REFERENCES
Aldesuquy, H. S., Baka, Z. A., El-Shehaby, O., Ghanem, H. E. (2013). Growth, Lipid peroxidation and antioxidant enzyme activities as a Selection Criterion for the salt tolerance of wheat cultivars irrigated by seawater. Phyton, 53 , 153-165.
Apel, K., Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction.Annual Review of Plant Biology, 55 , 373-399.
Asada, K. (1996). Photosynthesis and the Environment. by NR Baker, Kluwer , 123.
Asada, K. (1999). The waterwater cycle in chloroplasts: scavening of active oxygens and dissipation of excess photon. Annual Review of Plant Physiology & Plant Molecular Biology, 50 , 601-639.
Asada, K. (2000). The water–water cycle as alternative photon and electron sinks. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 355 (1402), 1419-1431.
Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141 (2), 391-396.
Bartels, D., Sunkar, R. (2005). Drought and salt tolerance in plants. Critical Reviews in Plant Sciences, 24 (1), 23-58.
Bartoli, C. G., Buet, A., Grozeff, G. G., Galatro, A., Simontacchi, M. (2017). Ascorbate-glutathione cycle and abiotic stress tolerance in plants. In Ascorbic acid in plant growth, development and stress tolerance (pp. 177-200): Springer.
Bulte, L., Gans, P., Febeille, F., Wollman, F. (1990). ATP control on state transitions in vivo inChlamydomonas reinhardtii . Biochimica et Biophysica Acta, 1020 , 72-80.
Chaux, F., Peltier, G., Johnson, X. (2015). A security network in PSI photoprotection: regulation of photosynthetic control, NPQ and O2 photoreduction by cyclic electron flow. Frontiers in Plant Science, 6 .
Chen, Q., Zhang, M., Shen, S. (2011). Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.). Acta Physiologiae Plantarum, 33 (2), 273-278.
Cook, G., Teufel, A., Kalra, I., Li, W., Wang, X., Priscu, J., Morgan-Kiss, R. M. (2019). The Antarctic psychrophiles Chlamydomonas spp. UWO241 and ICE-MDV exhibit differential restructuring of photosystem I in response to iron.Photosynthesis Research , 141, 209-228.
Cournac, L., Latouche, G., Cerovic, Z., Redding, K., Ravenel, J., Peltier, G. (2002). In vivo interactions between photosynthesis, mitorespiration, and chlororespiration inChlamydomonas reinhardtii . Plant Physiology, 129 (4), 1921-1928.
Cvetkovska, M., Hüner, N. P., Smith, D. R. (2017). Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales. Polar Biology, 40 , 1169-1184.
Ensminger, I., Busch, F., Hüner, N. P. A. (2006). Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiologia Plantarum, 126 (1), 28-44.
Falk, S., Krol, M., Maxwell, D. P., Rezansoff, D. A., Gray, G. R., Hüner, N. P. A. (1994). Changes in in vivo fluorescence quenching in rye and barley as a function of reduced PSII light harvesting antenna size. Physiologia Plantarum, 91 , 551-558.
Falk, S., Maxwell, D., Gray, G., Rezansoff, D., Hüner, N. (1993). Photosynthetic acclimation to low temperature in higher plants and algae. Current Topics in Botanical Research, 1 , 281-292.
Förster, B., Osmond, C. B., Pogson, B. J. (2005). Improved survival of very high light and oxidative stress is conferred by spontaneous gain-of-function mutations inChlamydomonas . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1709 (1), 45-57.
Foyer, C. H., Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 133 (1), 21-25.
Foyer, C. H., Lopez‐Delgado, H., Dat, J. F., Scott, I. M. (1997). Hydrogen peroxide‐and glutathione‐associated mechanisms of acclimatory stress tolerance and signalling.Physiologia Plantarum, 100 (2), 241-254.
Foyer, C. H., Noctor, G. (2012). Managing the cellular redox hub in photosynthetic organisms.Plant, Cell & Environment, 35 (2), 199-201.
Foyer, C. H., Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology, 155 (1), 93-100.
Gest, N., Gautier, H., Stevens, R. (2013). Ascorbate as seen through plant evolution: the rise of a successful molecule? Journal of Experimental Botany, 64 (1), 33-53.
He, Y., Fu, J., Yu, C., Wang, X., Jiang, Q., Hong, J., . . . James, A. (2015). Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean. Journal of Experimental Botany , erv392.
Hu, W., Song, X., Shi, K., Xia, X., Zhou, Y., Yu, J. (2008). Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloroplasts and mitochondria of cucumber leaves as influenced by chilling.Photosynthetica, 46 (4), 581.
Huang, W., Yang, S.-J., Zhang, S.-B., Zhang, J.-L., Cao, K.-F. (2012). Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. Planta, 235 (4), 819-828.
Huang, W., Yang, Y.-J., Hu, H., Zhang, S.-B. (2016). Seasonal variations in photosystem I compared with photosystem II of three alpine evergreen broad-leaf tree species.Journal of Photochemistry and Photobiology B: Biology, 165 , 71-79.
Huang, W., Zhang, S.-B., Xu, J.-C., Liu, T. (2017). Plasticity in roles of cyclic electron flow around photosystem I at contrasting temperatures in the chilling-sensitive plant Calotropis gigantea . Environmental and Experimental Botany, 141 , 145-153.
Hüner, N., Dahal, K., Hollis, L., Bode, R., Rosso, D., Krol, M., Ivanov, A. G. (2012). Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited. Frontiers in Plant Science, 3 , 255.
Ivanov, A., Sane, P., Simidjiev, I., Park, Y.-I., Hüner, N. P. , Öquist, G. (2012). Restricted capacity for PSI-dependent cyclic electron flow in ΔpetE mutant compromises the ability for acclimation to iron stress in Synechococcus sp. PCC 7942 cells. Biochimica et Biophysica Acta, 1817 (8), 1277-1284.
Ivanov, A. G., Morgan, R. M., Gray, G. R., Velitchkova, M. Y., Hüner, N. P. (1998). Temperature/light dependent development of selective resistance to photoinhibition of photosystem I. FEBS Letters 430 (3), 288-292.
Iwai, M., Takizawa, K., Tokutsu, R., Okamuro, A., Takahashi, Y., Minagawa, J. (2010). Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis.Nature, 464 (7292), 1210-1213.
Jeffrey, S. W., Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophyll a, b, c1, c2 in higher plants, algae and natural phytoplankton.Biochem. Physiol. Pflanz, 167 , 191-194.
Julkowska, M. (2020). Extreme Engineering: How Antarctic Algae Adapt to Hypersalinity. Plant Physiology, 183 (2), 427.
Kalra, I., Wang, X., Cvetkovska, M., Jeong, J., McHargue, W.,. . . Morgan-Kiss, R. M. (2020).Chlamydomonas sp. UWO 241 exhibits high cyclic electron flow and rewired metabolism under high salinity. Plant Physiology, 183 , 588-601.
Kramer, D. M., Johnson, G., Kiirats, O., Edwards, G. E. (2004). New fluorescence parameters for the determination of QAredox state and excitation energy fluxes. Photosynthesis Research, 79(2) , 209-218.
Ledford, H. K., Chin, B. L., Niyogi, K. K. (2007). Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii. Eukaryot Cell, 6 . doi:10.1128/ec.00207-06
Liu, Y., Qi, M., Li, T. (2012). Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery.Plant Science, 196 , 8-17.
Lucker, B., Kramer, D. M. (2013). Regulation of cyclic electron flow in Chlamydomonas reinhardtiiunder fluctuating carbon availability. Photosynthesis Research, 117 (1-3), 449-459.
Maruta, T., Ishikawa, T. (2017). Ascorbate peroxidases: crucial roles of antioxidant enzymes in plant stress responses. In Ascorbic acid in plant growth, development and stress tolerance (pp. 111-127): Springer.
Maxwell, D. P., Falk, S., Trick, C. G., Hüner, N. P. A. (1994). Growth a low temperature mimics high-light acclimation in Chlorella vulgaris . Plant Physiology, 105 , 535-543.
McNeill, J., Barrie, F., Buck, W., Demoulin, V., Greuter, W., Hawksworth, D., . . . Prado, J. (2012). International Code of Nomenclature for algae, fungi and plants.Regnum vegetabile, 154 .
Minagawa, J. (2011). State transitions-the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1807 (8), 897-905.
Møller, I. M., Jensen, P. E., Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Reviews of Plant Biology, 58 , 459-481.
Morgan-Kiss, R., Ivanov, A. G., Williams, J., Mobashsher, K., Hüner, N. P. (2002a). Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1561 (2), 251-265.
Morgan-Kiss, R. M., Ivanov, A. G., Hüner, N. P. A. (2002b). The Antarctic psychrophile, Chlamydomonas subcaudata, is deficient in state I-state II transitions. Planta, 214 (3), 435-445.
Morgan-Kiss, R. M., Ivanov, A. G., Modla, S., Czymmek, K., Hüner, N. P., Priscu, J. C., . . . Hanson, T. E. (2008). Identity and physiology of a new psychrophilic eukaryotic green alga, Chlorella sp., strain BI, isolated from a transitory pond near Bratina Island, Antarctica. Extremophiles, 12 (5), 701-711.
Morgan-Kiss, R. M., Priscu, J. C., Pocock, T., Gudynaite-Savitch, L., Hüner, N. P. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiology & Molecular Biology Reviews, 70 (1), 222-252.
Morgan, R. M., Ivanov, A. G., Priscu, J. C., Maxwell, D. P., Hüner, N. P. A. (1998). Structure and composition of the photochemical apparatus of the Antarctic green alga,Chlamydomonas subcaudata . Photosynthesis Research, 56 , 303-314.
Müller, P., Li, X.-P., Niyogi, K. K. (2001). Non-photochemical quenching. A response to excess light energy.Plant Physiology, 125 (4), 1558-1566.
Neale, P. J., Priscu, J. C. (1995). The photosynthetic apparatus of phytoplankton from a perennially ice-covered Antarctic lake: acclimation to an extreme shade environment.Plant and Cell Physiology, 36 , 253-263.
Nichols, H. W., Bold, H. C. (1965).Trichosarcina polymorpha Gen. Et Sp. Nov. J Phycol., 1 , 34-38.
Niyogi, K. K. (1999). Photoprotection revisited: genetic and molecular approaches. Annual Review of Plant Biology, 50 (1), 333-359.
Noctor, G., Foyer, C. H. (1998). Ascorbate and glutathione: keeping active oxygen under control.Annual Review of Plant Biology, 49 (1), 249-279.
Öquist, G., Hüner, N. P. (2003). Photosynthesis of overwintering evergreen plants. Annual Review Plant Biology, 54 , 329-355.
Pitsch, N. T., Witsch, B., Baier, M. (2010). Comparison of the chloroplast peroxidase system in the chlorophyte Chlamydomonas reinhardtii , the bryophytePhyscomitrella patens , the lycophyte Selaginella moellendorffii and the seed plant Arabidopsis thaliana .BMC Plant Biology, 10 (1), 133.
Pocock, T., Lachance, M.-A., Proschold, T., Priscu, J. C., Kim, S., Huner, N. P. A. (2004). Identification of a psychrophilic green alga from Lake Bonney Antarctica: Chlamydomonas raudensis ETTL. (UWO 241) (Chlorophyceae ). Journal of Phycology, 40 , 1138-1148.
Pocock, T., Koziak, A., Rosso, D., Falk, S., Hüner, H. P. A. (2007). Chlamydomonas raudensis ettl. (UWO241) exhibits the capacity for rapid D1 repair in response to chronic photoinhibition at low temperature. Journal of Phycology, 43 , 924-936.
Pocock, T., Vetterli, A., Falk, S. (2011). Evidence for phenotypic plasticity in the Antarctic extremophileChlamydomonas raudensis Ettl. UWO 241. J Experimental Botany, 62 (3), 1169-1177. doi:10.1093/jxb/erq347
Possmayer, M., Gupta, R. K., Szyszka-Mroz, B., Maxwell, D. P., Lachance, M. A., Hüner, N., Smith, D. R. (2016). Resolving the phylogenetic relationship between Chlamydomonas sp. UWO 241 and Chlamydomonas raudensis sag 49.72 (Chlorophyceae) with nuclear and plastid DNA sequences. Journal of Phycology, 52 (2), 305-310.
Raymond, J. A., Morgan-Kiss, R. (2013). Separate Origins of ice-binding proteins in AntarcticChlamydomonas species. PLoS ONE, 8 (3), e59186.
Schreiber, U., & Klughammer, C. (2008). Non-photochemical fluorescence quenching and quantum yields in PS I and PS II: analysis of heat-induced limitations using Maxi-Imaging-PAM and Dual-PAM-100. PAM Application Notes, 1 , 15-18.
Sharma, P., Jha, A. B., Dubey, R. S., Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions.Journal of Botany, 2012 .
Sirikhachornkit, A., Niyogi, K. K. (2010). Antioxidants and Photo-oxidative Stress Responses in Plants and Algae. In Govindjee & T. D. Sharkey (Eds.), Advances in Photosynthesis and Respiration (Vol. 31, pp. 379-396): Springer Netherlands.
Smith, B. M., Morrissey, P. J., Guenther, J. E., Nemson, J. A., Harrison, M. A., Allen, J. F., Melis, A. (1990). Response of the photosynthetic apparatus in Dunaliella salina (green algae) to irradiance stress. Plant Physiology, 93 (4), 1433-1440.
Suzuki, N., Koussevitzky, S., Mittler, R., Miller, G. (2012). ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment, 35 (2), 259-270.
Szyszka-Mroz, B., Cvetkovska, M., Ivanov, A. G., Smith, D. R., Possmayer, M., Maxwell, D. P., Hüner, N. P. (2019). Cold-adapted protein kinases and thylakoid remodeling impact energy distribution in an Antarctic psychrophile. Plant Physiology, 180 (3), 1291-1309.
Szyszka-Mroz, B., Pittock, P., Ivanov, A. G., Lajoie, G., Hüner, N. P. (2015). The Antarctic psychrophile, Chlamydomonas sp. UWO 241, preferentially phosphorylates a PSI-cytochrome b6/f supercomplex. Plant Physiology, 169 , 717-736.
Szyszka, B., Ivanov, A. G., Hüner, N. P. (2007). Psychrophily is associated with differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation in Chlamydomonas raudensis. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767 (6), 789-800.
Szyszka, B., Ivanov, A. G., Hüner, N. P. A. (2007). Psychrophily induces differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation inChlamydomonas raudensis . Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1767 , 789-800.
Takahashi, S., Murata, N. (2008). How do environmental stresses accelerate photoinhibition? Trends in Plant Science, 13 (4), 178-182.
Tanaka, A., Melis, A. (1997). Irradiance-dependent changes in the size and composition of the chlorophyll a-b light-harvesting complex in the green algaDunaliella salina . Plant Cell Physiolgy, 38 (1), 17-24.
Teixeira, F. K., Menezes-Benavente, L., Margis, R., Margis-Pinheiro, M. (2004). Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome. Journal of Molecular Evolution, 59 (6), 761-770.
Van Alstyne, K. L., Sutton, L., Gifford, S.-A. (2020). Inducible versus constitutive antioxidant defenses in algae along an environmental stress gradient. Marine Ecology Progress Series, 640 , 107-115.
Velitchkova, M., Popova, A. V., Faik, A., Gerganova, M., Ivanov, A. G. (2020). Low temperature and high light dependent dynamic photoprotective strategies in Arabidopsis thaliana.Physiologia Plantarum, 170(1), 93-108.
Venisse, J.-S., Gullner, G., Brisset, M.-N. (2001). Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora. Plant Physiology, 125 (4), 2164-2172.
Wildi, B., Lütz, C. (1996). Antioxidant composition of selected high alpine plant species from different altitudes. Plant, Cell & Environment, 19 (2), 138-146.
Wilson, K. E., Hüner, N. P. (2000). The role of growth rate, redox-state of the plastoquinone pool and the trans-thylakoid ΔpH in photoacclimation of Chlorella vulgaris to growth irradiance and temperature. Planta, 212 (1), 93-102.
Witman, G. B. (1993).Chlamydomonas phototaxis. Trends in cell biology, 3 (11), 403-408.
Yamori, W., Makino, A., & Shikanai, T. (2016). A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Scientific reports, 6 , 20147.
Yang, Q., Blanco, N. E., Hermida-Carrera, C., Lehotai, N., Hurry, V., Strand, Å. (2020). Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring. Nature Communications, 11(1), 1-12.
Young, J. N., Schmidt, K. (2020). It’s what’s inside that matters: physiological adaptations of high‐latitude marine microalgae to environmental change. New Phytologist . 227, 1307-1318.
Zhang, Z., Qu, C., Zhang, K., He, Y., Zhao, X., Yang, L., Zheng, Z., Ma, X., Wang, X., Wang, W., Wang, K. (2020) Adaptation to extreme antarctic environments revealed by the genome of a sea ice green alga. Current Biology , 30, 1-12.
Zechmann, B., Stumpe, M., Mauch, F. (2011). Immunocytochemical determination of the subcellular distribution of ascorbate in plants. Planta, 233 (1), 1-12.
Zhang, C., Liu, J., Zhang, Y., Cai, X., Gong, P., Zhang, J., . . . Ye, Z. (2011). Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Reports, 30 (3), 389-398.
Zhang, S., Scheller, H. V. (2004). Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana . Plant and Cell Physiology, 45 (11), 1595-1602.