REFERENCES
Aldesuquy, H. S., Baka, Z. A.,
El-Shehaby, O., Ghanem, H. E. (2013). Growth, Lipid peroxidation and
antioxidant enzyme activities as a Selection Criterion for the salt
tolerance of wheat cultivars irrigated by seawater. Phyton, 53 ,
153-165.
Apel, K., Hirt, H. (2004). Reactive
oxygen species: Metabolism, oxidative stress, and signal transduction.Annual Review of Plant Biology, 55 , 373-399.
Asada, K. (1996). Photosynthesis and
the Environment. by NR Baker, Kluwer , 123.
Asada, K. (1999). The waterwater cycle
in chloroplasts: scavening of active oxygens and dissipation of excess
photon. Annual Review of Plant Physiology & Plant Molecular
Biology, 50 , 601-639.
Asada, K. (2000). The water–water
cycle as alternative photon and electron sinks. Philosophical
Transactions of the Royal Society of London. Series B: Biological
Sciences, 355 (1402), 1419-1431.
Asada, K. (2006). Production and
scavenging of reactive oxygen species in chloroplasts and their
functions. Plant Physiology, 141 (2), 391-396.
Bartels, D., Sunkar, R. (2005).
Drought and salt tolerance in plants. Critical Reviews in Plant
Sciences, 24 (1), 23-58.
Bartoli, C. G., Buet, A., Grozeff, G.
G., Galatro, A., Simontacchi, M. (2017). Ascorbate-glutathione cycle and
abiotic stress tolerance in plants. In Ascorbic acid in plant
growth, development and stress tolerance (pp. 177-200): Springer.
Bulte, L., Gans, P., Febeille, F.,
Wollman, F. (1990). ATP control on state transitions in vivo inChlamydomonas reinhardtii . Biochimica et Biophysica Acta,
1020 , 72-80.
Chaux, F., Peltier, G., Johnson, X.
(2015). A security network in PSI photoprotection: regulation of
photosynthetic control, NPQ and O2 photoreduction by cyclic electron
flow. Frontiers in Plant Science, 6 .
Chen, Q., Zhang, M., Shen, S. (2011).
Effect of salt on malondialdehyde and antioxidant enzymes in seedling
roots of Jerusalem artichoke (Helianthus tuberosus L.). Acta
Physiologiae Plantarum, 33 (2), 273-278.
Cook, G., Teufel, A., Kalra, I., Li,
W., Wang, X., Priscu, J., Morgan-Kiss, R. M. (2019). The Antarctic
psychrophiles Chlamydomonas spp. UWO241 and ICE-MDV exhibit
differential restructuring of photosystem I in response to iron.Photosynthesis Research , 141, 209-228.
Cournac, L., Latouche, G., Cerovic,
Z., Redding, K., Ravenel, J., Peltier, G. (2002). In vivo interactions
between photosynthesis, mitorespiration, and chlororespiration inChlamydomonas reinhardtii . Plant Physiology, 129 (4),
1921-1928.
Cvetkovska, M., Hüner, N. P., Smith,
D. R. (2017). Chilling out: the evolution and diversification of
psychrophilic algae with a focus on Chlamydomonadales. Polar
Biology, 40 , 1169-1184.
Ensminger, I., Busch, F., Hüner, N.
P. A. (2006). Photostasis and cold acclimation: sensing low temperature
through photosynthesis. Physiologia Plantarum, 126 (1), 28-44.
Falk, S., Krol, M., Maxwell, D. P.,
Rezansoff, D. A., Gray, G. R., Hüner, N. P. A. (1994). Changes in in
vivo fluorescence quenching in rye and barley as a function of reduced
PSII light harvesting antenna size. Physiologia Plantarum, 91 ,
551-558.
Falk, S., Maxwell, D., Gray, G.,
Rezansoff, D., Hüner, N. (1993). Photosynthetic acclimation to low
temperature in higher plants and algae. Current Topics in
Botanical Research, 1 , 281-292.
Förster, B., Osmond, C. B., Pogson,
B. J. (2005). Improved survival of very high light and oxidative stress
is conferred by spontaneous gain-of-function mutations inChlamydomonas . Biochimica et Biophysica Acta (BBA) -
Bioenergetics, 1709 (1), 45-57.
Foyer, C. H., Halliwell, B. (1976).
The presence of glutathione and glutathione reductase in chloroplasts: a
proposed role in ascorbic acid metabolism. Planta, 133 (1), 21-25.
Foyer, C. H., Lopez‐Delgado, H., Dat,
J. F., Scott, I. M. (1997). Hydrogen peroxide‐and glutathione‐associated
mechanisms of acclimatory stress tolerance and signalling.Physiologia Plantarum, 100 (2), 241-254.
Foyer, C. H., Noctor, G. (2012).
Managing the cellular redox hub in photosynthetic organisms.Plant, Cell & Environment, 35 (2), 199-201.
Foyer, C. H., Shigeoka, S. (2011).
Understanding oxidative stress and antioxidant functions to enhance
photosynthesis. Plant Physiology, 155 (1), 93-100.
Gest, N., Gautier, H., Stevens, R.
(2013). Ascorbate as seen through plant evolution: the rise of a
successful molecule? Journal of Experimental Botany, 64 (1),
33-53.
He, Y., Fu, J., Yu, C., Wang, X.,
Jiang, Q., Hong, J., . . . James, A. (2015). Increasing cyclic electron
flow is related to Na+ sequestration into vacuoles for salt tolerance in
soybean. Journal of Experimental Botany , erv392.
Hu, W., Song, X., Shi, K., Xia, X.,
Zhou, Y., Yu, J. (2008). Changes in electron transport, superoxide
dismutase and ascorbate peroxidase isoenzymes in chloroplasts and
mitochondria of cucumber leaves as influenced by chilling.Photosynthetica, 46 (4), 581.
Huang, W., Yang, S.-J., Zhang, S.-B.,
Zhang, J.-L., Cao, K.-F. (2012). Cyclic electron flow plays an important
role in photoprotection for the resurrection plant Paraboea
rufescens under drought stress. Planta, 235 (4), 819-828.
Huang, W., Yang, Y.-J., Hu, H.,
Zhang, S.-B. (2016). Seasonal variations in photosystem I compared with
photosystem II of three alpine evergreen broad-leaf tree species.Journal of Photochemistry and Photobiology B: Biology, 165 ,
71-79.
Huang, W., Zhang, S.-B., Xu, J.-C.,
Liu, T. (2017). Plasticity in roles of cyclic electron flow around
photosystem I at contrasting temperatures in the chilling-sensitive
plant Calotropis gigantea . Environmental and Experimental
Botany, 141 , 145-153.
Hüner, N., Dahal, K., Hollis, L.,
Bode, R., Rosso, D., Krol, M., Ivanov, A. G. (2012). Chloroplast redox
imbalance governs phenotypic plasticity: the “grand design of
photosynthesis” revisited. Frontiers in Plant Science, 3 , 255.
Ivanov, A., Sane, P., Simidjiev, I.,
Park, Y.-I., Hüner, N. P. , Öquist, G. (2012). Restricted capacity for
PSI-dependent cyclic electron flow in ΔpetE mutant compromises the
ability for acclimation to iron stress in Synechococcus sp. PCC
7942 cells. Biochimica et Biophysica Acta, 1817 (8), 1277-1284.
Ivanov, A. G., Morgan, R. M., Gray,
G. R., Velitchkova, M. Y., Hüner, N. P. (1998). Temperature/light
dependent development of selective resistance to photoinhibition of
photosystem I. FEBS Letters 430 (3), 288-292.
Iwai, M., Takizawa, K., Tokutsu, R.,
Okamuro, A., Takahashi, Y., Minagawa, J. (2010). Isolation of the
elusive supercomplex that drives cyclic electron flow in photosynthesis.Nature, 464 (7292), 1210-1213.
Jeffrey, S. W., Humphrey, G. F.
(1975). New spectrophotometric equations for determining chlorophyll a,
b, c1, c2 in higher plants, algae and natural phytoplankton.Biochem. Physiol. Pflanz, 167 , 191-194.
Julkowska, M. (2020). Extreme
Engineering: How Antarctic Algae Adapt to Hypersalinity. Plant
Physiology, 183 (2), 427.
Kalra, I., Wang, X., Cvetkovska, M.,
Jeong, J., McHargue, W.,. . . Morgan-Kiss, R. M. (2020).Chlamydomonas sp. UWO 241 exhibits high cyclic electron flow and
rewired metabolism under high salinity. Plant Physiology, 183 ,
588-601.
Kramer, D. M., Johnson, G., Kiirats, O., Edwards, G. E. (2004). New
fluorescence parameters for the determination of QAredox state and excitation energy fluxes. Photosynthesis Research,
79(2) , 209-218.
Ledford, H. K., Chin, B. L., Niyogi,
K. K. (2007). Acclimation to singlet oxygen stress in Chlamydomonas
reinhardtii. Eukaryot Cell, 6 . doi:10.1128/ec.00207-06
Liu, Y., Qi, M., Li, T. (2012).
Photosynthesis, photoinhibition, and antioxidant system in tomato leaves
stressed by low night temperature and their subsequent recovery.Plant Science, 196 , 8-17.
Lucker, B., Kramer, D. M. (2013).
Regulation of cyclic electron flow in Chlamydomonas reinhardtiiunder fluctuating carbon availability. Photosynthesis Research,
117 (1-3), 449-459.
Maruta, T., Ishikawa, T. (2017).
Ascorbate peroxidases: crucial roles of antioxidant enzymes in plant
stress responses. In Ascorbic acid in plant growth, development
and stress tolerance (pp. 111-127): Springer.
Maxwell, D. P., Falk, S., Trick, C.
G., Hüner, N. P. A. (1994). Growth a low temperature mimics high-light
acclimation in Chlorella vulgaris . Plant Physiology, 105 ,
535-543.
McNeill, J., Barrie, F., Buck, W.,
Demoulin, V., Greuter, W., Hawksworth, D., . . . Prado, J. (2012).
International Code of Nomenclature for algae, fungi and plants.Regnum vegetabile, 154 .
Minagawa, J. (2011). State
transitions-the molecular remodeling of photosynthetic supercomplexes
that controls energy flow in the chloroplast. Biochimica et
Biophysica Acta (BBA)-Bioenergetics, 1807 (8), 897-905.
Møller, I. M., Jensen, P. E.,
Hansson, A. (2007). Oxidative modifications to cellular components in
plants. Annual Reviews of Plant Biology, 58 , 459-481.
Morgan-Kiss, R., Ivanov, A. G.,
Williams, J., Mobashsher, K., Hüner, N. P. (2002a). Differential thermal
effects on the energy distribution between photosystem II and
photosystem I in thylakoid membranes of a psychrophilic and a mesophilic
alga. Biochimica et Biophysica Acta (BBA) - Bioenergetics,
1561 (2), 251-265.
Morgan-Kiss, R. M., Ivanov, A. G.,
Hüner, N. P. A. (2002b). The Antarctic psychrophile, Chlamydomonas
subcaudata, is deficient in state I-state II transitions. Planta,
214 (3), 435-445.
Morgan-Kiss, R. M., Ivanov, A. G.,
Modla, S., Czymmek, K., Hüner, N. P., Priscu, J. C., . . . Hanson, T. E.
(2008). Identity and physiology of a new psychrophilic eukaryotic green
alga, Chlorella sp., strain BI, isolated from a transitory pond near
Bratina Island, Antarctica. Extremophiles, 12 (5), 701-711.
Morgan-Kiss, R. M., Priscu, J. C.,
Pocock, T., Gudynaite-Savitch, L., Hüner, N. P. (2006). Adaptation and
acclimation of photosynthetic microorganisms to permanently cold
environments. Microbiology & Molecular Biology Reviews, 70 (1),
222-252.
Morgan, R. M., Ivanov, A. G., Priscu,
J. C., Maxwell, D. P., Hüner, N. P. A. (1998). Structure and composition
of the photochemical apparatus of the Antarctic green alga,Chlamydomonas subcaudata . Photosynthesis Research, 56 ,
303-314.
Müller, P., Li, X.-P., Niyogi, K. K.
(2001). Non-photochemical quenching. A response to excess light energy.Plant Physiology, 125 (4), 1558-1566.
Neale, P. J., Priscu, J. C. (1995).
The photosynthetic apparatus of phytoplankton from a perennially
ice-covered Antarctic lake: acclimation to an extreme shade environment.Plant and Cell Physiology, 36 , 253-263.
Nichols, H. W., Bold, H. C. (1965).Trichosarcina polymorpha Gen. Et Sp. Nov. J Phycol., 1 ,
34-38.
Niyogi, K. K. (1999). Photoprotection
revisited: genetic and molecular approaches. Annual Review of
Plant Biology, 50 (1), 333-359.
Noctor, G., Foyer, C. H. (1998).
Ascorbate and glutathione: keeping active oxygen under control.Annual Review of Plant Biology, 49 (1), 249-279.
Öquist, G., Hüner, N. P. (2003).
Photosynthesis of overwintering evergreen plants. Annual Review
Plant Biology, 54 , 329-355.
Pitsch, N. T., Witsch, B., Baier, M.
(2010). Comparison of the chloroplast peroxidase system in the
chlorophyte Chlamydomonas reinhardtii , the bryophytePhyscomitrella patens , the lycophyte Selaginella
moellendorffii and the seed plant Arabidopsis thaliana .BMC Plant Biology, 10 (1), 133.
Pocock, T., Lachance, M.-A.,
Proschold, T., Priscu, J. C., Kim, S., Huner, N. P. A. (2004).
Identification of a psychrophilic green alga from Lake Bonney
Antarctica: Chlamydomonas raudensis ETTL. (UWO 241)
(Chlorophyceae ). Journal of Phycology, 40 , 1138-1148.
Pocock, T., Koziak, A., Rosso, D.,
Falk, S., Hüner, H. P. A. (2007). Chlamydomonas raudensis ettl.
(UWO241) exhibits the capacity for rapid D1 repair in response to
chronic photoinhibition at low temperature. Journal of Phycology,
43 , 924-936.
Pocock, T., Vetterli, A., Falk, S.
(2011). Evidence for phenotypic plasticity in the Antarctic extremophileChlamydomonas raudensis Ettl. UWO 241. J Experimental
Botany, 62 (3), 1169-1177. doi:10.1093/jxb/erq347
Possmayer, M., Gupta, R. K.,
Szyszka-Mroz, B., Maxwell, D. P., Lachance, M. A., Hüner, N., Smith, D.
R. (2016). Resolving the phylogenetic relationship between Chlamydomonas
sp. UWO 241 and Chlamydomonas raudensis sag 49.72 (Chlorophyceae) with
nuclear and plastid DNA sequences. Journal of Phycology, 52 (2),
305-310.
Raymond, J. A., Morgan-Kiss, R.
(2013). Separate Origins of ice-binding proteins in AntarcticChlamydomonas species. PLoS ONE, 8 (3), e59186.
Schreiber, U., & Klughammer, C.
(2008). Non-photochemical fluorescence quenching and quantum yields in
PS I and PS II: analysis of heat-induced limitations using
Maxi-Imaging-PAM and Dual-PAM-100. PAM Application Notes, 1 ,
15-18.
Sharma, P., Jha, A. B., Dubey, R. S.,
Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and
antioxidative defense mechanism in plants under stressful conditions.Journal of Botany, 2012 .
Sirikhachornkit, A., Niyogi, K. K.
(2010). Antioxidants and Photo-oxidative Stress Responses in Plants and
Algae. In Govindjee & T. D. Sharkey (Eds.), Advances in
Photosynthesis and Respiration (Vol. 31, pp. 379-396): Springer
Netherlands.
Smith, B. M., Morrissey, P. J.,
Guenther, J. E., Nemson, J. A., Harrison, M. A., Allen, J. F., Melis, A.
(1990). Response of the photosynthetic apparatus in Dunaliella salina
(green algae) to irradiance stress. Plant Physiology, 93 (4),
1433-1440.
Suzuki, N., Koussevitzky, S.,
Mittler, R., Miller, G. (2012). ROS and redox signalling in the response
of plants to abiotic stress. Plant, Cell & Environment, 35 (2),
259-270.
Szyszka-Mroz, B., Cvetkovska, M.,
Ivanov, A. G., Smith, D. R., Possmayer, M., Maxwell, D. P., Hüner, N. P.
(2019). Cold-adapted protein kinases and thylakoid remodeling impact
energy distribution in an Antarctic psychrophile. Plant
Physiology, 180 (3), 1291-1309.
Szyszka-Mroz, B., Pittock, P.,
Ivanov, A. G., Lajoie, G., Hüner, N. P. (2015). The Antarctic
psychrophile, Chlamydomonas sp. UWO 241, preferentially
phosphorylates a PSI-cytochrome b6/f supercomplex. Plant
Physiology, 169 , 717-736.
Szyszka, B., Ivanov, A. G., Hüner, N.
P. (2007). Psychrophily is associated with differential energy
partitioning, photosystem stoichiometry and polypeptide phosphorylation
in Chlamydomonas raudensis. Biochimica et Biophysica Acta
(BBA)-Bioenergetics, 1767 (6), 789-800.
Szyszka, B., Ivanov, A. G., Hüner, N.
P. A. (2007). Psychrophily induces differential energy partitioning,
photosystem stoichiometry and polypeptide phosphorylation inChlamydomonas raudensis . Biochimica et Biophysica Acta
(BBA) - Bioenergetics, 1767 , 789-800.
Takahashi, S., Murata, N. (2008). How
do environmental stresses accelerate photoinhibition? Trends in
Plant Science, 13 (4), 178-182.
Tanaka, A., Melis, A. (1997).
Irradiance-dependent changes in the size and composition of the
chlorophyll a-b light-harvesting complex in the green algaDunaliella salina . Plant Cell Physiolgy, 38 (1), 17-24.
Teixeira, F. K., Menezes-Benavente,
L., Margis, R., Margis-Pinheiro, M. (2004). Analysis of the molecular
evolutionary history of the ascorbate peroxidase gene family: inferences
from the rice genome. Journal of Molecular Evolution, 59 (6),
761-770.
Van Alstyne, K. L., Sutton, L.,
Gifford, S.-A. (2020). Inducible versus constitutive antioxidant
defenses in algae along an environmental stress gradient. Marine
Ecology Progress Series, 640 , 107-115.
Velitchkova, M., Popova, A. V., Faik,
A., Gerganova, M., Ivanov, A. G. (2020). Low temperature and high light
dependent dynamic photoprotective strategies in Arabidopsis thaliana.Physiologia Plantarum, 170(1), 93-108.
Venisse, J.-S., Gullner, G., Brisset,
M.-N. (2001). Evidence for the involvement of an oxidative stress in the
initiation of infection of pear by Erwinia amylovora. Plant
Physiology, 125 (4), 2164-2172.
Wildi, B., Lütz, C. (1996).
Antioxidant composition of selected high alpine plant species from
different altitudes. Plant, Cell & Environment, 19 (2), 138-146.
Wilson, K. E., Hüner, N. P. (2000).
The role of growth rate, redox-state of the plastoquinone pool and the
trans-thylakoid ΔpH in photoacclimation of Chlorella vulgaris to
growth irradiance and temperature. Planta, 212 (1), 93-102.
Witman, G. B. (1993).Chlamydomonas phototaxis. Trends in cell biology, 3 (11),
403-408.
Yamori, W., Makino, A., & Shikanai,
T. (2016). A physiological role of cyclic electron transport around
photosystem I in sustaining photosynthesis under fluctuating light in
rice. Scientific reports, 6 , 20147.
Yang, Q., Blanco, N. E., Hermida-Carrera, C., Lehotai, N., Hurry, V.,
Strand, Å. (2020). Two dominant boreal conifers use contrasting
mechanisms to reactivate photosynthesis in the spring. Nature
Communications, 11(1), 1-12.
Young, J. N., Schmidt, K. (2020).
It’s what’s inside that matters: physiological adaptations of
high‐latitude marine microalgae to environmental change. New
Phytologist . 227, 1307-1318.
Zhang, Z., Qu, C., Zhang, K., He, Y., Zhao, X., Yang, L., Zheng, Z., Ma,
X., Wang, X., Wang, W., Wang, K. (2020) Adaptation to extreme antarctic
environments revealed by the genome of a sea ice green
alga. Current Biology , 30, 1-12.
Zechmann, B., Stumpe, M., Mauch, F.
(2011). Immunocytochemical determination of the subcellular distribution
of ascorbate in plants. Planta, 233 (1), 1-12.
Zhang, C., Liu, J., Zhang, Y., Cai,
X., Gong, P., Zhang, J., . . . Ye, Z. (2011). Overexpression of SlGMEs
leads to ascorbate accumulation with enhanced oxidative stress, cold,
and salt tolerance in tomato. Plant Cell Reports, 30 (3), 389-398.
Zhang, S., Scheller, H. V. (2004).
Photoinhibition of photosystem I at chilling temperature and subsequent
recovery in Arabidopsis thaliana . Plant and Cell
Physiology, 45 (11), 1595-1602.