	81.7
	80.7
	79.3

	PSIPRED[32]
	82.5
	81.2
	80.7

	JPRED[50]
	82.9
	81.6
	80.4

	RaptorX-SS8[48]
	81.2
	78.9
	79.1

	DeepCNF-SS[51]
	85.4
	84.4
	84.7

	OneHotEncoding-LSTM (Proposed)
	86.54
	85.2
	85.7



Table 2: PSS Q8 percentages of different methods on three datasets
	
Methods
	Q8%

	
	CullPDB
	CASP10
	CASP11

	SSPro(without template)[34]
	66.6
	64.9
	65.6

	ICML2014[6]
	72.1
	-
	-

	RaptorX-SS8[49]
	69.7
	64.8
	65.1

	DeepCNF-SS[51]
	75.2
	71.8
	72.3

	OneHotEncoding-LSTM (Proposed)
	77.8
	72.5
	74.9



Table 3: Comparison of Precision values for all labels of Q8 PSS
	SS8 label
	Precision

	
	Onehot-LSTM
	Deep-CNF
	ICML-2014

	L
	0.649
	0.615
	0.541

	B
	0.166
	0.638
	0.5

	E
	0.819
	0.814
	0.748

	G
	0.484
	0.535
	0.496

	I
	0.0
	0.0
	0.0

	H
	0.734
	0.878
	0.828

	S
	0.245
	0.543
	0.423

	T
	0.644
	0.613
	0.548



Table 4: Comparison of Recall values for all labels of Q8 PSS
	SS8 label
	Recall

	
	Onehot-LSTM
	Deep-CNF
	ICML-2014

	L
	0.818
	0.707
	0.633

	B
	0.07
	0.046
	0.001

	E
	0.88
	0.867
	0.823

	G
	0.359
	0.302
	0.133

	I
	0.0
	0.0
	0.0

	H
	0.818
	0.937
	0.935

	S
	0.156
	0.323
	0.159

	T
	0.604
	0.594
	0.506



Table 5:  Comparison of F1-score values for all labels of Q8 PSS.
	SS8 label
	F1-score

	
	Onehot-LSTM
	Deep-CNF
	ICML-2014

	L
	0.720
	0.657
	0.583

	B
	0.098
	0.085
	0.001

	E
	0.843
	0.839
	0.783

	G
	0.412
	0.386
	0.209

	I
	0.0
	0.0
	0.0

	H
	0.773
	0.906
	0.878

	S
	0.109
	0.405
	0.231

	T
	0.623
	0.603
	0.526


Figure legends

Fig 1: PSS Proposed Model
Fig 2: LSTM Memory Block
Fig 3: Precision Comparison 
Fig 4: Recall Comparison 
Fig 5: F1-score Comparison 
	Fig 6: Q8 accuracy Comparison 
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Fig 1: PSS Proposed Model



Fig 2: LSTM Memory Block
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Fig 3: Precision Comparison 
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Fig 4: Recall Comparison 
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Fig 5: F1-score Comparison 
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	Fig 6: Q8 accuracy Comparison 
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